Transdisciplinary Application of Cross-Scale Resilience
Abstract
:1. Introduction
1.1. Resilience
1.2. The Discontinuity Hypothesis
1.3. The Cross-Scale Resilience Model in Ecology
1.4. An Example of the Cross-Scale Model in Non-Ecological Systems
2. Applying the Cross-Scale Resilience Model to Other Complex Adaptive Systems
Systems | Variable | Functional Attribute |
---|---|---|
Social-ecological/Urban Systems | Population size | Emergency services |
Production | ||
Transportation options | ||
Employment diversification and evenness | ||
Energy grid | ||
Food network | ||
Types of open spaces | ||
Ecosystem services | ||
Socio-cultural Systems | Population size Government size/type | Cultural diversity |
Educational opportunities (e.g., years of schooling) | ||
Socio-economic diversity | ||
Political upheaval | ||
Size of governed area | ||
Economic Systems | GDP Size classes of industry types within an economy GINI coefficient Stock market indexes | Industry types (product diversity, export diversity), Natural Resource Dependence |
Employment (qualifications, redundancy) | ||
Standard-of-living measures | ||
Market sectors | ||
Socio-historical Systems | Population size | Access to environmental resources |
Social connectivity within and across scales | ||
Type of governance |
2.1. Social-Ecological
2.2. Archaeology/Anthropology
2.3. Economic
3. Tests of the Cross-Scale Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Peterson, G.D.; Allen, C.R.; Holling, C.S. Ecological resilience, biodiversity, and scale. Ecosystems 1998, 1, 6–18. [Google Scholar] [CrossRef]
- Lovelock, J.E. A numerical model for biodiversity. Philos. Trans. Biol. Sci. 1992, 338, 383–391. [Google Scholar] [CrossRef]
- Langton, C.G. Studying artificial life with cellular automata. Physica D 1986, 22, 120–149. [Google Scholar] [CrossRef]
- Serra, R.; Villani, M.; Graudenzi, A.; Kauffman, S.A. Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 2007, 246, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, S. At Home in the Universe; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Tan, J.; Wen, H.J.; Awad, N. Health care and services delivery systems as complex adaptive systems. Commun. ACM 2005, 48, 36–44. [Google Scholar] [CrossRef]
- Villa, F.; Voigt, B.; Erickson, J.D. New perspectives in ecosystem services science as instruments to understand environmental securities. Philos. Trans. R. Soc. B 2014. [Google Scholar] [CrossRef]
- Batra, D.; VanderMeer, D.; Dutta, K. Extending agile principles to larger, dynamic software projects. J. Database Manag. 2011, 22, 73–92. [Google Scholar] [CrossRef]
- Mason, R.B. The external enviroment’s effect on management and strategy: A complexity theory approach. Manag. Decis. 2007, 45, 10–28. [Google Scholar] [CrossRef]
- Ruhl, J.B. Managing systemic risk in legal systems. Indiana Law J. 2014, 89, 559–603. [Google Scholar]
- Greek, R.; Hansen, L.A. Questions regarding the predictive value of one evolved complex adaptive system for a second: Exemplified by the SOD1 mouse. Prog. Biophys. Mol. Biol. 2013, 113, 231–253. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, F.-Y.; Zhu, F.; Zhao, D. DynaCAS: Computational experiments and decision support for ITS. IEEE Intell. Syst. 2008, 1541, 19–23. [Google Scholar] [CrossRef]
- Haghnevis, M.; Askin, R.G. A modeling framework for engineered complex adaptive systems. IEEE Syst. J. 2012, 6, 520–530. [Google Scholar] [CrossRef]
- Kanta, L.; Zechman, E. Complex adaptive systems framework to assess supply-side and demand-side management for urban water resources. J. Water Resour. Plan. Manag. 2014, 140, 75–85. [Google Scholar]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of earth’s ecosystems. Science. 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Holling, C.S. Understanding the complexity of economic, ecological, and social systems. Ecosystems 2001, 4, 390–405. [Google Scholar] [CrossRef]
- Lansing, J.S. Complex adaptive systems. Annu. Rev. Anthropol. 2003, 32, 183–204. [Google Scholar] [CrossRef]
- Foster, J. From simplistic to complex systems in economics. Cambridge J. Econ. 2005, 29, 873–892. [Google Scholar] [CrossRef]
- Schneider, E.; Kay, J.K. Life as a manifestation of the second law of thermodynamics. Math. Comput. Model. 1994, 19, 25–48. [Google Scholar] [CrossRef]
- Bullmore, E.; Barnes, A.; Bassett, D.S.; Fornito, A.; Kitzbichler, M.; Meunier, D.; Suckling, J. Generic aspects of complexity in brain imaging data and other biological systems. Neuroimage 2009, 47, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L. Scale-free networks: A decade and beyond. Science 2009, 325, 412–413. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of “small-world” networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, L.H.; Holling, C.S. (Eds.) Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002.
- Levin, S.A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1998, 1, 431–436. [Google Scholar] [CrossRef]
- Allen, C.R.; Holling, C.S. Novelty, adaptive capacity, and resilience. Ecol. Soc. 2010, 15, 24. [Google Scholar]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Cumming, G.S.; Bodin, Ö.; Ernstson, H.; Elmqvist, T. Network analysis in conservation biogeography: Challenges and opportunities. Divers. Distrib. 2010, 16, 414–425. [Google Scholar] [CrossRef]
- Dunne, J.A.; Williams, R.J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. Lond. B 2009, 364, 1711–1723. [Google Scholar]
- Srinivasan, U.T.; Dunne, J.A.; Harte, J.; Martinez, N.D. Response of complex food webs to realistic extinction sequences. Ecology 2007, 88, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Uden, D.R.; Hellman, M.L.; Angeler, D.G.; Allen, C.R. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral habitats. Ecol. Appl. 2014, in press. [Google Scholar]
- Montoya, J.M.; Solé, R.V. Topological properties of food webs: From real data to community assembly models. Oikos 2003, 102, 614–622. [Google Scholar] [CrossRef]
- Pascual, M.; Dunne, J.A. (Eds.) Ecological Networks: Linking Structure to Dynamics in Food Webs; Oxford University Press: Oxford, UK, 2005.
- Jørgensen, S.E.; Fath, B.D. Application of thermodynamic principles in ecology. Ecol. Complex. 2004, 1, 267–280. [Google Scholar] [CrossRef]
- Barabási, A.-L. Network medicine—From obesity to the “diseasome”. N. Engl. J. Med. 2007, 357, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L. Linked; Plume: New York, NY, USA, 2003; pp. 1–304. [Google Scholar]
- Bascompte, J.; Melian, C.J.; Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. 2005, 102, 5443–5447. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol. Monogr. 1992, 62, 447–502. [Google Scholar] [CrossRef]
- Stow, C.; Allen, C.R.; Garmestani, A.S. Evaluating discontinuities in complex systems: Toward quantitative measures of resilience. Ecol. Soc. 2007, 12, 26. [Google Scholar]
- Allen, C.R.; Gunderson, L.H.; Johnson, A.R. The use of discontinuities and functional groups to assess relative resilience in complex systems. Ecosystems 2005, 8, 958–966. [Google Scholar] [CrossRef]
- Angeler, D.G.; Allen, C.R.; Johnson, R.K. Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales. J. Appl. Ecol. 2013, 50, 572–584. [Google Scholar] [CrossRef]
- Folke, C.S.; Carpenter, S.R.; Walker, B.H.; Scheffer, M.; Elmqvist, T.; Gunderson, L.H.; Holling, C.S. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef]
- Walker, B.H.; Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function; Island Press: Washington, DC, USA, 2012; pp. 1–248. [Google Scholar]
- Carpenter, S.R.; Brock, W.A. Spatial complexity, resilience, and policy diversity: Fishing on lake-rich landscapes. Ecol. Soc. 2004, 9, 1–31. [Google Scholar]
- Cumming, G.S. Spatial Resilience in Social-Ecological Systems; Springer Science: New York, NY, USA, 2011; pp. 1–308. [Google Scholar]
- Holling, C.S.; Meffe, G.K. Command and control and the pathology of natural resource managment. Conserv. Biol. 1996, 10, 328–337. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Carpenter, S.R.; Lenton, T.M.; Bascompte, J.; Brock, W.A.; Dakos, V.; van de Koppel, J.; van de Leemput, I.A.; Levin, S.A.; van Nes, E.H.; et al. Anticipating critical transitions. Science. 2012, 338, 344–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biggs, R.; Carpenter, S.R.; Brock, W.A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl. Acad. Sci. 2009, 106, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Carpenter, S.R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Moberg, F.; Folke, C.S. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 1999, 29, 215–233. [Google Scholar] [CrossRef]
- Crépin, A.-S.; Biggs, R.; Polasky, S.; Troell, M.; de Zeeuw, A. Regime shifts and management. Ecol. Econ. 2012, 84, 15–22. [Google Scholar] [CrossRef]
- Beinhocker, E.D. The Origin of Wealth: Evolution, Complexity, and the Radical Remaking of Economics; Harvard Business School Press: Boston, MA, USA, 2006; pp. 1–526. [Google Scholar]
- Tainter, J.A. The Collapse of Complex Societies; Cambridge University Press: Cambridge, UK, 1988; pp. 1–262. [Google Scholar]
- Van den Bergh, J.C.J.M. Evolutionary thinking in environmental economics. J. Evol. Econ. 2007, 17, 521–549. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial scaling in ecology. Funct. Ecol. 1989, 3, 385–397. [Google Scholar] [CrossRef]
- Peters, R. The Ecological Implications of Body Size; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Fisher, J.T.; Anholt, B.; Volpe, J.P. Body mass explains characteristic scales of habitat selection in terrestrial mammals. Ecol. Evol. 2011, 1, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.R.; Garmestani, A.S.; Havlicek, T.D.; Marquet, P.A.; Peterson, G.D.; Restrepo, C.; Stow, C.; Weeks, B.E. Patterns in body mass distributions: Sifting among alternative hypotheses. Ecol. Lett. 2006, 9, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Havlicek, T.; Carpenter, S.R. Pelagic species size distributions in lakes: Are they discontinuous? Limnol. Oceanogr. 2001, 46, 1021–1033. [Google Scholar]
- Nash, K.; Graham, N.; Wilson, S.; Bellwood, D.R. Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 2013, 16, 478–490. [Google Scholar] [CrossRef]
- Lambert, W.D. Functional convergence of ecosystems: Evidence from body mass distributions of North American Late Miocene mammal faunas. Ecosystems 2006, 9, 97–118. [Google Scholar] [CrossRef]
- Gibson, C.C.; Ostrom, E.; Ahn, T.K. The concept of scale and the human dimensions of global change: A survey. Ecol. Econ. 2000, 32, 217–239. [Google Scholar] [CrossRef]
- Nash, K.; Allen, C.R.; Angeler, D.G.; Barichievy, C.; Eason, T.; Garmestani, A.S.; Graham, N.; Granholm, D.; Knutson, M.G.; Nelson, R.J.; et al. Discontinuities, cross-scale patterns and the organization of ecosystems. Ecology 2014, 95, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.R.; Holling, C.S. Cross-scale morphology. Encycl. Environmetrics 2002, 1, 450–452. [Google Scholar]
- Allen, C.R.; Holling, C.S. Cross-scale structure and scale breaks in ecosystems and other complex systems. Ecosystems 2002, 5, 315–318. [Google Scholar] [CrossRef]
- Allen, C.R.; Holling, C.S. (Eds.) Discontinuities in Ecosystems and Other Complex Systems; Island Press: New York, NY, USA, 2008.
- Sundstrom, S.M. The Textural Discontinuity Hypothesis and Its Relationship to Biodiversity, Extinction Risk, and Ecosystem Resilience. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2009. [Google Scholar]
- Li, B.-L. Fractal geometry applications in description and analysis of patch patterns and patch dynamics. Ecol. Model. 2000, 132, 33–50. [Google Scholar] [CrossRef]
- Angeler, D.G.; Drakare, S.; Johnson, R.K. Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecol. Soc. 2011, 16, 5. [Google Scholar]
- Angeler, D.G.; Trigal, C.; Drakare, S.; Johnson, R.K.; Goedkoop, W. Identifying resilience mechanisms to recurrent ecosystem perturbations. Oecologia 2010, 164, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Sundstrom, S.M.; Allen, C.R.; Barichievy, C. Species, functional groups, and thresholds in ecological resilience. Conserv. Biol. 2012, 26, 305–314. [Google Scholar] [PubMed]
- Angeler, D.G.; Johnson, R.K. Algal invasions, blooms and biodiversity in lakes: Accounting for habitat-specific responses. Harmful Algae 2013, 23, 60–69. [Google Scholar] [CrossRef]
- Vergnon, R.; van Nes, E.H.; Scheffer, M. Emergent neutrality leads to multimodal species abundance distributions. Nat. Commun. 2012, 3, 1–6. [Google Scholar] [CrossRef]
- Winfree, R.; Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B 2009, 276, 229–237. [Google Scholar] [PubMed]
- Chillo, V.; Anand, M.; Ojeda, R.A. Assessing the use of functional diversity as a measure of ecological resilience in arid rangelands. Ecosystems 2011, 14, 1168–1177. [Google Scholar] [CrossRef]
- Schmitz, O.J. Resolving Ecosystem Complexity; Princeton University Press: Princeton, NJ, USA, 2010; pp. 1–176. [Google Scholar]
- Wardwell, D.A.; Allen, C.R.; Peterson, G.D.; Tyre, A.J. A test of the cross-scale resilience model: Functional richness in Mediterranean-climate ecosystems. Ecol. Complex. 2008, 5, 165–182. [Google Scholar] [CrossRef]
- Holt, R.D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. 2009, 106, 19659–19665. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E. Scale, Heterogeneity, and the Structure and Diversity of Ecological Communities; Princeton University Press: Princeton, NJ, USA, 2009; pp. 1–232. [Google Scholar]
- Elmqvist, T.; Folke, C.S.; Nystrom, M.; Peterson, G.D.; Bengtsson, J.; Walker, B.H.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488–494. [Google Scholar] [CrossRef]
- Laliberte, E.; Wells, J.A.; DeClerck, F.; Metcalfe, D.J.; Catterall, C.P. Land‐use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 2010, 13, 76–86. [Google Scholar] [PubMed]
- Bellwood, D.R.; Hughes, T.P.; Folke, C.S.; Nystrom, M. Confronting the coral reef crisis. Nature 2004, 429, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Garmestani, A.S.; Allen, C.R.; Gallagher, C.M.; Mittelstaedt, J.D. Departures from Gibrat’s Law, discontinuities and city size distributions. Urban Stud. 2007, 44, 1997–2007. [Google Scholar] [CrossRef]
- Garmestani, A.S.; Allen, C.R.; Mittelstaedt, J.D.; Stow, C.A.; Ward, W.A. Firm size diversity, functional richness, and resilience. Environ. Dev. Econ. 2006, 11, 533. [Google Scholar] [CrossRef]
- Garmestani, A.S.; Allen, C.R.; Gallagher, C.M. Power laws, discontinuities and regional city size distributions. J. Econ. Behav. Organ. 2008, 68, 209–216. [Google Scholar]
- García, J.H.; Garmestani, A.S.; Karunanithi, A.T. Threshold transitions in a regional urban system. J. Econ. Behav. Organ. 2011, 78, 152–159. [Google Scholar] [CrossRef]
- Eason, T.; Garmestani, A.S. Cross-scale dynamics of a regional urban system through time. Reg. Dev. 2012, 36, 55–76. [Google Scholar]
- Garmestani, A.; Allen, C.; Bessey, K.M. Time-series analysis of clusters in city size distributions. Urban Stud. 2005, 42, 1507–1515. [Google Scholar]
- Angeler, D.G.; Allen, C.R.; Johnson, R.K. Insight on invasions and resilience derived from spatiotemporal discontinuities of biomass at local and regional scales. Ecol. Soc. 2012, 17, 32. [Google Scholar]
- Angeler, D.G.; Allen, C.R.; Rojo, C.; Alvarez-Cobelas, M.; Rodrigo, M.A.; Sánchez-Carrillo, S. Inferring the relative resilience of alternative states. PLoS One 2013, 8, e77338. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, A. Complexity theory and the War on Terror: Understanding the self-organizing dynamics of leaderless jihad. J. Int. Relations Dev. 2012, 15, 345–369. [Google Scholar]
- Batty, M. The size, scale, and shape of cities. Science. 2008, 319, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-warning signals for critical transitions. Nature 2009, 461, 53–59. [Google Scholar] [PubMed]
- Walker, B.H.; Carpenter, S.R.; Anderies, J.M.; Abel, N.; Cumming, G.S.; Janssen, M.; Lebel, L.; Norberg, J.; Peterson, G.D.; Prichard, R. Resilience management in social-ecological systems: A working hypothesis for a participatory approach. Conserv. Ecol. 2002, 6, 14. [Google Scholar]
- Cumming, G.S.; Barnes, G.; Perz, S.; Schmink, M.; Sieving, K.E.; Southworth, J.; Binford, M.; Holt, R.D.; Stickler, C.; Holt, T. An exploratory framework for the empirical measurement of resilience. Ecosystems 2005, 8, 975–987. [Google Scholar] [CrossRef]
- Adger, W.N.; Brown, K.; Nelson, D.R.; Berkes, F.; Eakin, H.; Folke, C.S.; Galvin, K.; Gunderson, L.H.; Goulden, M.; O’Brien, K.; et al. Resilience implications of policy responses to climate change. Clim. Chang. 2011, 2, 757–766. [Google Scholar]
- Janssen, M.A.; Anderies, J.M.; Ostrom, E. Robustness of social-ecological systems to spatial and temporal variability. Soc. Nat. Resour. 2007, 20, 307–322. [Google Scholar] [CrossRef]
- Ernstson, H.; Leeuw, S.E.; Redman, C.L.; Meffert, D.J.; Davis, G.; Alfsen, C.; Elmqvist, T. Urban transitions: On urban resilience and human-dominated ecosystems. Ambio 2010, 39, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Bettencourt, L.M.A.; Lobo, J.; Strumsky, D.; West, G.B. Urban scaling and its deviations: Revealing the structure of wealth, innovation and crime across cities. PLoS One 2010, 5, e13541. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt, L.M.A.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G.B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. 2007, 104, 7301–7306. [Google Scholar] [PubMed]
- Kosse, K. Some regularities in human group formation and the evolution of societal complexity. Complexity 2001, 6, 60–64. [Google Scholar] [CrossRef]
- Aiello, L.A.; Dunbar, R.I.M. Neocortex size, group size, and the evolution of language. Curr. Anthropol. 1993, 34, 184–193. [Google Scholar] [CrossRef]
- Dunbar, R.I.M. Cognitive constraints on the structure and dynamics of social networks. Gr. Dyn. Theory Res. Pract. 2008, 12, 7–16. [Google Scholar] [CrossRef]
- Kosse, K. Group-size and societal complexity: Thresholds in the long-term memory. J. Anthropol. Archaeol. 1990, 9, 275–303. [Google Scholar] [CrossRef]
- Johnson, K.P.; Kort, J.R. 2004 Redefinition of the BEA Economic Areas. Available online: http://www.bea.gov/scb/pdf/2004/11November/1104Econ-Areas.pdf (accessed on 17 September 2014).
- Diamond, J. Collapse: How Societies Choose to Fail or Succeed; Viking: New York, NY, USA, 2004. [Google Scholar]
- Yoffee, N. Memorandum to: Murray Gell- Mann Concerning: The Complications of Complexity in the Prehistoric Southwest. Available online: http://www.santafe.edu/media/workingpapers/93-09-057.pdf (accessed on 17 September 2014).
- Coombes, P.; Barber, K. Environmental determinism in Holocene research: Causality or coincidence? Area 2005, 37, 303–311. [Google Scholar] [CrossRef]
- Dunning, N.P.; Beach, T.P.; Luzzadder-Beach, S. Kax and kol: Collapse and resilience in lowland Maya civilization. Proc. Natl. Acad. Sci. 2012, 109, 3652–3657. [Google Scholar] [CrossRef] [PubMed]
- Hegmon, M.; Peeples, M.A.; Kinzig, A.P.; Kulow, S.; Meegan, C.M.; Nelson, M.C. Social transformation and its human costs in the Prehispanic U.S. Southwest. Am. Anthropol. 2008, 110, 313–324. [Google Scholar] [CrossRef]
- Nelson, D.R.; Adger, W.N.; Brown, K. Adaptation to environmental change: Contributions of a resilience framework. Annu. Rev. Environ. Resour. 2007, 32, 395–419. [Google Scholar] [CrossRef]
- Redman, C.L. Resilience theory in archaeology. Am. Anthropol. 2005, 107, 70–77. [Google Scholar] [CrossRef]
- Ekblom, A. Livelihood security, vulnerability and resilience: A historical analysis of Chibuene, southern Mozambique. Ambio 2012, 41, 479–489. [Google Scholar] [PubMed]
- Nelson, C.; Hegmon, M.; Kulow, S.; Schollmeyer, K.G. Archaeological and ecological perspectives on reorganization: A case study from the Mimbres region of the U.S. Southwest. Am. Antiq. 2006, 71, 403–432. [Google Scholar] [CrossRef]
- Nelson, M.C.; Hegmon, M.; Kulow, S.R.; Peeples, M.A.; Kintigh, K.W.; Kinzig, A.P. Resisting diversity: A long-term archaeological study. Ecol. Soc. 2011, 16, 25. [Google Scholar]
- Beekman, C.S.; Baden, W.W. Continuing the Revolution. In Nonlinear Models for Archaeology and Anthropology; Beekman, C.S., Baden, W.W., Eds.; Ashgate Publishing: Hampshire, UK, 2005; pp. 1–12. [Google Scholar]
- Bandy, M.S. Fissioning, scalar stress, and social evolution in early village societies. Am. Anthropol. 2004, 106, 322–333. [Google Scholar] [CrossRef]
- Johnson, G. Organizational Structure and Scalar Stress. In Theory and Explanation in Archaeology; Renfrew, C., Rowlands, M., Segraves, B.A., Eds.; Academic Press: New York, NY, USA, 1982; pp. 389–421. [Google Scholar]
- Friesen, T.M. Resource structure, scalar stress, and the development of Inuit social organization. World Archaeol. 1999, 31, 21–37. [Google Scholar] [CrossRef]
- Parkinson, W.A. Tribal boundaries: Stylistic variability and social boundary maintenance during the transition to the Copper Age on the Great Hungarian Plain. J. Anthropol. Archaeol. 2006, 25, 33–58. [Google Scholar] [CrossRef]
- Ember, M. The relationship between economic and political development in nonindustrialized societies. Econ. Polit. Dev. 1963, 2, 228–248. [Google Scholar]
- Feinman, G.M. Size, omplexity, and organizational variation: A comparative approach. Cross-Cultural Res. 2011, 45, 37–58. [Google Scholar] [CrossRef]
- Hoover, K.D. Microfoundational Programs. In Microfoundations Reconsidered: The Relationship of Micro and Macroeconomics in Historical Perspective; Duarte, P.G., Lima, G.T., Eds.; Edward Elgar Publishing Limited: Northampton, MA, USA, 2012; pp. 19–61. [Google Scholar]
- Janssen, M. Microfoundations: A Critical Inquiry; Routledge: London, UK, 1993. [Google Scholar]
- Foster, J. Why is economics not a complex systems science? J. Econ. Issues 2006, 40, 1069–1092. [Google Scholar]
- Foxon, T.J.; Kohler, J.; Michie, J.; Oughton, C. Towards a new complexity economics for sustainability. Cambridge J. Econ. 2013, 37, 187–208. [Google Scholar]
- Krugman, P. The Self-Organizing Economy; Wiley-Blackwell: Oxford, UK, 1996; pp. 1–132. [Google Scholar]
- Arthur, W.B. Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 1989, 99, 116–131. [Google Scholar] [CrossRef]
- Schumpeter, J.A. The Theory of Economic Development; Harvard University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Schelling, T.C. Micromotives and Macrobehavior; W.W. Norton: New York, NY, USA, 1978. [Google Scholar]
- Arthur, W.B. Complexity and the economy. Science. 1999, 284, 107–109. [Google Scholar] [CrossRef]
- Loreau, M. Stability and Complexity of Ecoystems. In From Populations to Ecosystems; Princeton University Press: Princeton, NJ, USA, 2010; pp. 123–163. [Google Scholar]
- Page, S.E. Diversity and Complexity (Primers in Complex Systems); Princeton University Press: Princeton, NJ, USA, 2010; pp. 1–296. [Google Scholar]
- Lee, Y.; Amaral, L.A.N.; Canning, D.; Meyer, M.; Stanley, H.E. Universal features in the growth dynamics of complex organizations. Phys. Rev. Lett. 1998, 81, 3275–3279. [Google Scholar] [CrossRef]
- Di Guilmi, C.; Gaffeo, E.; Gallegati, M. Power law scaling in the world income distribution. Econ. Bull. 2003, 15, 1–7. [Google Scholar]
- Hidalgo, C.A.; Hausmann, R. The building blocks of economic complexity. Proc. Natl. Acad. Sci. 2009, 106, 10570–10575. [Google Scholar] [CrossRef] [PubMed]
- Ormerod, P. Risk, recessions and the resilience of the capitalist economies. Risk Manag. 2010, 12, 83–99. [Google Scholar] [CrossRef]
- Karunanithi, A.T.; Garmestani, A.S.; Eason, T.; Cabezas, H. The characterization of socio-political instability, development and sustainability with Fisher information. Glob. Environ. Chang. 2011, 21, 77–84. [Google Scholar] [CrossRef]
- Peterson, G.D. Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems 2002, 5, 329–338. [Google Scholar] [CrossRef]
- Biggs, D.; Biggs, R.O.; Dakos, V.; Scholes, R.J.; Schoon, M. Are we entering an era of concatenated global crises? Ecol. Soc. 2011, 16, 27. [Google Scholar]
- Dunne, J.A.; Williams, R.J.; Martinez, N.D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 2002, 5, 558–567. [Google Scholar] [CrossRef]
- Hidalgo, C.A.; Klinger, B.; Barabási, A.-L.; Hausmann, R. The product space conditions the development of nations. Science 2007, 317, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.R.; Angeler, D.G.; Garmestani, A.S.; Gunderson, L.H.; Holling, C.S. Panarchy: Theory and application. Ecosystems 2014, 17, 578–589. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundstrom, S.M.; Angeler, D.G.; Garmestani, A.S.; García, J.H.; Allen, C.R. Transdisciplinary Application of Cross-Scale Resilience. Sustainability 2014, 6, 6925-6948. https://doi.org/10.3390/su6106925
Sundstrom SM, Angeler DG, Garmestani AS, García JH, Allen CR. Transdisciplinary Application of Cross-Scale Resilience. Sustainability. 2014; 6(10):6925-6948. https://doi.org/10.3390/su6106925
Chicago/Turabian StyleSundstrom, Shana M., David G. Angeler, Ahjond S. Garmestani, Jorge H. García, and Craig R. Allen. 2014. "Transdisciplinary Application of Cross-Scale Resilience" Sustainability 6, no. 10: 6925-6948. https://doi.org/10.3390/su6106925
APA StyleSundstrom, S. M., Angeler, D. G., Garmestani, A. S., García, J. H., & Allen, C. R. (2014). Transdisciplinary Application of Cross-Scale Resilience. Sustainability, 6(10), 6925-6948. https://doi.org/10.3390/su6106925