The Impact of Local Microclimate Boundary Conditions on Building Energy Performance
Abstract
:1. Introduction
2. Method and Measurement
2.1. Microclimatic and Meteorological Monitoring
Measurement Spot no. | Village Name | Relative Position to the Lake | Vegetation Presence | Altitude [m a.s.l.] | Height * [m] |
---|---|---|---|---|---|
1 | Tuoro | North | moderate | 267 | 4 |
2 | Torricella | East | rich | 258 | 2 |
3 | Mirabella | South | moderate | 258 | 2 |
4 | Castiglione del Lago | West | moderate | 259 | 4 |
Meteorological Station no. | Location Name | Distance to the Lake [km] | Level of Urbanization | Vegetation Presence | Altitude [m a.s.l.] | Height * [m] |
---|---|---|---|---|---|---|
Sub | Corciano | 16.5 | low | plentiful | 520 | 2.5 |
Urb | Perugia | 20.3 | average | moderate | 320 | 2.5 |
2.2. Analysis of Building Energy Requirement with Varying Weather Conditions
2.3. Energy Dynamic Simulation Modeling of the Case Study Building
Reference Residential Building Location | |
---|---|
Location | Perugia, Italy |
Latitude | 43°08′N |
Longitude | 12°50′E |
Elevation above sea level | 258 m a.s.l. |
Orientation | 120° |
Floor area | 100 m2 |
S/V ratio | 0.76 |
Construction Properties | Layers | Thickness | ||
---|---|---|---|---|
Thermal Transmittance | Internal Heat Capacity | |||
External wall | 0.275 W/m2K | 128.8 kJ/m2K | 1. Brickwork | 120 mm |
2. Plasterboard | 10 mm | |||
3. EPS expanded polystyrene | 90 mm | |||
4. Brickwork | 250 mm | |||
5. Gypsum plastering | 20 mm | |||
Internal wall | 3.4 W/m2K | 68.0 kJ/m2K | 1. Cement plaster | 20 mm |
2. Perforated brickwork | 80 mm | |||
Roof | 0.240 W/m2K | 50.7 kJ/m2K | 1. Clay tile (roofing) | 15 mm |
2. MW stone wool | 15 mm | |||
3. Air gap 300 mm | 50 mm | |||
4. MW stone wood | 80 mm | |||
5. Aerated concrete slab | 200 mm | |||
6. Gypsum plastering | 15 mm |
3. Case Study
4. Results and Discussion
4.1. Continuous Monitoring
- -
- winter, 20 January–30 April 2014;
- -
- summer, 12 July–23 August 2014.
4.1.1. Air Temperature
T_1 | T_2 | T_3 | T_4 | |
---|---|---|---|---|
T_1 | 1 | 0.75 | 0.82 | 0.77 |
T_2 | 0.75 | 1 | 0.91 | 0.94 |
T_3 | 0.82 | 0.91 | 1 | 0.94 |
T_4 | 0.77 | 0.94 | 0.94 | 1 |
T_Rur | T_Sub | T_Urb | |
---|---|---|---|
T_Rur | 1 | 0.86 | 0.93 |
T_Sub | 0.86 | 1 | 0.95 |
T_Urb | 0.93 | 0.95 | 1 |
T_Rur [°C] | T_Sub [°C] | T_Urb [°C] | |
---|---|---|---|
January | 6.4 ± 3.2 | 4.7 ± 2.5 | 5.6 ± 3.0 |
February | 9.7 ± 4.0 | 7.7 ± 2.5 | 8.7 ± 3.2 |
March | 11.1 ± 5.4 | 8.9 ± 4.1 | 9.8 ± 4.2 |
April | 14.6 ± 5.2 | 11.8 ± 3.8 | 12.8 ± 3.9 |
July | 23.2 ± 4.2 | 20.3 ± 4.1 | 21.5 ± 4.3 |
August | 23.7 ± 4.3 | 21.1 ± 4.1 | 22.1 ± 4.4 |
Average daily Air Temperature [°C] (7:00 a.m.–9:00 p.m.) | Average Nightly Air Temperature [°C] (10:00 p.m.–6.00 a.m.) | |||||
---|---|---|---|---|---|---|
Max | Ave | Min | Max | Ave | Min | |
T_Rur | 18.4 | 13.3 | 6.3 | 12.5 | 7.8 | 1.9 |
T_Sub | 14.8 | 10.2 | 4.3 | 11.7 | 7.0 | 2.0 |
T_Urb | 16.0 | 11.2 | 5.0 | 12.9 | 7.7 | 1.8 |
Average Daily Air Temperature [°C] (7:00 a.m.–9:00 p.m.) | Average Nightly Air Temperature [°C] (10:00 p.m.–6.00 a.m.) | |||||
---|---|---|---|---|---|---|
Max | Ave | Min | Max | Ave | Min | |
T_Rur | 30.5 | 25.6 | 19.9 | 23.8 | 20.0 | 16.1 |
T_Sub | 27.8 | 22.6 | 15.8 | 21.2 | 17.5 | 13.9 |
T_Urb | 28.9 | 23.8 | 17.3 | 23.3 | 18.5 | 14.2 |
4.1.2. Air Relative Humidity
RH_Rur [%] | RH_Sub [%] | RH_Urb [%] | |
---|---|---|---|
January | 92 | 85 | 89 |
February | 86 | 74 | 83 |
March | 75 | 73 | 68 |
April | 76 | 74 | 70 |
July | 72 | 53 | 70 |
August | 71 | 55 | 65 |
4.1.3. Wind Speed and Wind Direction
4.2. Building Energy Requirement
4.2.1. Degree Hour Method
4.2.2. Dynamic Simulation
5. Conclusions
6. Limitations and Future Developments
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
“T” | Dry bulb air temperature [°C] |
“RH” | Air relative humidity [%] |
“1” | Tuoro measurement spot—North side of the Lake |
“2” | Torricella measurement spot—East side of the Lake |
“3” | Mirabella measurement spot—South side of the Lake |
“4” | Castiglione del Lago measurement spot—West side of the Lake |
“Sub” | Weather station located in the suburban area, i.e., Corciano (PG) |
“Urb” | Weather station situated in the urban area, i.e., Perugia |
“Ti” | Outdoor air temperature [°C] |
“Tr” | Reference temperature [°C] |
“HDH” | Heating degree hour index [h°C] |
“CDH” | Cooling degree hour index [h°C] |
“HER” | Heating energy requirement [kWh] |
“CER” | Cooling energy requirement [kWh] |
References
- De Wilde, P.; Coley, D. The implications of a changing climate for buildings. Build. Environ. 2012, 55, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Summerfield, A.J.; Lowe, R. Challenges and future directions for energy and buildings research. Build. Res. Inf. 2012, 40, 391–400. [Google Scholar] [CrossRef]
- Simmonds, I.; Keay, K. Weekly cycle of meteorological variation in Melbourne and the role of pollution and anthropogenic heat release. Atmos. Environ. 1997, 31, 1589–1603. [Google Scholar] [CrossRef]
- Kanda, M. Progress in Urban Meteorology: A review. J. Meteorol. Soc. Jpn. 2007, 85, 363–383. [Google Scholar] [CrossRef]
- Flagg, D.D.; Taylor, P.A. Sensitivity of mesoscale model urban boundary layer meteorology to the scale of urban representation. Atmos. Chem. Phys. 2011, 6, 2951–2972. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, P.; Coma, J.; Pérez, G.; Chocarro, C.; Juárez, A.; Solé, C.; de Simone, M.; Cabeza, L.F. Plant cover and floristic composition effect on thermal behaviour of extensive green roofs. Build. Environ. 2015, 92, 305–316. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, A.D.L.; Vollaro, R.D.L. How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy Build. 2015, 99, 32–49. [Google Scholar] [CrossRef]
- Susorova, I.; Azimi, P.; Stephens, B. The effects of climbing vegetation on the local microclimate, thermal performance, and air infiltration of four building facade orientations. Build. Environ. 2014, 76, 113–124. [Google Scholar] [CrossRef]
- Tao, H.; Fraedrich, K.; Menz, C.; Zhai, J. Trends in extreme temperature indices in the Poyang Lake Basin, China. Stoch. Environ. Res. Risk Assess. 2014, 28, 1543–1553. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, L.; Meng, Q.; Wang, C.; Zhai, Y.; Wang, F. Field measurements on microclimate in residential community in Guangzhou, China. Front. Archit. Civil Eng. China 2009, 3, 462–468. [Google Scholar] [CrossRef]
- Long, Z.; Perrie, W.; Gyakum, J.; Caya, D.; Laprise, R. Northern lake impacts on local seasonal climate. J. Hydrometeorol. 2007, 6, 881–896. [Google Scholar] [CrossRef]
- Wuebbles, D.J.; Hayhoe, K.; Parzen, J. Introduction: Assessing the effects of climate change on Chicago and the Great Lakes. J. Great Lakes Res. 2010, 36, 1–6. [Google Scholar] [CrossRef]
- Pisello, A.L.; Piselli, C.; Cotana, F. Thermal-physics and energy performance of an innovative green roof system: The Cool-Green Roof. Sol. Energy 2015, 116, 337–356. [Google Scholar] [CrossRef]
- Han, Y.Q.; Taylor, J.E.; Pisello, A.L. Toward mitigating urban heat island effects: Investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings. Energy Build. 2015, 102, 308–389. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Sørensen, L.S. Heat transmission coefficient measurements in buildings utilizing a heat loss measuring device. Sustainability 2013, 5, 3601–3614. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Nivada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Chappells, H.; Shove, E. Debating the future of comfort: Environmental sustainability, energy consumption and the indoor environment. Build. Res. Inf. 2005, 33, 32–40. [Google Scholar] [CrossRef]
- Wagner, K. Generation of a tropically adapted energy performance certificate for residential buildings. Sustainability 2014, 6, 8415–8431. [Google Scholar] [CrossRef]
- Theophilou, M.K.; Serghides, D. Heat island effect for Nicosia, Cyprus. Adv. Build. Energy Res. 2014, 1, 63–73. [Google Scholar] [CrossRef]
- Cartalis, C.; Synodinou, A.; Tsangrassoulis, A.; Santamouris, M. Modifications in energy demand in urban area as a result of climate changes: An assessment for the southeast Mediterranean region. Energy Convers. Manag. 2001, 42, 1647–1656. [Google Scholar] [CrossRef]
- Argiriou, A.; Lykoudis, S.; Kontoyiannidis, S.; Balaras, C.A.; Asimakopoulos, D.; Petrakis, M.; Kassomenos, P. Comparison of methodologies for TMY generation using 20 years data for Athens, Greece. Solar Energy 1999, 66, 33–45. [Google Scholar] [CrossRef]
- Cheong, C.H.; Kim, T.; Leigh, S.-B. Thermal and daylighting performance of energy-efficient windows in highly glazed residential buildings: Case study in Korea. Sustainability 2014, 6, 7311–7333. [Google Scholar] [CrossRef]
- Jentsch, M.F.; Bahaj, A.S.; James, P.A.B. Climate change future proofing of buildings-generation and assessment of building simulation weather files. Energy Build. 2008, 40, 2148–2168. [Google Scholar] [CrossRef]
- Matzarakis, A.; Balafoutis, C. Heating degree-days over Greece as an index of energy. Int. J. Climatol. 2004, 24, 1817–1828. [Google Scholar] [CrossRef]
- Al-Hadhrami, L.M. Comprehensive review of cooling and heating degree days characteristics over Kingdom of Saudi Arabia. Renew. Sustain. Energy Rev. 2013, 27, 305–314. [Google Scholar] [CrossRef]
- Durmayaz, A.; Kadioglu, M.; Sen, Z. An application of the degree-hours method to estimate the residential heating energy requirement and fuel consumption in Istanbul. Energy 2000, 25, 1245–1256. [Google Scholar] [CrossRef]
- Tselepidaki, I.; Santamouris, M.; Asimakopoulos, D.N.; Kontoyiannidis, S. On the variability of cooling degree-days in an urban environment: Applications to Athens, Greece. Energy Build. 1994, 21, 93–99. [Google Scholar] [CrossRef]
- Crawley, D.B.; Hand, J.W.; Kummert, M.; Griffith, B.T. Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 2008, 43, 661–673. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Pisello, A.L.; Baldinelli, G.; Asdrubali, F. Infrared thermography assessment of thermal bridges in building envelope: Experimental validation in a test room setup. Sustainability 2014, 6, 7107–7120. [Google Scholar] [CrossRef]
- Battista, G.; Evangelisti, L.; Guattari, C.; Basilicata, C.; de Lieto Vollaro, R. Buildings energy efficiency: Interventions analysis under a smart cities approach. Sustainability 2014, 6, 4694–4705. [Google Scholar] [CrossRef]
- Canto-Perello, J.; Martinez-Garcia, M.P.; Curiel-Esparza, J.; Martin-Utrillas, M. Implementing sustainability criteria for selecting a roof assembly typology in medium span buildings. Sustainability 2015, 7, 6854–6871. [Google Scholar] [CrossRef]
- Chan, A.L.S. Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong. Energy Build. 2011, 43, 2860–2868. [Google Scholar] [CrossRef]
- Papakostas, K.; Kyriakis, N. Heating and cooling degree-hours for Athens and Thessaloniki, Greece. Renew. Energy 2005, 30, 1873–1880. [Google Scholar] [CrossRef]
- Christenson, M.; Manz, H.; Gyalistras, D. Climate warming impact on degree-days and building energy demand in Switzerland. Energy Conserv. Manag. 2006, 47, 671–686. [Google Scholar] [CrossRef]
- Giannakopolos, C.; Hadjinicolaou, P.; Zerefos, C.; Demosthenous, G. Changing energy requirements in the Mediterranean under changing climatic conditions. Energies 2009, 2, 805–815. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers. ASHRAE Handbook Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2011. [Google Scholar]
- Crawley, D.B.; Lawrie, L.K.; Winkelmann, F.C.; Buhl, W.F.; Huang, Y.J.; Pedersen, C.O.; Strand, R.K.; Liesen, R.J.; Fisher, D.E.; Witte, M.J.; et al. Energy Plus: Creating a new-generation building energy simulation program. Energy Build. 2001, 33, 319–331. [Google Scholar] [CrossRef]
- Bianco, V.; de Rosa, M.; Scarpa, F.; Tagliafico, L.A. Analysis of energy demand in residential buildings for different climates by means of dynamic simulation. Int. J. Ambient Energy 2014. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers. ANSI/ASHRAE 55-2013: Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2013. [Google Scholar]
- Giannopoulou, K.; Livada, I.; Santamouris, M.; Saliari, M.; Assimakopoulos, M.; Caouris, Y.G. On the characteristics of the summer urban heat island in Athens, Greece. Sustain. Cities Soc. 2011, 1, 16–28. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisello, A.L.; Pignatta, G.; Castaldo, V.L.; Cotana, F. The Impact of Local Microclimate Boundary Conditions on Building Energy Performance. Sustainability 2015, 7, 9207-9230. https://doi.org/10.3390/su7079207
Pisello AL, Pignatta G, Castaldo VL, Cotana F. The Impact of Local Microclimate Boundary Conditions on Building Energy Performance. Sustainability. 2015; 7(7):9207-9230. https://doi.org/10.3390/su7079207
Chicago/Turabian StylePisello, Anna Laura, Gloria Pignatta, Veronica Lucia Castaldo, and Franco Cotana. 2015. "The Impact of Local Microclimate Boundary Conditions on Building Energy Performance" Sustainability 7, no. 7: 9207-9230. https://doi.org/10.3390/su7079207
APA StylePisello, A. L., Pignatta, G., Castaldo, V. L., & Cotana, F. (2015). The Impact of Local Microclimate Boundary Conditions on Building Energy Performance. Sustainability, 7(7), 9207-9230. https://doi.org/10.3390/su7079207