Beyond Forests: A Strategic Framework for Climate-Positive Development from Thailand’s Net-Negative Provinces
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. GHG Inventory Quantification
2.2.1. Guiding Frameworks and Scope
2.2.2. Data Collection and Sources
2.2.3. LULUCF Sector Analysis
- Carbon stock changes on land remaining in the same category:
- Carbon stock changes from land conversion:
- Total net change and conversion to CO2eq:
2.3. Analytical Framework: The Climate-Positive Pathways Framework (CPPF)
2.4. Uncertainty Analysis
3. Results
3.1. Overall GHG Balance Confirms Net-Negative Status
3.2. Contrasting Sectoral Emissions Profiles
3.3. Disaggregation of the Carbon Sink Engine (CSE)
3.4. Uncertainty Analysis Results
3.5. Comparative Synthesis of the Provincial Climate-Positive Pathways
4. Discussion
4.1. The Conservation-Dependent Archetype
4.2. The Agricultural Frontier Archetype
4.3. The Agro-Sink Archetype
4.4. Implications for Cleaner Production and Regional Sustainability
4.5. Policy Recommendations for Each Pathway
4.6. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 12 November 2025).
- United Nations Framework Convention on Climate Change. The Paris Agreement; UNFCCC: Bonn, Germany, 2015; Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 12 November 2025).
- Al Khaffaf, I.; Tamimi, A.; Ahmed, V. Pathways to carbon neutrality: A review of strategies and technologies across sectors. Energies 2024, 17, 6129. [Google Scholar] [CrossRef]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Minx, J.C. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/sr15/ (accessed on 12 November 2025).
- Anderson, K.; Peters, G. The trouble with negative emissions. Science 2016, 354, 182–183. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Satterthwaite, D. Cities’ contribution to global warming: Notes on the allocation of greenhouse gas emissions. Environ. Urban. 2008, 20, 539–549. [Google Scholar] [CrossRef]
- Bai, X.; Dawson, R.J.; Ürge-Vorsatz, D.; Delgado, G.C.; Barau, A.S.; Dhakal, S.; Dodman, D.; Leonardsen, L.; Masson-Delmotte, V.; Roberts, D.C.; et al. Six research priorities for cities and climate change. Nature 2018, 555, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.; Krylov, D.V.; Stehman, S.V.; Tucker, C.J. Aboveground carbon loss in globally significant forest degradation landscapes. Environ. Res. Lett. 2015, 10, 074002. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.H.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- DeFries, R.S.; Rosenzweig, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc. Natl. Acad. Sci. USA 2010, 107, 19627–19632. [Google Scholar] [CrossRef]
- Liu, R.; Liao, F.; Qin, Q. China’s provincial long-term carbon emissions reduction planning considering fairness, efficiency and gradualness: A multi-objective programming approach. J. Environ. Manag. 2025, 387, 125856. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Chen, A.; Li, F.; Gao, W.; Cui, J.; Chen, Y. Unlocking the carbon emission reduction potential of organic agriculture: Insights from multi-crop organic production in Yunnan Province, China. J. Environ. Manag. 2025, 391, 126418. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef]
- The World Bank. Official Exchange Rate (LCU Per US$, Period Average) for Thailand. The World Bank Data. Available online: https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=TH (accessed on 29 September 2025).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies: Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 12 November 2025).
- World Resources Institute; C40 Cities Climate Leadership Group; ICLEI—Local Governments for Sustainability. Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC); World Resources Institute, WRI: Washington, DC, USA, 2014; Available online: https://ghgprotocol.org/sites/default/files/standards/GPC_Full_MASTER_RW_v7.pdf (accessed on 12 November 2025).
- Ridolfi, R.; Kneller, M.; Donati, A.; Pulselli, R.M. The greenhouse gas balance of the Province of Siena. J. Environ. Manag. 2008, 86, 365–371. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Lindenmayer, D.; Guariguata, M.R.; Crouzeilles, R.; Benayas, J.M.R.; Chazdon, E.L. Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 2020, 15, 043002. [Google Scholar] [CrossRef]
- Dhakal, S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy 2009, 37, 4208–4219. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Kiat, P.E.; Malek, M.A.; Shamsuddin, S.M. Net carbon stocks change in biomass from wood removal of tropical forests in Sarawak, Malaysia. J. King Saud Univ. Sci. 2020, 32, 1096–1099. [Google Scholar] [CrossRef]
- Mahmood, A.; Ghani, H.U.; Leinonen, I.; Gheewala, S.H. Modeling Soil Organic Carbon Dynamics and Uncertainty in Life Cycle Assessment of Agricultural Systems. Sust. Prod. Consum. 2025, 59, 393–407. [Google Scholar] [CrossRef]
- Fulton, L.; Mejia, A.; Arioli, M.; Dematera, K.; Lah, O. Climate change mitigation pathways for Southeast Asia: CO2 emissions reduction policies for the energy and transport sectors. Sustainability 2017, 9, 1160. [Google Scholar] [CrossRef]
- Laurance, W.F.; Useche, D.C.; Rendeiro, J.; Kalka, M.; Bradshaw, C.J.A.; Sloan, S.; Laurance, S.G.; Campbell, M.; Abernethy, K.; Alvarez, P.; et al. Averting biodiversity collapse in tropical forest protected areas. Nature 2012, 489, 290–294. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; van Noordwijk, M.; Wang, M. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef]
- Germer, J.; Sauerborn, J. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain. 2008, 10, 697–716. [Google Scholar] [CrossRef]
- Guillaume, T.; Kotowska, M.M.; Hertel, D.; Knohl, A.; Krashevska, V.; Murtilaksono, K.; Scheu, S.; Kuzyakov, Y. Carbon costs and benefits of Indonesian rainforest conversion to plantations. Nat. Commun. 2018, 9, 2388. [Google Scholar] [CrossRef]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling Food Production and Biodiversity Conservation: Land Sharing and Land Sparing Compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Fiksel, J. Sustainability and resilience: Toward a systems approach. Sustain. Sci. Pract. Policy 2006, 2, 14–21. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Geels, F.W.; Sovacool, B.K.; Schwanen, T.; Sorrell, S. A socio-technical perspective on sustainability transitions. Environ. Innov. Soc. Transit. 2017, 24, 1–31. [Google Scholar]
- Angelsen, A. (Ed.) Realising REDD+: National Strategy and Policy Options; CIFOR: Bogor, Indonesia, 2009; Available online: https://www.cifor-icraf.org/publications/pdf_files/Books/BAngelsen0902.pdf (accessed on 12 November 2025).
- Sovacool, B.K.; Furszyfer Del Rio, D.; Zhang, W. The political economy of net-zero transitions: Policy drivers, barriers, and justice benefits to decarbonization in eight carbon-neutral countries. J. Environ. Manag. 2023, 347, 119154. [Google Scholar] [CrossRef] [PubMed]
- Wunder, S. The efficiency of payments for environmental services in tropical conservation. Conserv. Biol. 2007, 21, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Primaningtyas, A.; Gheewala, S.H. Life cycle assessment of non-timber forest products production systems. J. Sustain. Energy Environ. 2023, 14, 1–15. [Google Scholar]
- Black, J.; Nakanishi, H. Towards Net-Zero Emissions from Urban Transport: Ex Post Policy Evaluation in Canberra, the Australian Capital Territory. Sustainability 2024, 16, 8656. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, Z.; Wang, J.; Wang, M.; Tian, L. Regional carbon emission accounting and spatiotemporal characteristics analysis in small and medium scale—A case study of Jiangsu Province. J. Environ. Manag. 2025, 339, 127150. [Google Scholar] [CrossRef]
- Loorbach, D.; Rotmans, J. The practice of transition management: Examples and lessons from four distinct cases. Futures 2010, 42, 237–246. [Google Scholar] [CrossRef]





| Characteristic | MSN | TAK | LEI | SNI |
|---|---|---|---|---|
| Region | Northern | Northern | Northeastern | Southern |
| Topography | Mountainous | Mountain/Plain Mix | Mountainous | Coastal Plain/Basin |
| Key Economy | Ecotourism, Agriculture | Border Trade, Agri. | Ecotourism, Agriculture | Int’l Tourism, Palm/Rubber |
| Total Area (km2) | 12,681 | 16,407 | 11,425 | 12,891 |
| Forest Area (km2) | 10,915 (86%) | 12,455 (76%) | 3382 (30%) | 3764 (29%) |
| Population | 284,138 | 665,620 | 642,950 | 1,068,010 |
| GPP (Million THB) * | 15,716 (~507 M USD) | 69,043 (~2227 M USD) | 54,612 (~1762 M USD) | 207,523 (~6694 M USD) |
| GPP per Capita (THB/yr) * | 66,300 (~2139 USD) | 129,383 (~4174 USD) | 100,839 (~3253 USD) | 181,698 (~5861 USD) |
| GHG Sector | Activity Data | Primary Data Sources |
|---|---|---|
| Energy | Fuel Consumption, Electricity Usage | DOEB, PEA, ERC, DMF |
| Transportation | Fuel Consumption | DOEB, CAAT, DLT, PAT, SRT, MD |
| Waste | Municipal solid waste, Industrial waste, Hazardous waste and infected waste, Wastewater | PCD, DLA, PPHO, WMA |
| IPPU | Industrial Production Data | OIE, FTI |
| AFOLU | Livestock, Crop Production, Land Use Change, Burning Area | DNP, OAE, GISTDA |
| Parameter | Type | Default | Min | Max |
|---|---|---|---|---|
| Tropical moist deciduous forest > 20y | 1.77 | 0.885 | 2.655 | |
| Tropical moist deciduous forest < 20y | 2.66 | 1.33 | 3.99 | |
| Mangrove forest < 20y | 2.00 | 1.00 | 3.00 | |
| Slow-growing species | 2.61 | 1.305 | 3.915 | |
| Tropical moist deciduous forest > 20y | 0.24 | 0.12 | 0.36 | |
| Tropical moist deciduous forest < 20y | 0.24 | 0.12 | 0.36 | |
| Mangrove forest < 20y | 0.49 | 0.245 | 0.735 | |
| Slow-growing species | 0.26 | 0.13 | 0.39 | |
| Tropical moist deciduous forest > 20y | 0.52 | 0.26 | 0.78 | |
| Tropical moist deciduous forest < 20y | 0.52 | 0.26 | 0.78 | |
| Mangrove forest < 20y | 0.55 | 0.275 | 0.825 | |
| Slow-growing species | 0.4733 | 0.2367 | 0.7100 |
| GHG Source and Sink Category | MSN | TAK | LEI | SNI |
|---|---|---|---|---|
| A. Forest Land Remaining Forest Land | −4,930,367 | −5,629,027 | −1,548,753 | −1,645,798 |
| B. Land Converted to Settlements | 463,129 | 173,641 | 77,185 | 19,759 |
| C. Cropland Remaining Cropland | −23,123 | −83,676 | −2,590,860 | −5,795,882 |
| D. Land Converted to Cropland | −154,976 | 955,930 | −450,165 | −2,192,185 |
| E. Biomass Burning | 13,509 | 19,510 | 6954 | 1473 |
| Total Net LULUCF Balance | −4,631,827 | −4,563,622 | −4,505,639 | −9,612,634 |
| Year | MSN | TAK | LEI | SNI | ||||
|---|---|---|---|---|---|---|---|---|
| Forest Land (ha) | Cropland (ha) | Forest Land (ha) | Cropland (ha) | Forest Land (ha) | Cropland (ha) | Forest Land (ha) | Cropland (ha) | |
| 2014 | 1,113,378 | 48,595 | 1,246,812 | 224,656 | 344,527 | 433,492 | 372,111 | 587,456 |
| 2015 | 1,110,393 | 48,589 | 1,245,827 | 224,638 | 339,321 | 434,125 | 373,581 | 587,598 |
| 2016 | 1,104,800 | 48,587 | 1,244,844 | 224,628 | 339,472 | 434,231 | 374,099 | 587,669 |
| 2017 | 1,104,205 | 48,608 | 1,246,901 | 224,707 | 339,110 | 434,256 | 374,792 | 587,732 |
| 2018 | 1,097,698 | 48,617 | 1,247,602 | 251,816 | 338,975 | 434,095 | 376,546 | 587,770 |
| 2019 | 1,091,489 | 48,626 | 1,245,525 | 254,390 | 338,175 | 434,218 | 376,377 | 587,793 |
| Annual Growth Rate | −0.22% | 0.01% | −0.01% | 1.39% | −0.21% | 0.02% | 0.13% | 0.01% |
| Year | MSN | TAK | LEI | SNI | ||||
|---|---|---|---|---|---|---|---|---|
| Perennial Cropland (ha) | Annual Cropland (ha) | Perennial Cropland (ha) | Annual Cropland (ha) | Perennial Cropland (ha) | Annual Cropland (ha) | Perennial Cropland (ha) | Annual Cropland (ha) | |
| 2014 | 1998 | 46,598 | 14,641 | 210,015 | 116,004 | 317,488 | 559,738 | 27,718 |
| 2015 | 2047 | 46,542 | 14,648 | 209,990 | 119,811 | 314,314 | 559,824 | 27,774 |
| 2016 | 2045 | 46,542 | 14,640 | 209,988 | 119,947 | 314,284 | 559,918 | 27,751 |
| 2017 | 2043 | 46,565 | 14,678 | 210,029 | 119,903 | 314,353 | 559,832 | 27,901 |
| 2018 | 2042 | 46,576 | 14,666 | 237,150 | 119,839 | 314,256 | 559,880 | 27,890 |
| 2019 | 2047 | 46,579 | 14,667 | 239,724 | 119,902 | 314,316 | 559,892 | 27,900 |
| Annual Growth Rate | 0.27% | 0.00% | 0.02% | 1.48% | 0.37% | −0.11% | 0.00% | 0.07% |
| Land Use Category | Deterministic | Monte Carlo Simulation |
|---|---|---|
| Mean | ||
| MSN | ||
| Forest Land | −4,930,367 | −4,961,545 |
| Cropland | −23,123 | −23,287 |
| Total Net | −4,953,489 | −4,984,832 |
| TAK | ||
| Forest Land | −5,629,027 | −5,605,648 |
| Cropland | −83,676 | −83,313 |
| Total Net | −5,712,703 | −5,688,962 |
| LEI | ||
| Forest Land | −1,548,753 | −1,543,944 |
| Cropland | −2,590,860 | −2,596,179 |
| Total Net | −4,139,613 | −4,140,123 |
| SNI | ||
| Forest Land | −1,645,798 | −1,647,712 |
| Cropland | −5,795,882 | −5,797,800 |
| Total Net | −7,441,681 | −7,445,512 |
| Component/Indicator | MSN | TAK | LEI | SNI |
|---|---|---|---|---|
| OUTCOME: Net Carbon Balance (tCO2eq) | −4,100,384 | −3,018,964 | −3,433,383 | −5,465,102 |
| I. Carbon Sink Engine (CSE) | ||||
| - Forest Sink (LULUCF A) | −4,930,367 | −5,629,027 | −1,548,753 | −1,645,798 |
| - Agro-Sink (LULUCF B) | −23,123 | −83,676 | −2,590,860 | −5,795,882 |
| - Land Conversion Emissions (LULUCF C) | −154,976 | 955,930 | −450,165 | −2,192,185 |
| II. Emissions Profile (EP) | ||||
| - Total Gross Emissions | 531,443 | 1,544,658 | 1,072,257 | 4,147,531 |
| - Primary Emission Sectors | Agriculture, Transport | Transport, Agriculture | Energy, Transport | Energy, Transport |
| - Sink-to-Source Ratio | 9.2:1 | 3.6:1 | 1.4:1 | 0.4:1 |
| III. Structural Modulators (SM) | ||||
| - Population Density (persons/km2) | 22 | 41 | 56 | 83 |
| - GPP per Capita (THB/yr) | 66,300 (~2139 USD) | 129,383 (~4174 USD) | 100,839 (~3253 USD) | 181,698 (~5861 USD) |
| - Agricultural Pressure (% Cropland Growth/yr) | 0.01% | 1.39% | 0.02% | −0.25% |
| - Pathway/Archetype | Conservation-Dependent | Agricultural Frontier | Mixed Agro-Forest | Service/Tourism-Driven |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sampattagul, S.; Gheewala, S.H.; Kongboon, R. Beyond Forests: A Strategic Framework for Climate-Positive Development from Thailand’s Net-Negative Provinces. Sustainability 2026, 18, 942. https://doi.org/10.3390/su18020942
Sampattagul S, Gheewala SH, Kongboon R. Beyond Forests: A Strategic Framework for Climate-Positive Development from Thailand’s Net-Negative Provinces. Sustainability. 2026; 18(2):942. https://doi.org/10.3390/su18020942
Chicago/Turabian StyleSampattagul, Sate, Shabbir H. Gheewala, and Ratchayuda Kongboon. 2026. "Beyond Forests: A Strategic Framework for Climate-Positive Development from Thailand’s Net-Negative Provinces" Sustainability 18, no. 2: 942. https://doi.org/10.3390/su18020942
APA StyleSampattagul, S., Gheewala, S. H., & Kongboon, R. (2026). Beyond Forests: A Strategic Framework for Climate-Positive Development from Thailand’s Net-Negative Provinces. Sustainability, 18(2), 942. https://doi.org/10.3390/su18020942

