Tourism as a Catalyst for Reducing Regional Disparities: An Empirical Study of the Economic Convergence Effect of Tourism
Abstract
1. Introduction
2. Literature Review
2.1. Tourism and Economic Development
2.2. Tourism and Regional Disparities
2.3. Convergence Model
3. Materials and Methods
3.1. Models
3.1.1. σ Convergence
3.1.2. Tourism Augmented Conditional β Convergence Framework
- Facilitation of capital accumulation (both physical and human), acting as a conduit for technology and knowledge diffusion. Tourism investment directly boosts physical infrastructure, while the sector’s demand for skilled labor promotes human capital development.
- Promotion of structural transformation toward a service-based economy. By stimulating demand for hospitality, retail, transportation, and cultural services, tourism accelerates the shift of resources from primary and secondary sectors to higher-productivity tertiary activities, fostering economic diversification and resilience.
- Enhancement of economic openness through cross-regional flows of people and services. Tourist movements integrate regions into broader networks, promoting trade in services, and attracting external investment linked to visitor demand.
3.1.3. Exploratory Spatial Data Analysis
3.1.4. SDM in the Framework of Conditional β Convergence
3.2. Variables and Data
4. Results and Discussion
4.1. σ Convergence of Tourism Development and Economic Development
4.2. Spatial Relevance of Tourism and Economic Development
4.3. Tourism and Economic Conditional β Convergence: An SDM Analysis
4.4. Robustness Testing
5. Conclusions and Implications
5.1. Conclusions
5.2. Theoretical Implications
5.3. Policy Implications
5.4. Limitations and Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Incera, A.C.; Fernández, M.F. Tourism and income distribution: Evidence from a developed regional economy. Tour. Manag. 2015, 48, 11–20. [Google Scholar] [CrossRef]
- Nunkoo, R.; Seetanah, B.; Jaffur, Z.R.K.; Moraghen, P.G.W.; Sannassee, R.V. Tourism and economic growth: A meta-regression analysis. J. Travel. Res. 2020, 59, 404–423. [Google Scholar] [CrossRef]
- Dogru, T.; Bulut, U. Is tourism an engine for economic recovery? Theory and empirical evidence. Tour. Manag. 2018, 67, 425–434. [Google Scholar] [CrossRef]
- Zhang, J.K. The effects of tourism on income inequality: A meta-analysis of econometrics studies. J. Hosp. Tour. Manag. 2021, 48, 312–321. [Google Scholar] [CrossRef]
- Nugroho, A.; Verikios, G.; Pham, T.; Su, J. The distributional and spillover impacts of tourism across regions: The case of Indonesia. Tour. Econ. 2025, 31, 611–630. [Google Scholar] [CrossRef]
- Lv, Z. Deepening or lessening? The effects of tourism on regional inequality. Tour. Manag. 2019, 72, 23–26. [Google Scholar] [CrossRef]
- Blake, A. Tourism and income distribution in East Africa. Int. J. Tour. Res. 2008, 10, 511–524. [Google Scholar] [CrossRef]
- Chi, J. Revisiting the tourism-inequality nexus: Evidence from a panel of developed and developing economies. Curr. Issues Tour. 2021, 24, 755–767. [Google Scholar] [CrossRef]
- Ghosh, S.; Mitra, S.K. Tourism and inequality: A relook on the Kuznets curve. Tour. Manag. 2021, 83, 104255. [Google Scholar] [CrossRef]
- Cárdenas-García, P.J.; Brida, J.G.; Alcalá-Ordóñez, A.; Segarra, V. Tourism’s contribution to human development and the reduction of poverty and inequality: Empirical evidence at a regional level in Spain. Int. J. Tour. Res. 2024, 26, e2669. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, J. Industrial restructuring, energy consumption and economic growth: Evidence from China. J. Clean. Prod. 2022, 335, 130242. [Google Scholar] [CrossRef]
- Santamaria, D.; Filis, G. Tourism demand and economic growth in Spain: New insights based on the yield curve. Tour. Manag. 2019, 75, 447–459. [Google Scholar] [CrossRef]
- Kyophilavong, P.; Gallup, J.L.; Charoenrat, T.; Nozaki, K. Testing tourism-led growth hypothesis in Laos? Tour. Rev. 2018, 73, 242–251. [Google Scholar] [CrossRef]
- Perles-Ribes, J.F.; Ramón-Rodríguez, A.B.; Rubia, A.; Moreno-Izquierdo, L. Is the tourism-led growth hypothesis valid after the global economic and financial crisis? The case of Spain 1957–2014. Tour. Manag. 2017, 61, 96–109. [Google Scholar] [CrossRef]
- Pulido-Fernández, J.I.; Cárdenas-García, P.J. Analyzing the bidirectional relationship between tourism growth and economic development. J. Travel. Res. 2021, 60, 583–602. [Google Scholar] [CrossRef]
- Katircioglu, S.T. Revisiting the tourism-led-growth hypothesis for Turkey using bonds test and Johansen approach for cointegration. Tour. Manag. 2009, 30, 17–20. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, J. Regional inequality in ASEAN countries: Evidence from an outer space perspective. Emerg. Mark. Financ. Trade 2023, 59, 722–736. [Google Scholar] [CrossRef]
- Qin, D.; Xu, H.; Chung, Y. Perceived impacts of the poverty alleviation tourism policy on the poor in China. J. Hosp. Tour. Manag. 2019, 41, 41–50. [Google Scholar] [CrossRef]
- Solow, R.A. Contribution to the theory of economics. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Romer, P.M. Increasing returns and long-run growth. J. Polit. Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef]
- Ribeiro, L.C.D.S.; Santos, G.F.D.; Takasago, M. Does domestic tourism reduce regional inequalities in Brazil? Curr. Issues Tour. 2023, 26, 3255–3260. [Google Scholar] [CrossRef]
- Uzar, U.; Eyuboglu, K. Can tourism be a key sector in reducing income inequality? An empirical investigation for Turkey. Asia Pac. J. Tour. Res. 2019, 24, 822–838. [Google Scholar] [CrossRef]
- Li, H.; Goh, C.; Qiu, H.Z.; Meng, F. Effect of tourism on balanced regional development: A dynamic panel data analysis in coastal and inland China. Asia Pac. J. Tour. Res. 2015, 20, 694–713. [Google Scholar] [CrossRef]
- Barro, R.; Sala-i-Martin, X. Convergence across states and regions. Brook. Pap. Econ. Act. 1991, 1, 107–182. [Google Scholar] [CrossRef]
- Nguyen, C.P.; Schinckus, C.; Su, T.D.; Chong, F.H.L. The influence of tourism on income inequality. J. Travel. Res. 2020, 60, 1426–1444. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. Slow convergence? The new endogenous growth theory and regional development. Econ. Geogr. 1998, 74, 201–227. [Google Scholar] [CrossRef]
- Tobler, W.R. Smooth pycnophylactic interpolation for geographical regions. J. Am. Stat. Assoc. 1979, 74, 519–530. [Google Scholar] [CrossRef]
- Song, M.; Li, H. Estimating the efficiency of a sustainable Chinese tourism industry using bootstrap technology rectification. Technol. Forecast. Soc. Chang. 2019, 143, 45–54. [Google Scholar] [CrossRef]
- Liu, H.; Gao, C.; Tsai, H. Spatial spillover and determinants of tourism efficiency: A low carbon emission perspective. Tour. Econ. 2023, 30, 543–566. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Dordrecht, The Netherlands, 1988; pp. 115–168. [Google Scholar] [CrossRef]
- Ma, T.; Hong, T.; Zhang, H. Tourism spatial spillover effects and urban economic growth. J. Bus. Res. 2015, 68, 74–80. [Google Scholar] [CrossRef]
- Haller, A.P.; Butnaru, G.I.; Hârșan, G.D.T.; Ştefănică, M. The relationship between tourism and economic growth in the EU-28. Is there a tendency towards convergence? Ekon. Istraz. 2021, 34, 1121–1145. [Google Scholar] [CrossRef]
- Islam, N. What have we learned from the convergence debate? J. Econ. Surv. 2003, 17, 309–362. [Google Scholar] [CrossRef]
- Tselios, V. Growth and convergence in income per capita and income inequality in the regions of the EU. Spat. Econ. Anal. 2009, 4, 343–370. [Google Scholar] [CrossRef]
- Rey, S.J.; Montouri, B.D. US regional income convergence: A spatial econometric perspective. Reg. Stud. 1999, 33, 143–156. [Google Scholar] [CrossRef]
- Ren, X.; Yang, W.; Jin, Y. Geopolitical risk and renewable energy consumption: Evidence from a spatial convergence perspective. Energy Econ. 2024, 131, 107384. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, D.; Du, D. Understanding the Impact of Spatial Externalities on Two-Stage R&D Efficiency: Empirical Evidence from 285 Chinese Prefecture-Level Cities. J. Knowl. Econ. 2024, 16, 8308–8342. [Google Scholar]
- Li, H.; Chen, J.L.; Li, G.; Goh, C. Tourism and regional income inequality: Evidence from China. Ann. Tour. Res. 2016, 58, 81–99. [Google Scholar] [CrossRef]
- Barro, R. Economic growth in a cross section of countries. Q. J. Econ. 1991, 106, 407–443. [Google Scholar] [CrossRef]
- Sala-i-Martin, X. Cross-sectional regressions and the empirics of economic growth. Eur. Econ. Rev. 1994, 38, 739–747. [Google Scholar] [CrossRef]
- Islam, N. Growth empirics: A panel data approach. Q. J. Econ. 1995, 110, 1127–1170. [Google Scholar] [CrossRef]
- Soukiazis, E.; Proença, S. Tourism as an alternative source of regional growth in Portugal: A panel data analysis at NUTS II and III levels. Port. Econ. J. 2008, 7, 43–61. [Google Scholar] [CrossRef]
- Mankiw, N.G.; Romer, D.; Weil, D.N. A contribution to the empirics of economic growth. Q. J. Econ. 1992, 107, 407–437. [Google Scholar] [CrossRef]
- Yu, D.; Wei, Y.H.D. Spatial data analysis of regional development in greater Beijing, China, in a GIS environment. Pap. Reg. Sci. 2008, 87, 97–117. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y. Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: An empirical analysis based on provincial panel data. Renew. Sust. Energ. Rev. 2016, 55, 505–515. [Google Scholar] [CrossRef]
- Cliff, A.; Ord, K. Testing for spatial autocorrelation among regression residuals. Geogr. Anal. 1972, 4, 267–284. [Google Scholar] [CrossRef]
- Elhorst, J.P. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Pijnenburg, K.; Kholodilin, K.A. Do regions with entrepreneurial neighbours perform better? A spatial econometric approach for German regions. Reg. Stud. 2012, 48, 866–882. [Google Scholar] [CrossRef]
- Yang, Y.; Fik, T. Spatial effects in regional tourism growth. Ann. Tour. Res. 2014, 46, 144–162. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Introduction to Spatial Econometrics, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2009; p. 340. [Google Scholar] [CrossRef]
- Merton, R.K. The Matthew effect in science. Science 1968, 159, 56–63. [Google Scholar] [CrossRef]
- Neuts, B. Tourism and urban economic growth: A panel analysis of German cities. Tour. Econ. 2020, 26, 519–527. [Google Scholar] [CrossRef]
- Oviedo-García, M.A.; González-Rodríguez, M.R.; Vega-Vázquez, M. Does sun-and-sea all-inclusive tourism contribute to poverty alleviation and/or income inequality reduction? The case of the dominican republic. J. Travel. Res. 2019, 58, 995–1013. [Google Scholar] [CrossRef]
- Reed, W.R. On the practice of lagging variables to avoid simultaneity. Oxf. Bull. Econ. Stat. 2015, 77, 897–905. [Google Scholar] [CrossRef]
- Ren, X.; Xiao, Y.; Dong, K.; Wang, K. Adding fuel to the flames? Spatial convergence effects of railway development on global tourism industry. Transp. Policy 2025, 162, 545–558. [Google Scholar] [CrossRef]








| Variables | Proxy Variables | Data Sources |
|---|---|---|
| GDP per capita (RMB) | China Statistical Yearbook (2001–2024) | |
| Ratio of capital stock to GDP (based on the perpetual-inventory method, the real capital stock is calculated; %) | China Statistical Yearbook (2001–2024); The statistical yearbook of each province (2001–2024) | |
| Population growth rate (%) | China Statistical Yearbook (2001–2024) | |
| Research and development expenditure per capita (RMB) | National Bureau of Statistics: Statistical bulletin on national investment in science and technology (2000–2023) | |
| Foreign direct investment (RMB) | The statistical yearbook of each province | |
| Trade-to-GDP ratio (%) | China Statistical Yearbook (2001–2024); The statistical yearbook of each province | |
| Retail sales of social consumer goods per capita (RMB) | China Statistical Yearbook (2001–2024) | |
| Tourism revenue per capita (constant 2000 RMB), including domestic and inbound tourism revenue | The statistical yearbook of each province (2001–2024) |
| Variables | Obs | Mean | S.D. | Min | Max |
|---|---|---|---|---|---|
| 713 | 0.085 | 0.035 | −0.026 | 0.218 | |
| 713 | 9.929 | 0.767 | 7.944 | 11.667 | |
| 713 | 1.367 | 0.457 | 0.352 | 2.379 | |
| ) | 713 | −2.091 | 0.217 | −4.726 | −1.506 |
| 713 | 5.596 | 1.352 | 2.028 | 9.096 | |
| 713 | 22.988 | 1.912 | 15.986 | 25.851 | |
| 713 | −1.759 | 1.021 | −5.134 | 0.706 | |
| 713 | 9.051 | 0.802 | 6.885 | 10.775 | |
| 713 | 7.884 | 1.125 | 4.459 | 9.930 |
| Year | Tourism Revenue per Capita | GDP per Capita | ||||
|---|---|---|---|---|---|---|
| Moran’s I | Z-Value | p-Value | Moran’s I | Z-Value | p-Value | |
| 2000 | 0.418 | 3.903 | 0.000 *** | 0.482 | 4.374 | 0.000 *** |
| 2001 | 0.406 | 3.797 | 0.000 *** | 0.470 | 4.272 | 0.000 *** |
| 2002 | 0.424 | 3.941 | 0.000 *** | 0.472 | 4.289 | 0.000 *** |
| 2003 | 0.396 | 3.665 | 0.000 *** | 0.477 | 4.313 | 0.000 *** |
| 2004 | 0.402 | 3.764 | 0.000 *** | 0.479 | 4.334 | 0.000 *** |
| 2005 | 0.399 | 3.731 | 0.000 *** | 0.478 | 4.322 | 0.000 *** |
| 2006 | 0.376 | 3.517 | 0.000 *** | 0.480 | 4.324 | 0.000 *** |
| 2007 | 0.340 | 3.212 | 0.001 *** | 0.480 | 4.309 | 0.000 *** |
| 2008 | 0.354 | 3.299 | 0.001 *** | 0.476 | 4.274 | 0.000 *** |
| 2009 | 0.323 | 3.040 | 0.002 *** | 0.469 | 4.206 | 0.000 *** |
| 2010 | 0.318 | 3.000 | 0.003 *** | 0.461 | 4.132 | 0.000 *** |
| 2011 | 0.310 | 2.926 | 0.003 *** | 0.449 | 4.032 | 0.000 *** |
| 2012 | 0.291 | 2.757 | 0.006 *** | 0.438 | 3.937 | 0.000 *** |
| 2013 | 0.266 | 2.540 | 0.011 ** | 0.427 | 3.849 | 0.000 *** |
| 2014 | 0.240 | 2.311 | 0.021 ** | 0.418 | 3.767 | 0.000 *** |
| 2015 | 0.227 | 2.218 | 0.027 ** | 0.413 | 3.729 | 0.000 *** |
| 2016 | 0.221 | 2.157 | 0.031 ** | 0.414 | 3.735 | 0.001 *** |
| 2017 | 0.220 | 2.143 | 0.032 ** | 0.414 | 3.746 | 0.001 *** |
| 2018 | 0.172 | 1.751 | 0.080 * | 0.414 | 3.753 | 0.001 *** |
| 2019 | 0.137 | 1.455 | 0.146 | 0.415 | 3.760 | 0.001 *** |
| 2020 | 0.105 | 1.156 | 0.248 | 0.426 | 3.846 | 0.000 *** |
| 2021 | 0.040 | 0.615 | 0.539 | 0.429 | 3.878 | 0.000 *** |
| 2022 | 0.305 | 2.822 | 0.005 *** | 0.422 | 3.814 | 0.000 *** |
| 2023 | 0.003 | 0.306 | 0.760 | 0.420 | 3.799 | 0.000 *** |
| Variables | Model 1 | Model 2 | Model 3 |
|---|---|---|---|
| −0.070 *** | −0.074 *** | −0.064 *** | |
| 0.013 ** | 0.006 | 0.001 | |
| −0.060 *** | −0.060 *** | −0.061 *** | |
| 0.004 | 0.004 | 0.004 | |
| 0.002 | 0.002 ** | 0.002 ** | |
| −0.001 | 0.001 | 0.001 | |
| 0.025 *** | 0.023 *** | 0.018 *** | |
| 0.005 *** | 0.001 | ||
| −0.006 *** | |||
| 0.286 *** | 0.252 *** | 0.177 *** | |
| 0.080 *** | 0.051 *** | 0.024 | |
| −0.035 *** | −0.040 *** | −0.030 ** | |
| 0.016 *** | 0.016 *** | 0.011 ** | |
| 0.001 | 0.007 | 0.014 * | |
| 0.001 | 0.001 | 0.001 | |
| 0.001 | 0.002 | 0.002 | |
| −0.021 ** | −0.027 *** | −0.023 *** | |
| 0.010 ** | 0.002 | ||
| −0.003 | |||
| Number of observations | 713 | 713 | 713 |
| log-likelihood | 2015.541 | 2021.398 | 2041.181 |
| Convergence rate | 7.26% (convergence) | 7.69% (convergence) | — |
| Variables | |
|---|---|
| Model 4 | |
| −0.006 *** | |
| 0.002 | |
| 0.005 * | |
| −0.010 ** | |
| 0.096 * | |
| −0.001 | |
| 0.022 *** | |
| −0.022 *** | |
| −0.013 | |
| Number of observations | 713 |
| log-likelihood | 2084.297 |
| Variables | Model 1 | Model 2 | Model 3 | |
|---|---|---|---|---|
| Direct effect | −0.066 *** | −0.072 *** | −0.063 *** | |
| 0.010 ** | 0.003 | −0.002 | ||
| −0.060 *** | −0.060 *** | −0.061 *** | ||
| 0.004 | 0.005 | 0.005 | ||
| 0.002 * | 0.002 * | 0.002 * | ||
| −0.001 | 0.001 | 0.001 | ||
| 0.024 *** | 0.022 *** | 0.018 *** | ||
| 0.006 *** | −0.001 | |||
| −0.006 *** | ||||
| Indirect effect | 0.077 *** | 0.041* | 0.016 | |
| −0.040 *** | −0.049 *** | −0.034 ** | ||
| −0.001 | 0.001 ** | 0.001 | ||
| 0.002 | 0.009 | 0.016 ** | ||
| 0.001 | 0.001 | 0.001 | ||
| 0.001 | 0.003 | 0.002 | ||
| −0.017 | −0.026 *** | −0.022 ** | ||
| 0.015 *** | 0.002 | |||
| −0.005 ** |
| Variables | Phase I | Phase II | Phase III | |
|---|---|---|---|---|
| Direct effect | −0.004 | −0.138 *** | −0.792 *** | |
| −0.005 | 0.028 *** | −0.006 *** | ||
| −0.005 * | −0.002 | −0.014 *** | ||
| Indirect effect | 0.074 | 0.192 ** | 0.392 | |
| −0.012 | −0.016 | 0.007 | ||
| −0.015 *** | 0.018 * | 0.022 ** |
| Variables | Model 5 | Model 6 | Model 7 |
|---|---|---|---|
| −0.059 *** | −0.061 *** | −0.048 *** | |
| 0.017 *** | 0.014 ** | 0.006 | |
| −0.061 *** | −0.061 *** | −0.060 *** | |
| −0.003 | −0.003 | −0.001 | |
| 0.001 * | 0.001 * | 0.002 ** | |
| 0.003 | 0.003 | −0.001 | |
| 0.009 * | 0.008 | −0.003 | |
| 0.003 * | −0.003 | ||
| −0.007 *** | |||
| 0.275 *** | 0.266 *** | 0.171 *** | |
| 0.072 *** | 0.059 *** | 0.074 *** | |
| −0.030 ** | −0.031 ** | −0.034 ** | |
| 0.017 *** | 0.017 *** | −0.004 | |
| −0.001 | 0.001 | 0.017 ** | |
| −0.001 | −0.001 | −0.001 | |
| 0.005 | 0.006 | 0.009 * | |
| −0.009 | 0.011 | −0.015 | |
| 0.004 * | 0.005 | ||
| W × | −0.003 | ||
| Number of observations | 713 | 713 | 713 |
| log-likelihood | 2000.908 | 2002.195 | 2047.525 |
| Convergence rate | 6.08% (convergence) | 6.29% (convergence) | — |
| Variables | Model 5 | Model 6 | Model 7 | |
|---|---|---|---|---|
| Direct effect | 0.055 *** | −0.058 *** | −0.046 *** | |
| 0.015 *** | 0.012 ** | 0.005 | ||
| −0.061 *** | −0.061 *** | −0.060 *** | ||
| −0.003 | −0.003 | −0.001 | ||
| 0.001 | 0.001 | 0.002 * | ||
| 0.003 | 0.004 * | −0.001 | ||
| 0.009 | 0.007 | −0.004 | ||
| 0.003 * | −0.004 | |||
| −0.008 *** | ||||
| Indirect effect | 0.071 *** | 0.055 ** | 0.077 *** | |
| −0.032 ** | −0.036 ** | −0.038 ** | ||
| −0.001 | 0.001 | −0.016 ** | ||
| −0.003 | −0.001 | 0.019 ** | ||
| −0.001 | −0.001 | −0.001 | ||
| 0.007 | 0.009 * | 0.010 * | ||
| −0.007 | −0.012 | −0.017 | ||
| 0.007 * | 0.005 | |||
| −0.004 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Guo, L.; Zhang, J.; Ma, T.; Yang, L.; Wang, P.; Ma, X. Tourism as a Catalyst for Reducing Regional Disparities: An Empirical Study of the Economic Convergence Effect of Tourism. Sustainability 2026, 18, 1289. https://doi.org/10.3390/su18031289
Guo L, Zhang J, Ma T, Yang L, Wang P, Ma X. Tourism as a Catalyst for Reducing Regional Disparities: An Empirical Study of the Economic Convergence Effect of Tourism. Sustainability. 2026; 18(3):1289. https://doi.org/10.3390/su18031289
Chicago/Turabian StyleGuo, Lijia, Jinhe Zhang, Tianchi Ma, Liangjian Yang, Peijia Wang, and Xiaobin Ma. 2026. "Tourism as a Catalyst for Reducing Regional Disparities: An Empirical Study of the Economic Convergence Effect of Tourism" Sustainability 18, no. 3: 1289. https://doi.org/10.3390/su18031289
APA StyleGuo, L., Zhang, J., Ma, T., Yang, L., Wang, P., & Ma, X. (2026). Tourism as a Catalyst for Reducing Regional Disparities: An Empirical Study of the Economic Convergence Effect of Tourism. Sustainability, 18(3), 1289. https://doi.org/10.3390/su18031289

