Experimental Study on Preparation of Sustainable Low Carbon Magnesium Oxysulfate Cement (MOSC) Based on Brucite and Dilute Sulfuric Acid
Abstract
1. Introduction
2. Experiments
2.1. Raw Materials
2.2. Design of Mix Proportion
2.3. Sample Preparation
2.3.1. Sample Preparation of Macroscopic Experiments
2.3.2. Sample Preparation of Microscopic Experiments
2.4. Testing Methods
2.4.1. Setting Time and Fluidity
2.4.2. Compressive Strength
2.4.3. MIP
2.4.4. XRD
2.4.5. TG-DSC
2.4.6. SEM
3. Results and Discussion
3.1. Setting Time and Fluidity of Sustainable Low Carbon MOSC
3.2. Compressive Strength of Sustainable Low Carbon MOSC
3.3. MIP Analysis
3.4. XRD
3.5. TG-DSC
3.6. SEM
4. Conclusions
- (1)
- When the molar ratio of MgO:Mg(OH)2:H2SO4:H2O was 14:1:1:22.5 and the magnesium sulfate solution was 20 °C, the prepared sustainable low carbon MOSC exhibited the lowest setting time and fluidity, along with the highest 3 d compressive strength, measured at 35 min (initial), 84 min (final), 165 mm, and 34 MPa, respectively.
- (2)
- As the temperature of the magnesium sulfate solution increased, the sustainable low carbon MOSC fluidity decreased and the setting time shortened. The compressive strength development followed this pattern: SM-3-20 achieved 34 MPa at 3 d with age, while SM-3-40 and SM-3-60 showed declining strength with age, reaching 23 MPa and 18.2 MPa, respectively, at 3 d. The hydration ceased after 3 days, and the compressive strength stabilized. The highest compressive strength values were SM-3-40 > SM-3-20 > SM-3-60.
- (3)
- The lower the porosity of the sustainable low carbon MOSC, the higher the proportion of the gel pores, and the greater the compressive strength of the cement. In SM-3-60, the 3 d porosity increased to 26.55% while the gel pore proportion decreased to 51.08%. In SM-3-40, the 3 d porosity rose to 25.42%, with the gel pore proportion dropping to 71.49%. In SM-3-20, the 3 d porosity decreased to 20.99% while the gel pore proportion increased to 82.17%.
- (4)
- Neither the temperature of magnesium sulfate solution nor the aging period altered the compositions types, but they affected their quantitative trends: higher temperatures (60 °C and 40 °C) increased the 3·1·8 crystalline phase and Mg(OH)2 during hydration of the sustainable low carbon MOSC while reducing the high-strength 5·1·7 crystalline phase, resulting in higher porosity and compressive strength shrinkage. Conversely, lower temperatures (20 °C) produced the opposite effect.
- (5)
- The XRD and TG analysis indicated that SM-3-60, SM-3-40, and SM-3-20 generated the same types of phases at curing ages, including the 5·1·7 crystalline phase, the 3·1·8 crystalline phase, and Mg(OH)2. However, their contents varied significantly with the temperatures of the magnesium sulfate solution and curing ages. Under the 60 °C condition, the 5·1·7 phase content in SM-3-60 reached 15.8% at 3 h but decreased to 13.1% with age, accompanied by increases in the contents of the 3·1·8 phase and Mg(OH)2. Under the 20 °C condition, the 5·1·7 phase content in SM-3-20 increased to 21.0%, while the contents of the 3·1·8 phase and Mg(OH)2 decreased, demonstrating that lower temperatures favored sufficient late-stage MgO participation and promoted the transformation from the 3·1·8 phase to the 5·1·7 phase. Under the 40 °C condition, SM-3-40 exhibited a high 5·1·7 phase content of 22.8% at 3 h, achieving the best early strength, and its subsequent phase evolution lies between those observed at 60 °C and 20 °C. The SEM observations showed that SM-3 mainly formed spiculate 5·1·7, short columnar or flaky 3·1·8, and flaky or layered Mg(OH)2 at different ages. The morphologies of the hydration products remained stable, and temperature affects microstructural evolution primarily by regulating the quantities rather than the morphologies of these products.
- (6)
- Future work will be conducted based on the SM-3 mixture (with a molar ratio of MgO:MgSO4:H2O = 14:1:22.5) to further investigate in depth the effects of magnesium sulfate solution temperature on material properties and microstructural evolution under different mixture proportion conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woodwell, G.M.; Whittaker, R.H.; Reiners, W.A.; Likens, G.E.; Delwiche, C.C.; Botkin, D.B. The Biota and the World Carbon Budget: The terrestrial biomass appears to be a net source of carbon dioxide for the atmosphere. Science 1978, 199, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Langford, N.J. Carbon Dioxide Poisoning. Toxicol. Rev. 2005, 24, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.L.; Kraemer, D.G.; Keller, R.J. Occupational hazards of carbon dioxide exposure. J. Chem. Health Saf. 2009, 16, 18–22. [Google Scholar] [CrossRef]
- Quirk, T. Sources and sinks of carbon dioxide. Energy Environ. 2009, 20, 105–121. [Google Scholar] [CrossRef]
- Quere, C.L.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Woodward, F.I. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- Salomao, R.; Pandolfelli, V.C. Citric acid as anti-hydration additive for magnesia containing refractory castables. Ceram. Int. 2011, 37, 1839–1842. [Google Scholar] [CrossRef]
- Wu, C.Y.; Yu, H.F.; Zhang, H.F.; Dong, J.M.; Wen, J.; Tan, Y.S. Effects of phosphoric acid and phosphates on magnesium oxysulfate cement. Mater. Struct. 2015, 48, 907–917. [Google Scholar] [CrossRef]
- Beaudoin, J.J.; Ramachandran, V.S. Strength development in magnesium oxysulfate cement. Cem. Concr. Res. 1978, 8, 103–112. [Google Scholar] [CrossRef]
- Ba, M.F.; Xue, T.; He, Z.M.; Wang, H.; Liu, J.Z. Carbonation of magnesium oxysulfate cement and its influence on mechanical performance. Constr. Build. Mater. 2019, 223, 1030–1037. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Li, J.S.; Yeung, T.L.Y.; Ding, S.M.; Poon, C.S. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization. Sci. Total Environ. 2018, 631–632, 1321–1327. [Google Scholar] [CrossRef]
- Demediuk, T.; Cole, W. A study of Magnesium Oxysulphates. Aust. J. Chem. 1957, 10, 287–294. [Google Scholar] [CrossRef]
- Wang, N.; Yu, H.F.; Bi, W.L.; Tan, Y.S.; Zhang, N.; Wu, C.Y.; Ma, H.Y.; Hua, S. Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement. Constr. Build. Mater. 2018, 169, 697–704. [Google Scholar] [CrossRef]
- Wu, C.Y.; Chen, W.H.; Zhang, H.F.; Yu, H.F.; Zhang, W.Y.; Jiang, N.S.; Liu, L.X. The hydration mechanism and performance of Modified magnesium oxysulfate cement by tartaric acid. Constr. Build. Mater. 2017, 144, 516–524. [Google Scholar] [CrossRef]
- Gu, K.; Maierdan, Y.; Chen, B. Effects of ethylenediamine tetra-acetic acid (EDTA) and its disodium salt derivative (EDTA-Na) on the characteristics of magnesium oxysulfate (MOS) cement. Compos. Part B Eng. 2022, 232, 109654. [Google Scholar] [CrossRef]
- Huang, J.S.; Li, W.W.; Huang, D.S.; Wang, L.; Chen, E.; Wu, C.Y.; Wang, B.S.; Deng, H.Y.; Tang, S.W.; Shi, Y.; et al. Fractal Analysis on Pore Structure and Hydration of Magnesium Oxysulfate Cements by First Principle, Thermodynamic and Microstructure-Based Methods. Fractal Fract. 2021, 5, 164. [Google Scholar] [CrossRef]
- Tang, S.W.; Wei, C.R.; Cai, R.J.; Huang, J.S.; Chen, E.; Yuan, J.H. In situ monitoring of pore structure of magnesium oxysulfate cement paste: Effect of MgSO4/H2O ratio. J. Ind. Eng. Chem. 2020, 83, 387–400. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X.J.; Chen, T.F. Recycling of raw rice husk to manufacture magnesium oxysulfate cement based lightweight building materials. J. Clean. Prod. 2018, 191, 220–232. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, H.F.; Ma, H.Y.; Ba, M.F. Effects of different pH chemical additives on the hydration and hardening rules of basic magnesium sulfate cement. Constr. Build. Mater. 2021, 305, 124696. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.Y.; Duan, L.L. Effect of fineness and components of CFBC ash on performance of basic magnesium sulfate cement. Constr. Build. Mater. 2018, 170, 801–811. [Google Scholar] [CrossRef]
- Wang, A.G.; Huang, M.; Chu, Y.J.; Zhu, Y.C.; Liu, K.W.; Guo, L.P.; Liu, P.; Sun, D.S. Optimization of mix proportion of basic magnesium sulfate cement-based high-strength coral concrete. Constr. Build. Mater. 2022, 341, 127709. [Google Scholar] [CrossRef]
- Tie, C.L.; Wang, J.L.; Ning, X.K.; Wu, C.Y. Study on the preparation of high strength basic magnesium sulfate cement based on chlorination roasting natural limestone with bischofite as by-product of salt lake. Constr. Build. Mater. 2025, 483, 141402. [Google Scholar] [CrossRef]
- You, J.J.; Song, Q.Y.; Tan, D.; Yang, C.; Liu, Y.F. Mechanical properties and microstructure of basalt fiber-biobased- basic magnesium sulfate cement. Cem. Concr. Compos. 2023, 137, 104934. [Google Scholar] [CrossRef]
- Ma, M.M.; Ji, Y.S. Enhancing the Mechanical Properties and Microstructure of Basic Magnesium Sulfate Cement with Basalt and Carbon Fibers. ACS Omega 2025, 10, 12928–12935. [Google Scholar] [CrossRef]
- Wang, Y.R.; Zhen, Z.L. Properties of Red-Mud-Modified Basic Magnesium Sulfate Cement. Materials 2024, 17, 4085. [Google Scholar] [CrossRef]
- Chen, X.Y.; Wang, S.Y.; Zhou, Y.X.; Cheeseman, C.; Bi, W.L.; Zhang, T.T. Improved low-carbon magnesium oxysulfate cement pastes containing boric acid and citric acid. Cem. Concr. Compos. 2022, 134, 104813. [Google Scholar] [CrossRef]
- Li, Q.Y.; Su, A.S.; Gao, X.J. Preparation of durable magnesium oxysulfate cement with the incorporation of mineral admixtures and sequestration of carbon dioxide. Sci. Total Environ. 2022, 809, 152127. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.Q.; Guan, Y.; Chang, J.; Bi, W.L.; Zhang, T.T. Effect of Carbonation on the Water Resistance of Steel Slag-Magnesium Oxysulfate (MOS) Cement Blends. Materials 2020, 13, 5006. [Google Scholar] [CrossRef]
- Li, M.X.; Gu, K.; Chen, B. Effects of flue gas desulfurization gypsum incorporation and curing temperatures on magnesium oxysulfate cement. Constr. Build. Mater. 2022, 349, 128718. [Google Scholar] [CrossRef]
- Gu, K.; Lang, L.; Li, D.S.; Chen, B. Preparation of Magnesium Oxysulfate Cement with Calcined Phosphate Tailings. J. Mater. Civ. Eng. 2022, 34, 04022355. [Google Scholar] [CrossRef]
- Li, Y.; Long, S.; Wang, Z.; Ji, G. Research on Magnesium Phosphate Cement Prepared Using Natural Brucite. J. Mater. Civ. Eng. 2026, 38, 04025543. [Google Scholar] [CrossRef]
- GB/T1346-2024; Test Methods for Water Requirement of Standard Consistency, Setting Time and Soundness of the Portland Cement. China Building Materials Federation: Beijing, China, 2024.
- GB/T 17671-2021; Methods of Testing Cements-Determination of Strength (ISO Method). China Building Materials Federation: Beijing, China, 2021.
- Yan, L.L.; Pang, S.C.; Dong, H.Y.; Zheng, X.H.; An, Y.X. Magnesium Oxychloride and Magnesium Oxysulfate Cements as Temporary Plugging Agents in Geothermal Drilling. ACS Omega 2023, 9, 2696–2706. [Google Scholar] [CrossRef]
- Link, J.; Sowoidnich, T.; Pfitzner, C.; Gil-Diaz, T.; Heberling, F.; Lützenkirchen, J.; Schäfer, T.; Ludwig, H.-M.; Haist, M. The Influences of Cement Hydration and Temperature on the Thixotropy of Cement Paste. Materials 2020, 13, 1853. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Zhang, H.F.; Yu, H.F. Preparation and properties of modified magnesium oxysulfate cement derived from waste sulfuric acid. Adv. Cem. Res. 2016, 28, 178–188. [Google Scholar] [CrossRef]
- Wu, C.Y.; Huang, L. Properties and effective improvement approaches of basic magnesium sulfate cement under high-temperature pre-curing. Constr. Build. Mater. 2024, 411, 134561. [Google Scholar] [CrossRef]
- Jin, S.S.; Zhang, J.X.; Han, S. Fractal analysis of relation between strength and pore structure of hardened mortar. Constr. Build. Mater. 2017, 135, 1–7. [Google Scholar] [CrossRef]
- Runcevski, T.; Wu, C.Y.; Yu, H.F.; Yang, B.; Dinnebier, R.E. Structural Characterization of a New Magnesium Oxysulfate Hydrate Cement Phase and Its Surface Reactions with Atmospheric Carbon Dioxide. J. Am. Ceram. Soc. 2013, 96, 3609–3616. [Google Scholar] [CrossRef]
- Dinnebier, R.E.; Pannach, M.; Freyer, D. 3Mg(OH)2·MgSO4·8H2O: A Metastable Phase in the System Mg(OH)2-MgSO4-H2O. Z. Anorg. Allg. Chem. 2013, 639, 1827–1833. [Google Scholar] [CrossRef]
- Tang, S.W.; Yuan, J.H.; Cai, R.J.; Wei, C.R.; Chen, J.T.; Chen, E. In situ monitoring of hydration of magnesium oxysulfate cement paste: Effect of MgO/MgSO4 ratio. Constr. Build. Mater. 2020, 251, 119003. [Google Scholar] [CrossRef]
- Ning, X.K.; Wu, C.Y.; Chen, H.D. Preparation and Characterization of Novel 5Mg(OH)2·MgSO4·7H2O Whiskers. Materials 2022, 15, 8018. [Google Scholar] [CrossRef]
- Newman, E.S. Preparation and Heat of Formation of a Magnesium Oxysulfate. J. Res. Natl. Bur. Stand. Sect. A 1964, 68A, 645–650. [Google Scholar] [CrossRef]
- Urwongse, L.; Sorrell, C.A. Phase relations in magnesium oxysulfate cements. J. Am. Ceram. Soc. 1980, 63, 523–526. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B.; Cui, Q. Experimental research on properties of magnesium oxysulfate cement during high temperature exposure. Compos. Part B Eng. 2022, 244, 110168. [Google Scholar] [CrossRef]
- Walling, S.A.; Provis, J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef]
- Ghanbari, D.; Salavati-Niasari, M.; Sabet, M. Preparation of flower-like magnesium hydroxide nanostructure and its influence on the thermal stability of poly vinyl acetate and poly vinyl alcohol. Compos. Part B Eng. 2013, 45, 550–555. [Google Scholar] [CrossRef]
- Cao, X.P.; Zhao, H.; Liu, X.Y.; Luo, H.H.; Liu, R.J. Preparation of petal-like magnesium hydroxide particles by adding sulfate ions. J. Cryst. Growth 2020, 550, 125841. [Google Scholar] [CrossRef]
- Liu, X.M.; Liao, C.Z.; Lin, L.; Gao, H.Q.; Zhou, J.; Feng, Z.; Lin, Z. Research progress in the environmental application of magnesium hydroxide nanomaterials. Surf. Interfaces 2020, 21, 100701. [Google Scholar] [CrossRef]














| MgO | SiO2 | CaO | Al2O3 | Fe2O3 | SO3 | Others |
|---|---|---|---|---|---|---|
| 82.497 | 10.612 | 3.964 | 0.993 | 0.902 | 0.601 | 0.431 |
| Mg(OH)2 | CaO | SiO2 | Fe2O3 | Al2O3 | P2O5 | Others |
|---|---|---|---|---|---|---|
| 81.355 | 9.167 | 7.263 | 1.202 | 0.569 | 0.156 | 0.288 |
| Code | Light Calcined Magnesia | Dilute H2SO4 | Brucite | CAM | H2O | MgSO4·7H2O |
|---|---|---|---|---|---|---|
| M-0 | 242.43 | 0 | 0 | 1 | 99.64 | 87.86 |
| SM-1 | 242.43 | 116.3 | 35.65 | 1 | 90.2 | 0 |
| SM-2 | 242.43 | 105.32 | 29.71 | 1 | 81.76 | 0 |
| SM-3 | 242.43 | 90.42 | 25.46 | 1 | 76.37 | 0 |
| SM-4 | 242.43 | 97.38 | 27.42 | 1 | 82.23 | 0 |
| SM-5 | 242.43 | 90.39 | 25.46 | 1 | 79.61 | 0 |
| Code | 5·1·7 Crystalline Phase | 3·1·8 Crystalline Phase | Mg(OH)2 | MgCO3 | CaSO4·2H2O |
|---|---|---|---|---|---|
| SM-3-60-3h | 15.8 | 17.2 | 48.5 | 4.2 | 7.3 |
| SM-3-60-6h | 14.5 | 17.8 | 49.5 | 4.1 | 7.2 |
| SM-3-60-1d | 13.8 | 18.2 | 51.2 | 4.1 | 7.7 |
| SM-3-60-3d | 13.1 | 18.5 | 51.6 | 4.0 | 7.8 |
| SM-3-40-3h | 22.8 | 15.6 | 42.2 | 4.0 | 7.4 |
| SM-3-40-6h | 21.2 | 15.8 | 46.8 | 4.0 | 7.2 |
| SM-3-40-1d | 18.2 | 16.2 | 48.3 | 4.3 | 7.0 |
| SM-3-40-3d | 12.0 | 19.2 | 52.4 | 4.0 | 7.4 |
| SM-3-20-3h | 15.2 | 17.4 | 48.6 | 4.1 | 7.7 |
| SM-3-20-6h | 19.1 | 16.1 | 48.2 | 4.1 | 7.5 |
| SM-3-20-1d | 20.1 | 15.9 | 47.8 | 3.9 | 7.3 |
| SM-3-20-3d | 21.0 | 15.8 | 45.1 | 4.1 | 7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, Z.; Du, C.; Li, Y. Experimental Study on Preparation of Sustainable Low Carbon Magnesium Oxysulfate Cement (MOSC) Based on Brucite and Dilute Sulfuric Acid. Sustainability 2026, 18, 1154. https://doi.org/10.3390/su18031154
Wang Z, Du C, Li Y. Experimental Study on Preparation of Sustainable Low Carbon Magnesium Oxysulfate Cement (MOSC) Based on Brucite and Dilute Sulfuric Acid. Sustainability. 2026; 18(3):1154. https://doi.org/10.3390/su18031154
Chicago/Turabian StyleWang, Zigeng, Chongying Du, and Yue Li. 2026. "Experimental Study on Preparation of Sustainable Low Carbon Magnesium Oxysulfate Cement (MOSC) Based on Brucite and Dilute Sulfuric Acid" Sustainability 18, no. 3: 1154. https://doi.org/10.3390/su18031154
APA StyleWang, Z., Du, C., & Li, Y. (2026). Experimental Study on Preparation of Sustainable Low Carbon Magnesium Oxysulfate Cement (MOSC) Based on Brucite and Dilute Sulfuric Acid. Sustainability, 18(3), 1154. https://doi.org/10.3390/su18031154

