Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality
Abstract
:1. Introduction
2. Organic Conservation Tillage
2.1. Organic Zero Tillage
2.2. Current Agronomic Challenges to Commercial Adoption of Organic Zero Tillage
3. Weed Management
3.1. Organic Zero Tillage Effects on Weeds
3.2. Cover Crop Impacts on Weed Populations
3.3. Complementary Weed Management Strategies
4. Organic Conservation Tillage Effects on Soil Quality
4.1. Soil Property Responses
4.1.1. Soil Organic Carbon
- - - - - - Soil organic C (g C kg−1) - - - - - - | |||||||
---|---|---|---|---|---|---|---|
- - - - Tillage treatment - - - - | - - - - - Difference - - - - - | ||||||
Location | Treatment duration (yr) | Depth (cm) | Conventional tillage | Conservation tillage | Absolute (Cons.–Conv.) | Relative (%) | Reference |
Rock Springs, PA, USA | 3 | 0–15.2 | 13.5 | 15.5 | 2.0 | 15 a | [131] b |
Borovce, Slovak Republic | 2 | 2–20 | 13.1 | 14.3 | 1.2 | 9 | [134] |
Mainz, Germany | 3 | 0–15 | 17.6 | 19.1 | 1.5 | 9 | [127] |
15–25 | 16.4 | 16.7 | 0.3 | 2 | |||
Frick, Switzerland | 3 | 0–10 | 21.1 | 23.4 | 2.3 | 11 | [128] |
10–20 | 20.8 | 21.7 | 0.9 | 4 | |||
Frick, Switzerland | 6 | 0–10 | 21.6 | 26.1 | 4.5 | 21 | [129] |
10–20 | 21.4 | 21.8 | 0.4 | 2 | |||
Lyon, France | 1 | 0–15 | 11.8 | 12.0 | 0.2 | 1 | [130] |
15–30 | 11.8 | 10.0 | (1.8) | (15) | |||
Mean | 1.1 | 6 |
4.1.2. Soil Biological Attributes
- - - - - Microbial biomass C (mg C kg−1) - - - - - | |||||||
---|---|---|---|---|---|---|---|
- - - - Tillage treatment - - - - | - - - - - Difference - - - - - | ||||||
Location | Treatment duration (yr) | Depth (cm) | Conventional tillage | Conservation tillage | Absolute (Cons.–Conv.) | Relative (%) | Reference |
Borovce, Slovak Republic | 2 | 2–20 | 766 | 862 | 96 | 13 a | [134] |
Mainz, Germany | 3 | 0–15 | 323 | 420 | 97 | 30 | [127] |
15–25 | 294 | 261 | (33) | (11) | |||
Frick, Switzerland | 3 | 0–10 | 780 | 996 | 216 | 28 | [128] |
10–20 | 754 | 800 | 46 | 6 | |||
Frick, Switzerland | 6 | 0–10 | 801 | 1049 | 248 | 31 | [129] |
10–20 | 799 | 869 | 70 | 9 | |||
Lyon, France | 1 | 0–15 | 293 | 308 | 15 | 5 | [130] b |
15–30 | 375 | 200 | (175) | (47) | |||
Mean | 64 | 7 |
- - - - - - Earthworms (individuals m−2) - - - - - - | ||||||||
---|---|---|---|---|---|---|---|---|
- - - - Tillage treatment - - - - | - - - - - Difference - - - - - | |||||||
Location | Treatment duration (yr) | Depth (cm) a | Conventional tillage | Conservation tillage | No-tillage | Absolute (Cons.–Conv.) | Relative (%) | Reference |
Mills River, NC, USA | 3 | 6 | 140 | . | 134 | 2233 b | [140] c | |
Borovce, Slovak Republic | 2 | 0–30 | 54 | 134 | . | 80 | 148 | [134] |
Mainz, Germany | 3 | 0–15 | 12 | 27 | . | 15 | 125 | [127] d |
Frick, Switzerland | 3 | 0–20 | 81 | 112 | . | 31 | 38 | [128] |
Rhone Alpes, France | 2 | 20 | 25 | 55 | 5 | 25 | [23]e | |
Pays de la Loire, France | 1 | 15 | 25 | 50 | 10 | 67 | ||
Brittany, France | 3 | 50 | 145 | 160 | 95 | 190 | ||
Mean | 53 | 404 | ||||||
- - Earthworm biomass (g m−2) - - | ||||||||
Borovce, Slovak Republic | 2 | 0–30 | 42 | 88 | . | 46 | 109 | [134] |
Mainz, Germany | 3 | 0–15 | 12 | 27 | . | 15 | 125 | [127] |
Frick, Switzerland | 3 | 0–20 | 67 | 46 | . | (21) | (31) | [128] |
Rhone Alpes, France | 2 | 20 | 15 | 30 | (5) | (25) | [23] | |
Pays de la Loire, France | 1 | 10 | 20 | 40 | 10 | 100 | ||
Brittany, France | 3 | 15 | 60 | 85 | 45 | 300 | ||
Mean | 15 | 96 |
4.1.3. Soil Structural Attributes
4.1.4. Soil pH and Plant Nutrients
4.2. Synthesis and Recommendations
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Badgley, C.; Moghtader, J.; Quintero, E.; Zakem, E.; Chappell, M.J.; Aviles-Vazques, K.; Samulon, A.; Perfecto, I. Organic agriculture and the global food supply. Renew. Agric. Food Syst. 2007, 22, 86–108. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef]
- Conner, D.J. Organic agriculture cannot feed the world. Field Crops Res. 2008, 106, 187–190. [Google Scholar] [CrossRef]
- Trewavas, A. Urban myths about organic farming. Nature 2001, 410, 409–411. [Google Scholar] [CrossRef]
- Trewavas, A. A critical assessment of organic farming-and-food assertions with particular respect to the UK and the potential environmental benefits of no-till agriculture. Crop Protect. 2004, 23, 757–781. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Lutz, W.; Sanderson, W.; Scherbov, S. Doubling of world population unlikely. Nature 1997, 387, 803–804. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Reganold, J.P. The fruits of organic farming. Nature 2012, 485, 176–177. [Google Scholar] [CrossRef]
- Anderson, R.L. A rotation design to reduce weed density in organic farming. Renew. Agric. Food Syst. 2010, 25, 189–195. [Google Scholar] [CrossRef]
- Heckman, J.R.; Weil, R.; Magdoff, F. Practical Steps to Soil Fertility for Organic Agriculture. In Organic Farming: The Ecological System; Francis, C., Ed.; American Soc. Agron., Inc.: Madison, WI, USA, 2009; Agronomy Monograph 54; pp. 139–172. [Google Scholar]
- Sansavini, S.; Wollesen, J. The organic farming movement in Europe. Hort. Tech. 1992, 2, 276–281. [Google Scholar]
- Carr, P.M.; Delate, K.; Zhao, X.; Cambardella, C.A.; Carr, P.L.; Heckman, J.R. Organic farming: Impacts on Soil, Food, and Human Health. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 241–258. [Google Scholar]
- Triplett, G.B., Jr.; Dick, W.A. No-tillage crop production: A revolution in agriculture. Agron. J. 2008, 100, S153–S165. [Google Scholar]
- Miller, P.R.; Buschema, D.E.; Jones, C.A.; Holmes, J.A. Transition from intensive tillage to no-tillage and organic diversified annual cropping systems. Agron. J. 2008, 100, 591–599. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Coffman, C.B.; Mangum, R.W. Potential long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 2007, 99, 1297–1305. [Google Scholar] [CrossRef]
- Sooby, J.; Landeck, J.; Lipson, M. 2007 National Organic Research Agenda. Soils, Pest, Livestock, Genetics; Outcomes from the Scientific Congress on Organic Agricultural Research (SCOAR), Organic Farming Research Foundation: Santa Cruz, CA, USA, 2007; p. 74. [Google Scholar]
- Lal, R.; Logan, T.J.; Eckert, D.J.; Dick, W.A. Conservation Tillage in the Corn Belt of the United States. In Conservation Tillage in Temperate Agroecosystems; Carter, M.R., Ed.; CRC Press: Lewis Publishers, Boca Raton, FL, USA, 1994; pp. 73–114. [Google Scholar]
- Carr, P.M.; Martin, G.B.; Horsley, R.D. Impact of tillage and crop rotation on spring wheat: I. Tillage effect. Crop Mgmt. 2006. Available online: http://www.plantmanagementnetwork.org/ppubs/cm/research/2006/wheat1 (accessed on 1 May 2013). [Google Scholar] [CrossRef]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? Soil Use Mgmt. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Mäder, P.; Berner, A. Development of reduced tillage systems in organic farming in Europe. Renew. Agric. Food Syst. 2012, 27, 7–11. [Google Scholar] [CrossRef]
- Carr, P.M.; Mäder, P.; Creamer, N.G.; Beeby, J.S. Editorial: Overview and comparison of conservation tillage practices and organic farming in Europe and North America. Renew. Agric. Food Syst. 2012, 27, 2–6. [Google Scholar] [CrossRef]
- Peigné, J.; Cannavaciuolo, M.; Gautronneau, Y.; Aveline, A.; Giteau, J.L.; Cluzeau, D. Earthworm populations under different tillage systems in organic farming. Soil Tillage Res. 2009, 104, 207–214. [Google Scholar] [CrossRef]
- Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J.; O’Neil, K. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 2005, 97, 322–332. [Google Scholar]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef]
- Teasdale, J.R. Contribution of cover crops to weed management in Sustainable agricultural systems. J. Prod. Agric. 1996, 9, 475–479. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2000, 48, 385–392. [Google Scholar] [CrossRef]
- Creamer, N.G.; Plassman, B.; Bennett, M.A.; Wood, R.K.; Stinner, B.R.; Cardina, J. A method for mechanically killing cover crops to optimize weed suppression. Amer. J. Alt. Agric. 1995, 10, 157–162. [Google Scholar] [CrossRef]
- Ashford, D.L.; Reeves, D.W. Use of a mechanical roller-crimper as an alternative kill method for cover crops. Amer. J. Alt. Agric. 2003, 18, 37–45. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, D.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Price, A.J.; Raper, R.L. Performance of different roller designs for terminating rye cover crop and reducing vibration. Appl. Eng. Agric. 2006, 22, 633–641. [Google Scholar]
- Kornecki, T.S.; Price, A.J.; Raper, R.L.; Arrianga, F.J. New roller crimper concepts for mechanical termination of cover crops. Renew. Agric. Food Syst. 2009, 24, 265–175. [Google Scholar]
- Reberg-Horton, S.C.; Grossman, J.; Kornecki, T.S.; Meijer, A.D.; Price, A.J.; Place, G.T.; Webster, T.M. Utilizing cover crop mulches to reduce tillage in organic systems in the Southeast. Renew. Agric. Food Syst. 2012, 27, 41–48. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.A.; Ryan, M.R.; Shumway, D.L. Control of cereal rye with a roller/crimper as influenced by cover crop phenology. Agron. J. 2009, 101, 1589–1596. [Google Scholar] [CrossRef]
- Creamer, N.G.; Dabney, S.M. Killing cover crop mechanically: Review of recent literature and assessment of new research results. Amer. J. Alt. Agric. 2002, 17, 32–40. [Google Scholar]
- Moyer, J. Organic No-Till Farming. Advancing No-Till–Crops, Soils, Equipment; Acres USA: Austin, TX, USA, 2011; p. 204. [Google Scholar]
- Mirsky, S.B.; Ryan, M.R.; Curran, W.S.; Teasdale, J.R.; Maul, J.; Spargo, J.T.; Moyer, J.; Grantham, A.M.; Weber, D.; Way, T.R. Cover crop-based rotational no-till grain production in the mid-Atlantic region. Renew. Agric. Food Syst. 2012, 27, 31–40. [Google Scholar] [CrossRef]
- Luna, J.M.; Mitchell, J.; Shrestha, A. Conservation tillage for organic agriculture: Evolution toward a hybrid system. Renew. Agric. Food Syst. 2012, 27, 21–30. [Google Scholar] [CrossRef]
- Delate, K.; Cwach, D.; Chase, C. Organic no-till system effects on organic soybean, corn, and tomato production and economic performance in Iowa. Renew. Agric. Food Syst. 2012, 27, 49–59. [Google Scholar] [CrossRef]
- Carr, P.M.; Anderson, R.L.; Lawley, Y.E.; Miller, P.R.; Zwinger, S.F. Organic zero-till in the U.S. northern Great Plains region: Opportunities and obstacles. Renew. Agric. Food Syst. 2012, 27, 12–20. [Google Scholar]
- Shirtliffe, S.J.; Johnson, E.N. Progress towards no-till organic weed control in western Canada. Renew. Agric. Food Syst. 2012, 27, 60–67. [Google Scholar] [CrossRef]
- Mischler, R.; Dulker, S.W.; Curran, W.S.; Wilson, D. Hairy vetch management for no-till organic corn production. Agron. J. 2010, 102, 355–362. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mirsky, S.B.; Spargo, J.T.; Cavigelli, M.A.; Maul, J.E. Reduced-tillage organic corn production in a hairy vetch cover crop. Agron. J. 2012, 104, 621–628. [Google Scholar] [CrossRef]
- Davis, A.S. Cover-crop roller-crimper contributes to weed management in no-till soybean. Weed Sci. 2010, 58, 300–309. [Google Scholar] [CrossRef]
- Bernstein, E.R.; Posner, J.L.; Stoltenberg, D.E.; Hedtcke, J.L. Organically managed no-tillage rye-soybean systems: Agronomic, economic, and environmental assessment. Agron. J. 2011, 103, 1169–1179. [Google Scholar] [CrossRef]
- Wells, M.S.; Reberg-Horton, S.C.; Smith, A.N.; Grossman, J.M. The reduction in plant-available nitrogen by cover crop mulches and subsequent effects on soybean performance and weed interference. Agron. J. 2013, 105, 539–545. [Google Scholar] [CrossRef]
- Entz, M.H.; Guilford, R.; Gulden, R. Crop yield and soil nutrient status on 14 organic farms in the eastern portion of the northern Great Plains. Can. J. Plant Sci. 2001, 81, 351–354. [Google Scholar] [CrossRef]
- Vaisman, I.; Entz, M.H.; Flaten, D.N.; Gulden, R.H. Blade roller-green manure interactions on nitrogen dynamics, weeds, and organic wheat. Agron. J. 2011, 103, 879–889. [Google Scholar] [CrossRef]
- Carter, M.R. Strategies to Overcome Impediments to Adoption of Conservation Tillage. In Conservation Tillage in Temperate Agroecosystems; Carter, M.R., Ed.; CRC Press, Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 3–19. [Google Scholar]
- Hermansen, J.E.; Strudsholm, K.; Horsted, K. Integration of organic animal production into land use with special reference to swine and poultry. Livest. Prod. Sci. 2004, 90, 11–26. [Google Scholar] [CrossRef]
- Stahler, L.M.; Carlson, A.E. Controlling field bindweed by grazing with sheep. Agron. J. 1947, 39, 56–64. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Burger, D.; Wiemken, A.; Niggli, U.; Mäder, P. Reduced tillage in temperate organic farming: Implications for management and forage production. Soil Use Manag. 2010, 26, 12–20. [Google Scholar] [CrossRef]
- Gruber, S.; Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 2009, 105, 104–111. [Google Scholar] [CrossRef]
- Mohler, C.L.; Frisch, J.C.; McCulloch, C.E. Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil Tillage Res. 2006, 86, 110–122. [Google Scholar] [CrossRef]
- Cardina, J.; Regnier, E.; Harrison, K. Long-term tillage effects on seed banks in three Ohio soils. Weed Sci. 1991, 39, 186–194. [Google Scholar]
- Derksen, D.A.; Lafond, G.P.; Thomas, A.G.; Loeppky, H.A.; Swanton, C.J. Impact of agronomic practices on weed communities: tillage systems. Weed Sci. 1993, 41, 409–417. [Google Scholar]
- Derksen, D.A.; Anderson, R.L.; Blackshaw, R.E.; Maxwell, B. Weed dynamics and management strategies for cropping systems in the northern Great Plains. Agron. J. 2002, 94, 174–185. [Google Scholar] [CrossRef]
- Booth, B.D.; Swanton, C.J. Assembly theory applied to weed communities. Weed Sci. 2002, 50, 2–13. [Google Scholar] [CrossRef]
- Légère, A.; Stevenson, F.C.; Benoit, D.L. The selective memory of weed seedbanks after 18 years of conservation tillage. Weed Sci. 2011, 59, 98–106. [Google Scholar] [CrossRef]
- Ryan, M.R.; Smith, R.G.; Mirsky, S.B.; Mortensen, D.A.; Seidel, R. Management filters and species traits: Weed community assembly in long-term organic and conventional systems. Weed Sci. 2010, 58, 265–277. [Google Scholar] [CrossRef]
- Smith, R.G. Timing of tillage is an important filter on the assembly of weed communities. Weed Sci. 2006, 54, 705–712. [Google Scholar] [CrossRef]
- Menalled, F.D.; Gross, K.L.; Hammond, M. Weed aboveground and seedbank responses to agricultural management systems. Ecol. Appl. 2001, 11, 1586–1601. [Google Scholar] [CrossRef]
- Pollnac, F.W.; Maxwell, B.D.; Menalled, F.D. Using species-area curves to examine weed communities in organic and conventional spring wheat systems. Weed Sci. 2009, 57, 241–247. [Google Scholar] [CrossRef]
- Hawes, C.; Squire, G.R.; Hallett, P.D.; Watson, C.A.; Young, M. Arable plant communities as indicators of farming practice. Agric. Ecosys. Environ. 2010, 138, 17–26. [Google Scholar] [CrossRef]
- Graziani, F.; Onofri, A.; Pannacci, E.; Tei, F.; Guidicci, M. Size and composition of weed seedbank in long-term organic and conventional low-input cropping systems. Europ. J. Agron. 2012, 39, 52–61. [Google Scholar] [CrossRef]
- Benvenuti, S.; Miele, M.M.S. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci. 2001, 49, 528–535. [Google Scholar] [CrossRef]
- Vakali, C.; Zaller, J.G.; Köpke, U. Reduced tillage effects on soil properties and growth of cereals and associated weeds under organic farming. Soil Tillage Res. 2011, 111, 133–144. [Google Scholar] [CrossRef]
- Sans, F.X.; Berner, A.; Armengot, L.; Mäder, P. Tillage effects on weed communities in an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 2011, 51, 413–421. [Google Scholar] [CrossRef]
- Thomas, A.G.; Derksen, D.A.; Blackshaw, R.E.; van Acker, R.C.; Légère, A.; Watson, P.R.; Turnbull, G.C. A multistudy approach to understanding weed population shifts in medium- to long-term tillage systems. Weed Sci. 2004, 52, 874–880. [Google Scholar] [CrossRef]
- Buhler, D.D.; Stoltenberg, D.E.; Becker, R.L.; Gunsolus, J.L. Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Sci. 1994, 42, 205–209. [Google Scholar]
- Légère, A.; Shirtliffe, S.J.; Vanasse, A.; Gulden, R.H. Extreme grain-based cropping systems: When herbicide-free weed management meets conservation tillage in northern climates. Weed Technol. 2013, 27, 204–211. [Google Scholar] [CrossRef]
- Anderson, R.L. A multi-tactic approach to manage weed population dynamics in crop rotations. Agron. J. 2005, 97, 1579–1583. [Google Scholar] [CrossRef]
- Murphy, S.D.; Clements, D.R.; Belaoussoff, S.; Kevan, P.G.; Swanton, C.J. Promotion of weed species diversity and reduction of weed seedbank with conservation tillage and crop rotation. Weed Sci. 2006, 54, 69–77. [Google Scholar] [CrossRef]
- Corbin, A.T.; Thelen, K.D.; Robertson, G.P.; Leep, R.H. Influence of cropping systems on soil aggregate and weed seedbank dynamics during the organic transition period. Agron. J. 2010, 102, 1632–1640. [Google Scholar] [CrossRef]
- Helgason, B.L.; Walley, F.L.; Germinda, J.J. Fungal and bacterial abundance in long term no-till and intensive-till soils of the Northern Great Plains. Soil Sci. Soc. Am. J. 2009, 73, 120–127. [Google Scholar] [CrossRef]
- Chee-Sanford, J.C.; Williams, M.M.; Davis, A.S.; Sims, G.K. Do soil microorganisms influence seed-bank dynamics? Weed Sci. 2006, 54, 575–587. [Google Scholar] [CrossRef]
- Westerman, P.R.; Liebman, M.; Heggenstaller, A.H.; Forcella, F. Integrating measurements of seed availability and removal to estimate weed seed losses due to predation. Weed Sci. 2006, 54, 566–574. [Google Scholar] [CrossRef]
- Menalled, F.D.; Smith, R.G.; Dauer, J.T.; Fox, T.B. Impact of agricultural management on carabid communities and weed seed predation. Agric. Ecosys. Environ. 2007, 118, 49–54. [Google Scholar] [CrossRef]
- Cardina, J.; Norquay, H.M.; Stinner, B.R.; McCartney, D.A. Postdispersal predation of velvetleaf (Abutilon theophrasti) seed. Weed Sci. 1996, 44, 534–539. [Google Scholar]
- Cromer, H.E.; Murphy, S.D.; Swanton, C.J. Influence of tillage and crop residue on postdispersal predation of weed seeds. Weed Sci. 1999, 47, 184–194. [Google Scholar]
- Altieri, M.A.; Lana, M.A.; Bittencourt, H.V.; Kieling, A.S.; Comin, J.J.; Lovato, P.E. Enhancing crop productivity in organic no-till cropping systems in Santa Catarina, Brazil. J. Sust. Agric. 2011, 35, 855–869. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Janke, R.R.; Rossoni-Longnecker, L. Effects of tillage intensity on nitrogen dynamics and productivity in legume-based grain systems. Plant Soil 2000, 227, 99–113. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.M.; Ryan, M.R.; Shumway, D.L. Timing of cover crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci. 2011, 59, 380–389. [Google Scholar] [CrossRef]
- Conklin, A.E.; Erich, M.S.; Liebman, M.; Lambert, D.; Gallandt, E.R.; Halteman, W.A. Effects of red clover (Trifolium pratense) green and compost soil amendments on wild mustard (Brassica kaber) growth and incidence of disease. Plant Soil 2002, 238, 245–256. [Google Scholar] [CrossRef]
- Creamer, N.G.; Bennett, M.A.; Stinner, B.R.; Cardina, J. A comparison of four processing tomato systems differing in cover crop and chemical inputs. J. Am. Soc. Hort. Sci. 1996, 121, 559–568. [Google Scholar]
- Barnes, J.P.; Putnam, A.R. Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol. 1983, 9, 1045–1057. [Google Scholar] [CrossRef]
- Barnes, J.P.; Putnam, A.R. Evidence for allelopathy by residues and aqueous extracts of rye (Secale cereale L.). Weed Sci. 1986, 34, 384–390. [Google Scholar]
- Schulz, M.; Marocco, A.; Tabaglio, V.; Macias, F.A.; Molinillo, J.M.G. Benzoxazinoids in rye allelopathy—from discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 2013, 39, 154–174. [Google Scholar] [CrossRef]
- Liebman, M.; Mohler, C.L.; Staver, C.P. Ecological Management of Agricultural Weeds; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Ngouajio, M.; McGiffen, M.E., Jr. Going organic changes weed population dynamics. HortTechnology 2002, 12, 590–596. [Google Scholar]
- Blackshaw, R.E.; Brandt, R.N.; Janzen, H.H.; Entz, T.; Grant, C.A.; Derksen, D.A. Differential response of weeds to added nitrogen. Weed Sci. 2003, 51, 532–539. [Google Scholar] [CrossRef]
- Hayden, Z.D.; Brainard, D.C.; Henshaw, B.; Ngouajio, M. Winter annual weed suppression in rye-vetch cover crop mixtures. Weed Tech. 2012, 26, 818–825. [Google Scholar] [CrossRef]
- Davis, A.S.; Anderson, K.I.; Hallett, S.G.; Renner, K.A. Weed seed mortality in soils with contrasting agricultural management histories. Weed Sci. 2006, 54, 291–297. [Google Scholar]
- Ulrich, S.D.; Buyer, J.S.; Cavigelli, M.A.; Seidel, R.; Teasdale, J.R. Weed seed persistence and microbial abundance in long-term organic and conventional cropping systems. Weed Sci. 2011, 59, 202–209. [Google Scholar] [CrossRef]
- Gallandt, E.R.; Molloy, T.; Lynch, R.P.; Drummond, F.A. Effect of cover-cropping systems on invertebrate seed predation. Weed Sci. 2005, 53, 69–76. [Google Scholar] [CrossRef]
- Heggenstaller, A.H.; Menalled, F.D.; Liebman, M.; Westerman, P.R. Seasonal patterns in post-dispersal seed predation of Abutilon theophrasti and Setaria faberi in three cropping systems. J. Appl. Ecol. 2006, 43, 999–1010. [Google Scholar] [CrossRef]
- Meiss, H.; Lagadec, L.L.; Munier-Jolain, N.; Waldhardt, R.; Petit, S. Weed seed predation increases with vegetation cover in perennial forage crops. Agric. Ecosys. Environ. 2010, 138, 10–16. [Google Scholar] [CrossRef]
- Ward, M.J.; Ryan, M.R.; Curran, W.S.; Barbercheck, M.E.; Mortensen, D.A. Cover crops and disturbance influence activity-density of weed seed predators Amara aenea and Harpalus pensylvanicus (Coleoptera: Carabidae). Weed Sci. 2011, 59, 76–81. [Google Scholar] [CrossRef]
- Gallandt, E.R. How can we target the weed seedbank? Weed Sci. 2006, 588–596. [Google Scholar] [CrossRef]
- Brainard, D.C.; Peachy, R.E.; Haramoto, E.R.; Luna, J.M.; Rangarajan, A. Weed ecology and nonchemical management under strip tillage: Implications for northern U.S. vegetable cropping systems. Weed Sci. 2013, 27, 218–230. [Google Scholar]
- Mirsky, S.B.; Ryan, M.R.; Teasdale, J.R.; Curran, W.S.; Reberg-Horton, C.S.; Spargo, J.T.; Wells, M.S.; Keene, C.L.; Moyer, J.W. Overcoming weed management challenges in cover crop–based organic rotational no-till soybean production in the eastern United States. Weed Tech. 2013, 27, 193–203. [Google Scholar] [CrossRef]
- Nord, E.A.; Curran, W.S.; Mortensen, D.A.; Mirsky, S.B.; Jones, B.P. Integrating multiple tactics for managing weeds in high residue no-till soybean. Agron. J. 2011, 103, 1542–1551. [Google Scholar] [CrossRef]
- Kurstjens, D.A.G. Precise tillage systems for enhanced non-chemical weed management. Soil Till. Res. 2007, 97, 293–305. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Singh, R.G.; Mahajan, G. Ecology and management of weeds under conservation agriculture: A review. Crop Prot. 2012, 38, 57–65. [Google Scholar] [CrossRef]
- Walsh, M.J.; Harrington, R.B.; Powles, S.B. Harrington seed destructor: A new non-chemical weed control tool for global grain crops. Crop Sci. 2012, 52, 1343–1347. [Google Scholar] [CrossRef]
- Walsh, M.J.; Newman, P. Burning narrow windrowsfor weed seed destruction. Field Crops Res. 2007, 104, 24–40. [Google Scholar] [CrossRef]
- Forcella, F. Potential of air-propelled abrasives for selective weed control. Weed Tech. 2009, 23, 317–320. [Google Scholar] [CrossRef]
- Ryan, M.R.; Curran, W.S.; Grantham, A.M.; Hunsberger, L.K.; Mirsky, S.B.; Mortensen, D.A.; Nord, E.A.; Wilson, D.O. Effects of seeding rate and poultry litter on weed suppression from a rolled cereal rye cover crop. Weed Sci. 2011, 59, 438–444. [Google Scholar] [CrossRef]
- Popay, I.; Field, R. Grazing animals as weed control agents. Weed Tech. 1996, 10, 217–231. [Google Scholar]
- Howard, A. An Agricultural Testament; Oxford University Press, Inc.: London, UK, 1943; p. 256. [Google Scholar]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Lynch, D.H.; Halberg, N.; Bhatta, G.D. Environmental impacts of organic agriculture in temperate regions. CAB Rev. 2012. [Google Scholar] [CrossRef]
- Reganold, J.P. Soil quality and profitability of biodynamic and conventional farming systems: A review. Am. J. Altern. Agric. 1995, 10, 36–46. [Google Scholar] [CrossRef]
- Leifeld, J.; Fuhrer, J. Organic farming and soil carbon sequestration: What do we really know about the benefits? AMBIO 2010, 39, 585–599. [Google Scholar]
- Lal, R. Tillage and agricultural sustainability. Soil Tillage Res. 1991, 20, 133–146. [Google Scholar] [CrossRef]
- IFOAM (International Federation of Organic Agriculture Movements), IFOAM Basic Standards for Organic Production and Processing; IFOAM: Bonn, Germany, 2002; pp. 13–40.
- Organisation for Co-operation and Economic Development (OECD), Environmental Indicators for Agriculture–Vol. 3: Methods and Results; OECD: Paris, France, 2013; pp. 389–391.
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Arshad, M.A.; Franzluebbers, A.J.; Azooz, R.H. Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil Tillage Res. 1999, 53, 41–47. [Google Scholar] [CrossRef]
- Follett, R.F.; Peterson, G.A. Surface soil nutrient distribution as affected by wheat-fallow tillage systems. Soil Sci. Soc. Am. J. 1988, 52, 141–147. [Google Scholar] [CrossRef]
- Doran, J.W. Soil microbial and biochemical changes associated with reduced tillage. Soil Sci. Soc. Am. J. 1980, 44, 765–771. [Google Scholar] [CrossRef]
- Frey, S.D.; Elliott, E.T.; Paustian, K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol. Biochem. 1999, 31, 573–585. [Google Scholar] [CrossRef]
- Tanaka, D.L.; Anderson, R.L. Soil water storage and precipitation storage efficiency of conservation tillage systems. J. Soil Water Conserv. 1997, 52, 363–367. [Google Scholar]
- Merrill, S.D.; Black, A.L.; Fryrear, D.W.; Saleh, A.; Zobeck, T.M.; Halvorson, A.D.; Tanaka, D.L. Soil wind erosion hazard of spring wheat-fallow as affected by long-term climate and tillage. Soil Sci. Soc. Am. J. 1999, 63, 1768–1777. [Google Scholar] [CrossRef]
- Follett, R.F.; Schimel, D.S. Effect of tillage practices on microbial biomass dynamics. Soil Sci. Soc. Am. J. 1989, 53, 1091–1096. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA), National Agricultural Library Digital Desktop Library (DigiTop), 2013. Available online: http://digitop.nal.usda.gov/ (accessed on 27 April 2013).
- Weber, M.; Emmerling, C. Long-Term Effects of Reduced and Conservation Tillage in Organic Farming on Soil Organic Matter and Nutrient Content, and Soil Biological Properties. In Wissenschaftstagung Ökologischer Landbau: Ende der Nische; (in German). Hess, J., Rahmann, G., Eds.; Kassel University Press: Kassel, Germany, 2005; pp. 5–8. [Google Scholar]
- Berner, A.; Hildermann, I.; Fließbach, A.; Pfiffner, L.; Niggli, U.; Mäder, P. Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Gadermaier, F.; Berner, A.; Fließbach, A.; Friedel, J.K.; Mäder, P. Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agric. Food Sys. 2011, 27, 68–80. [Google Scholar]
- Vian, J.F.; Peigne, J.; Chaussod, R.; Roger-Estrade, J. Effects of four tillage systems on soil structure and soil microbial biomass in organic farming. Soil Use Manag. 2009, 25, 1–10. [Google Scholar] [CrossRef]
- Lewis, D.B.; Kaye, J.P.; Jabbour, R.; Barbercheck, M.E. Labile carbon and other soil quality indicators in two tillage systems during transition to organic agriculture. Renew. Agric. Food Sys. 2011, 26, 342–353. [Google Scholar] [CrossRef]
- Emmerling, C. Reduced and conservation tillage effects on soil ecological properties in an organic farming system. Biol. Agric. Hort. 2007, 24, 363–377. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Lehocká, Z.; Klimeková, M.; Bieliková, M.; Mendel, L. The effect of different tillage systems under organic management on soil quality indicators. Agron. Res. 2009, 7, 369–373. [Google Scholar]
- Brussard, L.; de Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosys. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Paul, E.A.; Clark, F.E. Soil Microbiology and Biochemistry, 2nd ed.; Academic Press, Inc.: San Diego, CA, USA, 1996; p. 340. [Google Scholar]
- Sparling, G.P. Ratio of microbial biomass carbon to soil organic-carbon as a sensitive indicator of changes in soil organic-matter. Aust. J. Soil Res. 1992, 30, 195–207. [Google Scholar] [CrossRef]
- Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms, 3rd ed.; Chapman and Hall: London, UK, 1996; pp. 268–278. [Google Scholar]
- Kladivko, E.J.; Akhouri, N.M.; Weesies, G. Earthworm populations and species distributions under no-till and conventional tillage in Indiana and Illinois. Soil Biol. Biochem. 1997, 29, 613–615. [Google Scholar] [CrossRef]
- Overstreet, L.F.; Hoyt, G.D.; Imbriani, J. Comparing nematode and earthworm communities under combinations of conventional and conservation vegetable production practices. Soil Tillage Res. 2010, 110, 42–50. [Google Scholar] [CrossRef]
- Emmerling, C. Response of earthworm communities to different types of soil tillage. Appl. Soil Ecol. 2001, 17, 91–96. [Google Scholar] [CrossRef]
- Lowery, B.; Hart, G.L.; Bradford, J.M.; Kung, K.-J.S.; Huang, C. Erosion Impact on Soil Quality and Properties and Model Estimates of Leaching Potential. In Soil Quality and Soil Erosion; Lal, R., Ed.; Soil and Water Conservation Society: Ankeny, IA, USA, 1999; pp. 75–94. [Google Scholar]
- Robinson, D.A.; Hockley, N.; Lebron, I.; Skow, K.M.; Reynolds, B.; Emmett, B.A.; Keith, A.M.; de Jonge, L.W.; Schjønning, P.; Moldrup, P.; et al. Natural capital, ecosystem services, and soil change: Why soil science must embrace an ecosystems approach. Vadose Zone J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Peigné, J.; Aveline, A.; Cannavaciuolo, M.; Giteau, J.L.; Gautronneau, Y. Soil Tillage in Organic Farming: Impacts of Conservation Tillage on Soil Fertility, Weeds and Crops. In Proceedings of the 16th IFOAM Organic World Congress, Modena, Italy, 20 June 2008; IFOAM: Modena, Italy, 2008. Available online: http://orgprints.org/12290 (accessed on 17 April 2013). [Google Scholar]
- Mochizuki, M.J.; Rangarajan, A.; Bellinder, R.R.; van ES, H.H.; Björkmanm, T. Rye mulch management affects short-term indicators of soil quality in the transition to conservation tillage for cabbage. Hort. Sci. 2008, 43, 862–867. [Google Scholar]
- Wienhold, B.J.; Halvorson, A.D. Nitrogen mineralization responses to cropping, tillage, and nitrogen rate in the northern Great Plains. Soil Sci. Soc. Am. J. 1999, 63, 192–196. [Google Scholar] [CrossRef]
- Rasmussen, K.J. Impact of ploughless soil tillage on yield and soil quality: A Scandinavian review. Soil Tillage Res. 1999, 53, 3–14. [Google Scholar] [CrossRef]
- Gallandt, E.R.; Liebman, M.; Huggins, D.R. Improving soil quality: Implications for weed management. J. Crop Prod. 1999, 2, 95–121. [Google Scholar] [CrossRef]
- Mäder, P.; Fließbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and carbon sequestration: What do we really know? Agric. Ecosys. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Lestrelin, G.; Quoc, H.T.; Jullien, F.; Rattanatray, B.; Khamxaykhay, C.; Tivet, F. Conservation agriculture in Laos: Diffusion and determinants for adoption of direct seeding mulch-based cropping systems in smallholder agriculture. Renew. Agric. Food Syst. 2012, 27, 81–92. [Google Scholar] [CrossRef]
- Triplett, G.B., Jr.; Dick, W.A. No-tillage crop production: A revolution in agriculture. Agron. J. 2008, 100, S153–S165. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Carr, P.M.; Gramig, G.G.; Liebig, M.A. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality. Sustainability 2013, 5, 3172-3201. https://doi.org/10.3390/su5073172
Carr PM, Gramig GG, Liebig MA. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality. Sustainability. 2013; 5(7):3172-3201. https://doi.org/10.3390/su5073172
Chicago/Turabian StyleCarr, Patrick M., Greta G. Gramig, and Mark A. Liebig. 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality" Sustainability 5, no. 7: 3172-3201. https://doi.org/10.3390/su5073172