Valuation of New Carbon Asset CCER
Abstract
1. Introduction
2. Literature Review
2.1. Research on the Pricing of Intangible Assets
2.2. Research on Carbon Asset Trading
2.3. Research on Carbon Asset Pricing
3. Valuation of CCER Under the Income Approach Framework
3.1. Assumptions and Prerequisites Related to Pricing Within the Income Approach
3.2. Valuation of CCER Based on Discrete Distribution Model of Emissions
3.2.1. Discrete Model Construction for Quantitatively Expressing the Return of CCER
3.2.2. Computation and Resolution of the Model
3.2.3. Robustness Testing of the Model
3.3. Valuation of CCER Based on Continuous Distribution Model of Emissions
3.3.1. Construction of a Continuous Model for Quantifying the Return of CCER
3.3.2. Model Calculation and Solution
3.3.3. Robustness Testing of the Model
3.4. Comparative Interpretation of Discrete and Continuous Model Results
4. Valuation of CCER Under the Market Approach Framework
4.1. Analysis of the Carbon Asset Value Theory Based on Real Options Method
4.2. Valuation of CCER by Geometric Brownian Motion Within the Market Approach
4.2.1. Price Modeling Based on the Real Options Method
4.2.2. Numerical Simulation and Pricing Based on Model Frameworks
4.3. Value Assessment of CCER with LSTM Under the Market Approach Framework
4.3.1. Learning and Prediction in Long Short-Term Memory
4.3.2. Implementation Process of Sample Generation Based on LSTM Technology
4.3.3. Model-Based Numerical Simulation and Pricing
4.3.4. Robustness Testing of the Model
4.4. Discussion of Market-Approach Models
5. Comprehensive Comparison of the Income Approach and the Market Approach to CCER Valuation
5.1. Comparison of Numerical Results for Valuation of CCER
5.2. Comparison of the Advantages and Disadvantages of Valuation Methods of CCER
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Ticker Symbol | Ticker Symbol | ||||||
|---|---|---|---|---|---|---|---|
| 603388 | 5969 | 5427 | 4884 | 603778 | 5469 | 4972 | 4475 |
| 002431 | 14,559 | 13,236 | 11,912 | 300008 | 27,852 | 25,320 | 22,788 |
| 300536 | 20,967 | 19,061 | 17,155 | 600072 | 26,117 | 23,743 | 21,368 |
| 000037 | 7867 | 7152 | 6437 | 603717 | 20,927 | 19,025 | 17,122 |
| 000993 | 8405 | 7641 | 6876 | 000711 | 18,504 | 16,822 | 15,140 |
| Ticker Symbol | Ticker Symbol | Ticker Symbol | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 600011 | 9,076,451 | 8,251,319 | 7,426,187 | 600025 | 839,682 | 763,347 | 687,012 | 603828 | 109,891 | 99,901 | 89,911 |
| 600795 | 3,927,170 | 3,570,155 | 3,213,139 | 000959 | 6,749,599 | 6,135,999 | 5,522,399 | 002542 | 530,198 | 481,998 | 433,799 |
| 601991 | 5552 259 | 5,047,508 | 4,542,757 | 000761 | 4,723,905 | 4,294,459 | 3,865,013 | 002564 | 716,273 | 651,157 | 586,042 |
| 600027 | 6,756,622 | 6,142,383 | 5,528,145 | 600126 | 1,990,390 | 1,809,445 | 1,628,501 | 002628 | 138,814 | 126,195 | 113,575 |
| 600023 | 3,795,945 | 3,450,859 | 3,105,773 | 000778 | 196,041 | 178,219 | 160,397 | 002663 | 68,298 | 62,089 | 55,880 |
| 000539 | 2,368,211 | 2,152,919 | 1,937,627 | 600307 | 1,431,482 | 1,301,347 | 1,171,213 | 002761 | 10,519,590 | 9,563,263 | 8,606,937 |
| 600021 | 1,540,961 | 1,400,873 | 1,260,786 | 600782 | 4,447,745 | 4,043,405 | 3,639,064 | 002775 | 72,117 | 65,561 | 59,005 |
| 000027 | 2,276,119 | 2,069,199 | 1,862,279 | 000709 | 3,706,154 | 3,369,231 | 3,032,308 | 002140 | 498,744 | 453,404 | 408,063 |
| 002608 | 2,132,345 | 1,938,495 | 1,744,646 | 600569 | 2,818,325 | 2,562,113 | 2,305,902 | 300055 | 65,169 | 59,245 | 53,320 |
| 600578 | 1,708,917 | 1,553,561 | 1,398,205 | 600282 | 4,746,223 | 4,314,748 | 3,883,274 | 300237 | 52,063 | 47,330 | 42,597 |
| 600575 | 1,445,654 | 1,314,231 | 1,182,808 | 601005 | 1,693,446 | 1,539,496 | 1,385,546 | 300517 | 95,146 | 86,496 | 77,847 |
| 600157 | 1,533,348 | 1,393,952 | 1,254,557 | 000825 | 3,723,184 | 3,384,713 | 3,046,241 | 000862 | 62,357 | 56,688 | 51,019 |
| 000543 | 1,126,340 | 1,023,946 | 921,551 | 600117 | 557,233 | 506,575 | 455,918 | 300649 | 104,958 | 95,417 | 85,875 |
| 600642 | 2,127,118 | 1,933,743 | 1,740,369 | 000717 | 2,052,221 | 1,865,655 | 1,679,090 | 300712 | 95,242 | 86,584 | 77,925 |
| 600863 | 584,866 | 531,697 | 478,527 | 600019 | 21,523,775 | 19,567,068 | 1,7610,361 | 600039 | 7,472,533 | 6,793,212 | 6,113,891 |
| 000600 | 534,253 | 485,685 | 437,116 | 000932 | 5,453,736 | 4,957,942 | 4,462,148 | 002116 | 500,880 | 455,345 | 409,811 |
| 000767 | 1,034,726 | 940,660 | 846,594 | 600507 | 1,269,384 | 1,153,986 | 1,038,587 | 600133 | 799,036 | 726,396 | 653,757 |
| 000966 | 723,281 | 657,528 | 591,775 | 000898 | 5,667,263 | 5,152,057 | 4,636,852 | 600170 | 14,171,007 | 12,882,733 | 11,594,460 |
| 001896 | 782,009 | 710,918 | 639,826 | 600010 | 3,162,971 | 2,875,428 | 2,587,885 | 600248 | 15,423,990 | 14,021,809 | 12,619,628 |
| 600780 | 425,868 | 387,153 | 348,437 | 600022 | 4,586,444 | 4,169,495 | 3,752,545 | 600284 | 1,135,404 | 1,032,186 | 928,967 |
| 600509 | 583,520 | 530,472 | 477,425 | 600231 | 1,027,681 | 934,255 | 840,830 | 600463 | 61,704 | 56,094 | 50,485 |
| 000690 | 452,755 | 411,595 | 370,436 | 601003 | 4,383,901 | 3,985,365 | 3,586,828 | 600491 | 114,836 | 104,396 | 93,956 |
| 600744 | 691,180 | 628,346 | 565,511 | 600808 | 3,801,689 | 3,456,081 | 3,110,473 | 600502 | 5,764,712 | 5,240,647 | 4,716,582 |
| 000899 | 170,012 | 154,556 | 139,101 | 600295 | 1,641,085 | 1,491,896 | 1,342,706 | 600512 | 526,711 | 478,828 | 430,946 |
| 000531 | 238,187 | 216,534 | 194,881 | 000655 | 137,061 | 124,601 | 112,141 | 600606 | 29,341,384 | 26,673,985 | 24,006,587 |
| 600396 | 249,379 | 226,708 | 204,037 | 600581 | 1,509,440 | 1,372,218 | 1,234,997 | 600667 | 1,620,650 | 1,473,318 | 1,325,987 |
| 002893 | 82,005 | 74,550 | 67,095 | 000629 | 484,185 | 440,168 | 396,152 | 600820 | 6,238,700 | 5,671,545 | 5,104,391 |
| 600969 | 204,230 | 185,664 | 167,098 | 603878 | 161,881 | 147,165 | 132,448 | 600846 | 431,993 | 392,721 | 353,449 |
| 000791 | 95,916 | 87,197 | 78,477 | 000923 | 190,663 | 173,330 | 155,997 | 600853 | 753,134 | 684,667 | 616,201 |
| 000601 | 317,822 | 288,929 | 260,036 | 000708 | 8,055,406 | 7,323,096 | 6,590,786 | 600970 | 2,317,066 | 2,106,424 | 1,895,782 |
| 600483 | 885,339 | 804,853 | 724,368 | 601969 | 47,961 | 43,601 | 39,241 | 601117 | 7,972,458 | 7,247,689 | 6,522,920 |
| 000883 | 1,542,108 | 1,401,917 | 1,261,725 | 002110 | 4,542,493 | 4,129,539 | 3,716,585 | 601186 | 70,552,790 | 64,138,900 | 57,725,010 |
| 600900 | 1,554,752 | 1,413,411 | 1,272,070 | 002075 | 355,375 | 323,068 | 290,761 | 601390 | 37,510,749 | 34,100,681 | 30,690,613 |
| 601985 | 3,887,484 | 3,534,076 | 3,180,668 | 600477 | 483,255 | 439,323 | 395,391 | 601611 | 3,506,691 | 3,187,901 | 2,869,111 |
| 600886 | 1,218,380 | 1,107,618 | 996,856 | 600496 | 1,036,042 | 941,856 | 847,670 | 601618 | 33,385,953 | 30,350,867 | 27,315,780 |
| 601669 | 26,125,183 | 23,750,167 | 21,375,150 | 601968 | 462,657 | 420,597 | 378,537 | 601668 | 122,315,835 | 111,196,213 | 100,076,592 |
| 600821 | 158,991 | 144,538 | 130,084 | 002756 | 377,439 | 343,127 | 308,814 | 601669 | 26,125,183 | 23,750,167 | 21,375,150 |
| 600452 | 97,359 | 88,508 | 79,657 | 200761 | 3,740,889 | 3,400,808 | 3,060,727 | 601789 | 945,971 | 859,974 | 773,977 |
| 600995 | 124,867 | 113,515 | 102,164 | 900936 | 1,575,137 | 1,431,943 | 1,288,748 | 601800 | 29,555,593 | 26,868,721 | 24,181,849 |
| 600116 | 1,005,080 | 913,709 | 822,338 | 002132 | 64,877 | 58,979 | 53,081 | 603316 | 101,724 | 92,477 | 83,229 |
| 600505 | 37,156 | 33,779 | 30,401 | 002135 | 328,280 | 298,436 | 268,593 | 603637 | 102,229 | 92,935 | 83,642 |
| 000692 | 192,555 | 175,050 | 157,545 | 002318 | 280,555 | 255,050 | 229,545 | 603098 | 233,934 | 212,667 | 191,400 |
| 600644 | 149,033 | 135,484 | 121,936 | 002443 | 287,503 | 261,366 | 235,229 | 603843 | 680,770 | 618,882 | 556,994 |
| 000040 | 108,142 | 98,311 | 88,480 | 002478 | 162,868 | 148,062 | 133,255 | 603955 | 46,973 | 42,703 | 38,432 |
| 000537 | 299,017 | 271,833 | 244,650 | 002541 | 1,520,498 | 1,382,271 | 1,244,044 | 603959 | 92,167 | 83,788 | 75,409 |
| 600167 | 98,361 | 89,419 | 80,477 | 000629 | 484,185 | 440,168 | 396,152 | 000032 | 1,708,014 | 1,552,740 | 1,397,466 |
| 600982 | 712,794 | 647,995 | 583,195 | 000708 | 3,270,983 | 2,973,621 | 2,676,259 | 603929 | 101,247 | 92,043 | 82,838 |
| 600236 | 274,713 | 249,739 | 224,765 | 000709 | 3,706,154 | 3,369,231 | 3,032,308 | 002047 | 166,202 | 151,093 | 135,983 |
| 600101 | 84,140 | 76,490 | 68,841 | 000717 | 2,052,221 | 1,865,655 | 1,679,090 | 002081 | 449,608 | 408,735 | 367,861 |
| 002039 | 36,605 | 33,277 | 29,949 | 000961 | 9,579,035 | 8,708,214 | 7,837,393 | 002163 | 196,604 | 178,730 | 160,857 |
| 600163 | 183,816 | 167,106 | 150,395 | 600022 | 4,586,444 | 4,169,495 | 3,752,545 | 002325 | 149,391 | 135,810 | 122,229 |
| 600674 | 50,586 | 45,988 | 41,389 | 600894 | 433,825 | 394,386 | 354,948 | 002375 | 585,633 | 532,393 | 479,154 |
| 601619 | 60,570 | 55,064 | 49,557 | 002743 | 318,579 | 289,617 | 260,656 | 002482 | 56,893 | 51,721 | 46,549 |
| 000875 | 755,307 | 686,642 | 617,978 | 000928 | 1,605,125 | 1,459,205 | 1,313,284 | 002620 | 129,069 | 117,335 | 105,602 |
| 002479 | 524,052 | 476,411 | 428,770 | 000628 | 691,222 | 628,383 | 565,545 | 002713 | 285,503 | 259,548 | 233,594 |
| 600098 | 2,634,239 | 2,394,763 | 2,155,286 | 600939 | 3,477,904 | 3161,731 | 2,845,558 | 002789 | 101,022 | 91,838 | 82,654 |
| 002256 | 681,601 | 619,637 | 557,673 | 000010 | 247,465 | 224,968 | 202,471 | 002811 | 86,688 | 78,807 | 70,926 |
| 002015 | 1,129,772 | 1,027,065 | 924,359 | 000065 | 1,761,791 | 1,601,628 | 1,441,466 | 002822 | 645,172 | 586,520 | 527,868 |
| 601016 | 232,664 | 211,513 | 190,362 | 000090 | 2,343,598 | 2,130,543 | 1,917,489 | 002830 | 83,769 | 76,153 | 68,538 |
| 600149 | 36,910 | 33,555 | 30,199 | 000498 | 5,430,569 | 4,936,881 | 4,443,193 | 002856 | 71,940 | 65,400 | 58,860 |
| 000722 | 31,110 | 28,282 | 25,454 | 002307 | 997,813 | 907,102 | 816,392 | 300117 | 70,924 | 64,476 | 58,028 |
| 000591 | 303,997 | 276,361 | 248,725 | 002051 | 113,708 | 103,371 | 93,034 | 300621 | 755,394 | 686,722 | 618,050 |
| 300335 | 63,694 | 57,904 | 52,114 | 002060 | 949,279 | 862,981 | 776,683 | 600193 | 94,218 | 85,652 | 77,087 |
| 000155 | 23,1426 | 210,387 | 189,348 | 002061 | 3,041,286 | 2,764,805 | 2,488,325 | 601886 | 1,443,949 | 1,312,681 | 1,181,413 |
| 600979 | 85,830 | 78,027 | 70,224 | 002062 | 940,424 | 854,931 | 769,438 | 603030 | 131,737 | 119,761 | 107,785 |
Appendix B
- function wjy5()
- m=10,000;
- T1=100;x0=111.38;sig1=0.1124;%sp1=randn(m,T1);xt=ones(m,T1)*x0;miu1=0.0052;ft1=miu1-0.5*sig1^2;
- T2=68;y0=72;sig2=0.1543;%sp2=randn(m,T2);yt=ones(m,T2)*y0;miu2=0.0086;ft2=miu2-0.5*sig2^2;
- r=log(1+0.0435)/T1;ft1=r-0.5*sig1^2;ft2=r-0.5*sig2^2;
- tlist=1:80;nt=length(tlist);xfst=100.38;xlist=xfst:xfst+49;nx=length(xlist);
- yfaceadd=zeros(nt,nx); rept=10;
- for jj=1:rept
- yface=zeros(nt,nx);
- for ii=1:nt
- T3=ii; xt=ones(m,T3+1)*x0; yt=ones(m,T3+1)*y0;
- spn=randn(m,T3+1);
- for is=1:m
- for it=2:T3+1
- xt(is,it)=xt(is,it-1)*exp(ft1+sig1*spn(is,it));
- end
- end
- klist=5:150; nk=length(klist); xv=klist; yc=xv;
- for ik=1:nk
- xv(ik)=sum(max(xt(:,end),klist(ik)))*exp(-r*T3)/m;
- end
- spn=randn(m,T3+1);
- for is=1:m
- for it=2:T3+1
- yt(is,it)=yt(is,it-1)*exp(ft2+sig2*spn(is,it));
- end
- end
- toadd=[];
- for is=1:m
- xsp=repmat(xt(is,:),m,1); judge=xsp>yt & yt>xsp*0.56; judge=min(judge’);yT=yt(:,end)’;
- toadd=[toadd,yT(judge’)];
- end
- nfind=length(toadd);%sum(toadd)/nfind
- for ik=1:nk
- yv(ik)=sum(max(toadd,klist(ik)))*exp(-r*T3)/nfind;
- end
- for ix=1:nx
- xx=xlist(ix);[m1,m2]=min(abs(xv-xx)); yface(ii,ix)=yv(m2);
- end
- end
- yfaceadd=yfaceadd+yface;
- end
- yfaceadd=yfaceadd/rept;
- surf(xlist,tlist,yfaceadd); xlabel(‘CEA’); ylabel(‘T’); zlabel(‘CCER’);
- end
Appendix C
- function wjy6()
- m=20;rept=200;m0=30;tic; global aprice; global cprice;
- aprice=[138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25 124.94 124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 118.88 118.44 121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 118.49 109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]’;
- cprice=[95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.00]’;
- T1=100;x0=111.38;T2=68;y0=72;r=log(1+0.0435)/T1;
- tlist=1:5:80; %before: tlist=61:120;
- nt=length(tlist);xfst=111.38;xlist=xfst:xfst+49;nx=length(xlist);yfaceadd=zeros(nt,nx); klist=5:150; nk=length(klist);
- for jj=1:rept
- yface=zeros(nt,nx);
- for ii=1:nt
- T3=ii; xv=klist; toadd=[];
- for rr=1:m0
- xt=lstmgene(T3,aprice,m); yt=lstmgene(T3,cprice,m);
- for ik=1:nk
- xv(ik)=sum(max(xt(:,end),klist(ik)))*exp(-r*T3)/m;
- end
- for is=1:m
- xsp=repmat(xt(is,:),m,1); judge=xsp>yt & yt>xsp*0.56; judge=min(judge’); yT=yt(:,end)’;
- toadd=[toadd,yT(judge’)];
- end
- nfd=length(toadd);
- if nfd>0
- break;
- end
- end
- nfind=max(nfd,1);
- for ik=1:nk
- yv(ik)=sum(max(toadd,klist(ik)))*exp(-r*T3)/nfind;
- end
- for ix=1:nx
- xx=xlist(ix);[m1,m2]=min(abs(xv-xx)); yface(ii,ix)=yv(m2);
- end
- end
- yfaceadd=yfaceadd+yface;
- end
- yfaceadd=yfaceadd/rept;
- surf(xlist,tlist,yfaceadd); xlabel(‘CEA’); ylabel(‘T’); zlabel(‘CCER’);
- sigma = 1;G = fspecial(‘gaussian’, [5 5], sigma); Z_smooth = imfilter(yfaceadd, G, ‘same’);
- figure(); surf(xlist,tlist, Z_smooth); xlabel(‘CEA’); ylabel(‘T’); zlabel(‘CCER’);
- Z_smooth(1,:)=yfaceadd(1,:); Z_smooth(:,1)=yfaceadd(:,1);
- figure(); surf(xlist,tlist, Z_smooth); xlabel(‘CEA’); ylabel(‘T’); zlabel(‘CCER’);
- filter_size = 3; Z_smooth = imfilter(yfaceadd, ones(filter_size)/filter_size^2, ‘replicate’);
- figure(); surf(xlist,tlist, Z_smooth); xlabel(‘CEA’); ylabel(‘T’); zlabel(‘CCER’);
- function smp = lstmgene(k,data,mm) % to generate mm samples, which has k time-price points, data is the historical prices for learning.
- history = 20; %
- num_samples = length(data) - history; res = zeros(num_samples, history + 1);
- for i = 1:num_samples
- res(i, :) = data(i:i + history)’;
- end
- X = res(:, 1:end-1); Y = res(:, end); x_norm = mapminmax(X’, 0, 1); [y_norm, psout] = mapminmax(Y’, 0, 1); train_ratio = 0.8; train_num = floor(num_samples * train_ratio); x_train = mat2cell(x_norm(:, 1:train_num), history, ones(1,train_num))’;
- layers = [
- sequenceInputLayer(history)
- lstmLayer(4, ‘OutputMode’,’last’)
- reluLayer
- fullyConnectedLayer(1)
- regressionLayer
- ];
- options = trainingOptions(‘adam’,...
- ‘MaxEpochs’,100,...
- ‘MiniBatchSize’,32,...
- ‘InitialLearnRate’,0.01,...
- ‘Shuffle’,’never’,... %
- ‘Verbose’,false);
- net = trainNetwork(x_train, y_norm(1:train_num)’, layers, options);
- input_seq = y_norm(end-history+1:end)’;
- predictions = zeros(k, 1);
- for i = 1:k
- pred = predict(net, input_seq);
- predictions(i) = pred;
- input_seq = [input_seq(2:end); pred];
- end
- pred_denorm = mapminmax(‘reverse’, predictions’, psout)’;
- smp1 = [data(end); pred_denorm]; smp=zeros(mm,k+1);
- for i=1:mm
- smp(i,:) = adjust_scale(smp1, data, k);
- end
- function out = adjust_scale(pred, hist_data, len)
- hist_vol = mean(abs(hist_data - mean(hist_data)));
- pred_vol = mean(abs(pred(2:end) - mean(pred(2:end))));
- ratio = hist_vol/pred_vol;
- adjusted = pred(2:end);
- mu = mean(adjusted);
- for iz = 1:length(adjusted)
- if rand < 0.5
- adjusted(iz) = mu + (adjusted(iz)-mu)*ratio;
- end
- end
- out = [pred(1); adjusted(1:len)]’;
- end
- end
- timing=toc; disp([num2str(timing),’seconds spent.’]);
- end
References
- Buzinskiene, R.; Rudyte, D. The Impact of Intangible Assets on the Company’s Market Value. Montenegrin J. Econ. 2021, 17, 59–73. [Google Scholar] [CrossRef]
- Bobyleva, K.V. The Contribution of Intangible Assets to the Growth of the Russian Economy. Rev. Income Wealth 2022, 68, S52–S70. [Google Scholar] [CrossRef]
- Azamat, K.; Galiya, J.; Bezhan, R.; Nurdana, Z. The impact of intangible assets on the value of FMCG companies worldwide. J. Innov. Knowl. 2023, 8, 100330. [Google Scholar] [CrossRef]
- Bănuță, M.; Gadoiu, M. Accounting implications of the measurement and recognition of intangible assets. Ann. Constantin Brâncuși Univ. Târgu Jiu Econ. Ser. 2023, 4, 22–32. [Google Scholar]
- Penman, S. Accounting for intangible assets: Thinking it through. Aust. Account. Rev. 2023, 33, 5–13. [Google Scholar] [CrossRef]
- Xiong, F.; Xie, M.; Zhao, L.; Li, C.; Fan, X. Recognition and evaluation of data as intangible assets. SAGE Open 2022, 12, 21582440221094600. [Google Scholar] [CrossRef]
- Novira, A.R.; Suzan, L.; Asalam, A.G. Pengaruh Pajak, Intangible Assets, dan Mekanisme Bonus Terhadap Keputusan Transfer Pricing. J. Appl. Account. Tax. 2020, 5, 17–23. [Google Scholar] [CrossRef]
- Rahman, W.A.; Cheisviyanny, C. Pengaruh Mekanisme Bonus, Exchange Rate, Intangible Assets, dan Kompensasi Rugi Fiskal Terhadap Keputusan Transfer Pricing. J. Eksplor. Akunt. 2020, 2, 3125–3143. [Google Scholar] [CrossRef]
- Depari, A.B.U.S.; Ramadhan, R.; Firmansyah, A. Transfer pricing decisions at multinational companies in Indonesia: Tax expenses, foreign ownership, intangible assets. J. Terap. Manaj. Bisnis 2020, 6, 46–59. [Google Scholar] [CrossRef]
- Komarudin, M.; Dewi, G.C. Empirical study of transfer pricing on consumption companies on the Indonesia Stock Exchange. J. Ekon. 2022, 11, 359–365. [Google Scholar]
- Apriani, N.; Putri, T.E.; Umiyati, I. The effect of tax avoidance, exchange rate, profitability, leverage, tunneling incentive and intangible assets on transfer pricing decisions. JASS J. Account. Sustain. Soc. 2020, 2, 14–27. [Google Scholar]
- Irawan, F.; Ulinnuha, I.A. Transfer pricing aggressiveness in Indonesia: Multinationality, tax haven, and intangible assets. J. Din. Akunt. Bisnis 2022, 9, 1–18. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Zhao, Y.; Zhao, E. China’s carbon-emissions trading: Overview, challenges and future. Renew. Sustain. Energy Rev. 2015, 49, 254–266. [Google Scholar] [CrossRef]
- Ba, F.; Thiers, R.P.; Liu, Y.G. The evolution of China’s emission trading mechanisms: From international offset market to domestic emission trading scheme. Environ. Plan. C 2018, 36, 1214–1233. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, B.; Wang, L.; Wang, L. Low-Carbon Strategies Considering Corporate Environmental Responsibility: Based on Carbon Trading and Carbon Reduction Technology Investment. Sustainability 2022, 14, 6683. [Google Scholar] [CrossRef]
- Liao, Z.; Bai, Y.; Jian, K.; Chalermkiat, W. The Spatial Spillover Effect and Mechanism of Carbon Emission Trading Policy on Pollution Reduction and Carbon Reduction: Evidence from the Pearl River–West River Economic Belt in China. Sustainability 2024, 16, 10279. [Google Scholar] [CrossRef]
- Streck, C. How voluntary carbon markets can drive climate ambition. J. Energy Nat. Resour. Law 2021, 39, 367–374. [Google Scholar] [CrossRef]
- Ye, F.; Xiong, X.; Li, L.; Li, Y. Measuring the effectiveness of the Chinese Certified Emission Reduction scheme in mitigating CO2 emissions. J. Clean. Prod. 2021, 294, 125355. [Google Scholar] [CrossRef]
- Zhang, C.C.; Lin, B.Q. Impact of introducing Chinese certified emission reduction scheme to the carbon market. Renew. Energy 2024, 222, 119887. [Google Scholar] [CrossRef]
- Li, X.W.; Miao, H.Z. How to incorporate blue carbon into the China Certified Emission Reduction scheme. Sustainability 2022, 14, 10567. [Google Scholar] [CrossRef]
- Ren, N.; Cai, Y.; Qin, Z.; Zhao, Y. Carbon market outlook in the context of global carbon neutrality. In Annual Report on China’s Petroleum, Gas and New Energy Industry; Springer: Singapore, 2024; pp. 47–61. [Google Scholar]
- Michaelowa, A.; Michaelowa, K.; Shishlov, I.; Brescia, D. Catalysing private and public action for climate change mitigation. Clim. Policy 2021, 21, 120–132. [Google Scholar] [CrossRef]
- Brav, A.; Heaton, J.B. Brown assets for the prudent investor. Harv. Bus. Rev. Leg. Online 2021, 12, 1. [Google Scholar] [CrossRef]
- Choe, D.S.; Whitworth, J.L.; Kak, A.; Bisset, G. Are you in the green? The economic impact of carbon-conscious choices on project development planning. In Proceedings of the Offshore Technology Conference, Huston, TX, USA, 16–19 August 2021. OTC-D031S040R004. [Google Scholar]
- Liu, Y.; Tian, L.; Sun, H.; Zhang, X.; Kong, C. Option pricing of carbon asset and its application in digital decision-making. Appl. Energy 2022, 310, 118375. [Google Scholar] [CrossRef]
- Panagiotopoulou, V.C.; Paraskevopoulou, A.; Stavropoulos, P. A Modelling-Based Framework for Carbon Emissions Calculation in Additive Manufacturing: A Stereolithography Case Study. Processes 2023, 11, 2574. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, N.; Tan, D.; Yin, X.; Randhir, T.O. Value creation mechanism through carbon assets for sustainability. Sustain. Dev. 2021, 29, 1173–1189. [Google Scholar] [CrossRef]
- Huo, X.; Jiang, D.; Qiu, Z.; Yang, S. The impacts of dual carbon goals on asset prices in China. J. Asian Econ. 2022, 83, 101546. [Google Scholar] [CrossRef]
- Panagiotopoulou, V.C.; Stavropoulos, P. On the Sustainability Indexing of Carbon Footprint Reduction Approaches for Manufacturing Industry. In Production Processes and Product Evolution in the Age of Disruption, Proceedings of the CARV 2023, Bologna, Italy, 20–24 June 2023; Lecture Notes in Mechanical Engineering; Galizia, F.G., Bortolini, M., Eds.; Springer: Cham, Switzerland, 2023; pp. 404–412. [Google Scholar]
- Bauer, A.M.; Proistosescu, C.; Wagner, G. Carbon dioxide as a risky asset. Clim. Change 2024, 177, 72. [Google Scholar] [CrossRef]
- Von Dulong, A. Concentration of asset owners exposed to stranded assets may trigger climate policy resistance. Nat. Commun. 2023, 14, 6442. [Google Scholar] [CrossRef]
- Agrrawal, P. The Gibbons, Ross, and Shanken Test for Portfolio Efficiency: A Note Based on Its Trigonometric Properties. Mathematics 2023, 11, 2198. [Google Scholar] [CrossRef]
- Feng, B. Forest carbon sink resource asset evaluation: A case study of Fujian Province. Math. Probl. Eng. 2022, 2022, 7391473. [Google Scholar] [CrossRef]
- Ting, L. Research on confirmation and measurement of carbon emission rights. Acad. J. Eng. Technol. Sci. 2021, 4, 1–8. [Google Scholar] [CrossRef]
- Kwakwa, P.A.; Aboagye, S.; Acheampong, V.; Achaamah, A. Renewable energy consumption and CO2 emissions in Ghana. Int. J. Energy Sect. Manag. 2024, 18, 162–182. [Google Scholar] [CrossRef]
- Chi, Y.Y.; Zhang, Y.Y.; Liu, B.L.; Zhang, M.W.; Li, J.L.; Li, G.Z. Assessing the combined effect of China’s restarting of the CCER market. Adv. Clim. Change Res. 2025, 16, 433–445. [Google Scholar] [CrossRef]
- Wang, H.; Kang, Z.; Yu, S.; Wang, Y.; Yan, H.; Wang, Z.; Zhu, X.; Weng, H. Feasibility analysis of developing methane reduction methodologies under the CCER reboot context. Energy Storage Sci. Technol. 2025, 14, 1709. [Google Scholar]
- Xu, S. Forestry offsets under China’s CCER for carbon neutrality. Int. J. Clim. Change Strateg. Manag. 2024, 16, 140–156. [Google Scholar] [CrossRef]
- Goldsticker, R.P.; Agrrawal, P. The effects of blending primary and diluted EPS data. Financ. Anal. J. 1999, 55, 51–60. [Google Scholar] [CrossRef]
- Nian, H.; Wang, H.; Zhang, Z. Carbon credit and credibility in lawsuits: Evidence from CCER firms in China. Energy Econ. 2025, 146, 108480. [Google Scholar] [CrossRef]
- Valadkhani, A. Inflation-driven instability in US sectoral betas. J. Asset Manag. 2025, 26, 506–513. [Google Scholar] [CrossRef]
- Oladejo, A.O.; Ma, H.; Qu, W.; Zhou, C.; Wu, B. Effects of Ultrasound on Mass Transfer Kinetics, Structure, Carotenoid and Vitamin C Content of Osmodehydrated Sweet Potato (Ipomea Batatas). Food Bioprocess Technol. 2017, 10, 1162–1172. [Google Scholar] [CrossRef]
- Liang, Z.; Li, Y.; Xu, L.; Zhao, Z.; Tang, Z. Optimum design of an array structure for the grain loss sensor to upgrade its resolution for harvesting rice in a combine harvester. Biosyst. Eng. 2017, 157, 24–34. [Google Scholar] [CrossRef]
- Javed, Q.; Wu, Y.; Xing, D.; Azeem, A.; Ullah, I.; Zaman, M. Re-watering: An effective measure to recover growth and photosynthetic characteristics in salt-stressed Brassica napus L. Chil. J. Agric. Res. 2017, 77, 78–86. [Google Scholar] [CrossRef]
- He, W.-S.; Zhu, H.; Chen, Z.-Y. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity. J. Agric. Food Chem. 2018, 66, 3047–3062. [Google Scholar] [CrossRef]
- Yan, M.; Jia, F.; Gong, C.; Kang, C. The Effect of Pesticide Solutions on the Deposition of Bubble-Containing Droplets. Agronomy 2025, 15, 1172. [Google Scholar] [CrossRef]
- Shi, J.; Hu, X.; Zou, X.; Zhao, J.; Zhang, W.; Holmes, M.; Huang, X.; Zhu, Y.; Li, Z.; Shen, T.; et al. A rapid and nondestructive method to determine the distribution map of protein, carbohydrate and sialic acid on Edible bird’s nest by hyper-spectral imaging and chemometrics. Food Chem. 2017, 229, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, J.; Li, H.; Hua, L.; Yong, Y. Droplet distribution characteristics of impact sprinklers with circular and noncircular nozzles: Effect of nozzle aspect ratios and equivalent diameters. Biosyst. Eng. 2021, 212, 200–214. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Li, Z.; Huang, X.; Shen, T.; Zou, X. Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features. Biosyst. Eng. 2021, 212, 458–467. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, Y.; Xu, B.; Jiang, S. Analysis of the effect of rolling speed on the texture properties of noodle dough from water-solid interaction, development of gluten network, and bubble distribution. Food Chem. 2022, 404, 134359. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cai, M.; Wang, T.; Zhao, G.; Huang, J.; Wang, H.; Qian, F.; Ho, C.-T.; Wang, Y. Theanine supplementation prevents liver injury and heat shock response by normalizing hypothalamic-pituitaryadrenal axis hyperactivity in mice subjected to whole body heat stress. J. Funct. Foods 2018, 45, 181–189. [Google Scholar] [CrossRef]
- Ali, Z.; Ma, H.; Rashid, M.T.; Ayim, I.; Wali, A. Reduction of body weight, body fat mass, and serum leptin levels by addition of new beverage in normal diet of obese subjects. J. Food Biochem. 2018, 42, e12554. [Google Scholar] [CrossRef]
- Sun, L.; Luo, S.; Huali, H.; Zhou, H.; Zhang, Y.; An, R.; Ling, J.; Li, P. Melatonin promotes the normal cellular mitochondrial function of lotus seeds through stimulating nitric oxide production. Postharvest Biol. Technol. 2021, 185, 111814. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, W.; Su, J.; Li, H.; Ouyang, Q.; Zhao, J. Nondestructively sensing of total viable count (TVC) in chicken using an artificial olfaction system based colorimetric sensor array. J. Food Eng. 2016, 168, 259–266. [Google Scholar] [CrossRef]
- Han, X.; Sun, Y.; Qayum, A.; Liang, Q.; Rashid, A.; Lin, L.; Zhong, M.; Liu, Y.; Xu, B.; Lin, X.; et al. Regulatory Effect of Whole Egg Powder on the 3D Printing of Xanthan Gum and Lotus Root Starch Hydrogel and the Application of Encapsulated Chondroitin Sulfate. Food Bioprocess Technol. 2025, 18, 9615–9631. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Cui, Y.; Hong, X.; Du, D. Using of Tyramine Signal Amplification to Improve the Sensitivity of ELISA for Aflatoxin B1 in Edible Oil Samples. Food Anal. Methods 2018, 11, 2553–2560. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Li, J.; Wu, X.; Dai, C. Quantitative analysis of cadmium content in tomato leaves based on hyperspectral image and feature selection. Appl. Eng. Agric. 2018, 34, 789–798. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, B.-X.; Zhao, F.-Y.; Cao, J. Genome-Wide Analysis of Chitinase Gene Family in Rice and Arabidopsis Reveal their Mechanisms and Diverse Roles in Defense Response. Int. J. Agric. Biol. 2020, 24, 812–822. [Google Scholar] [CrossRef]
- Yuan, S.; Darko, R.O.; Zhu, X.; Liu, J.; Tian, K. Optimization of movable irrigation system and performance assessment of distribution uniformity under varying conditions. Int. J. Agric. Biol. Eng. 2017, 10, 72–79. [Google Scholar]
- Tang, P.; Li, H.; Issaka, Z.; Chen, C. Effect of manifold layout and fertilizer solution concentration on fertilization and flushing times and uniformity of drip irrigation systems. Agric. Water Manag. 2018, 200, 71–79. [Google Scholar] [CrossRef]
- Liu, J.P.; Zhu, X.Y.; Yuan, S.Q.; Liu, X.F. Droplet motion model and simulation of a complete fluidic sprinkler. Trans. Asabe 2018, 61, 1297–1306. [Google Scholar]
- Issaka, Z.; Li, H.; Jiang, Y.; Tang, P.; Chen, C. Comparison of rotation and water distribution uniformity using dispersion devices for impact and rotary sprinklers. Irrig. Drain. 2019, 68, 881–892. [Google Scholar] [CrossRef]
- Myers, S.C. Determinants of corporate borrowing. J. Financ. Econ. 1977, 5, 325–364. [Google Scholar] [CrossRef]
- Abada, I.; Belkhouja, M.; Ehrenmann, A. On the valuation of legacy power production in liberalized markets via option pricing. Eur. J. Oper. Res. 2025, 322, 1005–1024. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Ma, T.; Li, W. Estimation of summer maize biomass based on a crop growth model. Emir. J. Food Agric. 2021, 33, 742–750. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, H.P.; Meng, B.; Jin, S.L.; Chen, B. How to purchase carbon emission right optimally for energy-consuming enterprises? Analysis based on optimal stopping model. Energy Econ. 2023, 124, 106758. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, X.; Sun, H.P.; Chen, B.; Wang, L. Optimization of carbon performance evaluation and its application to strategy decision for investment of green technology innovation. J. Environ. Manag. 2023, 325A, 116593. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, W.; Steibel, J.; Siegford, J.; Han, J.; Norton, T. Classification of drinking and drinker-playing in pigs by a video-based deep learning method. Biosyst. Eng. 2020, 196, 1–14. [Google Scholar] [CrossRef]
- Xue, Y.; Jiang, H. Monitoring of Chlorpyrifos Residues in Corn Oil Based on Raman Spectral Deep-Learning Model. Foods 2023, 12, 2402. [Google Scholar] [CrossRef]
- Nunekpeku, X.; Zhang, W.; Gao, J.; Adade, S.Y.-S.S.; Chen, Q. Gel strength prediction in ultrasonicated chicken mince: Fusing near-infrared and Raman spectroscopy coupled with deep learning LSTM algorithm. Food Control 2024, 168, 110916. [Google Scholar] [CrossRef]
- Wang, Y.; Li, T.; Chen, T.; Zhang, X.; Taha, M.F.; Yang, N.; Shi, Q. Cucumber Downy Mildew Disease Prediction Using a CNN-LSTM Approach. Agriculture 2024, 14, 1155. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Q.; Ma, D.; Zhu, Y.; Zhang, L.; Wang, A.; Zhu, Q. Maize Seed Variety Classification Based on Hyperspectral Imaging and a CNN-LSTM Learning Framework. Agronomy 2025, 15, 1585. [Google Scholar]
- Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- He, P.; Wu, Y.; Wang, J.; Ren, Y.; Ahmad, W.; Liu, R.; Ouyang, Q.; Jiang, H.; Chen, Q. Detection of mites Tyrophagus putrescentiae and Cheyletus eruditus in flour using hyperspectral imaging system coupled with chemometrics. J. Food Process Eng. 2020, 43, e13386. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhao, J.; Pan, W.; Chen, Q. Real-time monitoring of process parameters in rice wine fermentation by a portable spectral analytical system combined with multivariate analysis. Food Chem. 2016, 190, 135–141. [Google Scholar] [CrossRef]
- Arslan, M.; Zou, X.; Tahir, H.E.; Hu, X.; Rakha, A.; Basheer, S.; Hao, Z. Near-infrared spectroscopy coupled chemometric algorithms for prediction of antioxidant activity of black goji berries (Lycium ruthenicum Murr.). J. Food Meas. Charact. 2018, 12, 2366–2376. [Google Scholar] [CrossRef]
- Xie, F.; Guo, Z.; Li, T.; Feng, Q.; Zhao, C. Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning. Horticulturae 2025, 11, 88. [Google Scholar] [CrossRef]
- Liang, Z.; Wada, M.E. Parameter optimisation of a centrifugal fan for rice combine harvesters based on airflow resistance coefficients and CFD simulations. Biosyst. Eng. 2025, 259, 104287. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.; Wang, B.; Qu, W.; Wali, A.; Zhou, C. Relationships between the structure of wheat gluten and ACE inhibitory activity of hydrolysate: Stepwise multiple linear regression analysis. J. Sci. Food Agric. 2016, 96, 3313–3320. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Hu, Y.; Buttar, N.A. Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression. Sci. Hortic. 2020, 260, 108886. [Google Scholar] [CrossRef]
- Khulal, U.; Zhao, J.; Hu, W.; Chen, Q. Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms. Food Chem. 2016, 197, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Adade, S.Y.S.S.; Lin, H.; Johnson, N.A.N.; Nunekpeku, X.; Aheto, J.H.; Ekumah, J.N.; Kwadzokpui, B.A.; Teye, E.; Ahmad, W.; Chen, Q. Advanced food contaminant detection through multi-source data fusion: Strategies, applications, and future perspectives. Trends Food Sci. Technol. 2025, 156, 104851. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Yang, H.; Aheto, J.H.; Ren, Y.; Yu, S.; Tu, H. Detection of Salmonella Typhimurium contamination levels in fresh pork samples using electronic nose smellprints in tandem with support vector machine regression and metaheuristic optimization algorithms. J. Food Sci. Technol. 2020, 58, 3861–3870. [Google Scholar] [CrossRef] [PubMed]
- Sadalage, P.S.; Dar, M.A.; Bhor, R.D.; Bhalerao, B.M.; Kamble, P.N.; Paiva-Santos, A.C.; Nimbalkar, M.S.; Sonawane, K.D.; Pai, K.; Patil, P.S.; et al. Optimization of biogenic synthesis of biocompatible platinum nanoparticles with catalytic, enzyme mimetic and antioxidant activities. Food Biosci. 2022, 50, 102024. [Google Scholar] [CrossRef]






| Date | CCER (CNY) | CEA (CNY) | Date | CCER (CNY) | CEA (CNY) | ||
|---|---|---|---|---|---|---|---|
| 5 May 2023 | 109.00 | 115.64 | 0.94 | 15 September 2023 | 78.23 | 115.13 | 0.68 |
| 16 June 2023 | 80.00 | 73.80 | 1.08 | 18 September 2023 | 86.00 | 125.25 | 0.69 |
| 3 July 2023 | 80.00 | 134.00 | 0.60 | 21 September 2023 | 86.99 | 127.93 | 0.68 |
| 10 July 2023 | 56.40 | 100.90 | 0.56 | 22 September 2023 | 80.00 | 125.17 | 0.64 |
| 19 July 2023 | 90.00 | 130.12 | 0.69 | 25 September 2023 | 80.00 | 121.38 | 0.66 |
| 28 July 2023 | 80.00 | 121.77 | 0.66 | 26 September 2023 | 74.77 | 117.72 | 0.64 |
| 2 August 2023 | 82.00 | 121.88 | 0.67 | 27 September 2023 | 77.63 | 126.25 | 0.61 |
| 4 August 2023 | 80.00 | 120.00 | 0.67 | 28 September 2023 | 74.50 | 123.03 | 0.61 |
| 7 August 2023 | 80.00 | 130.00 | 0.62 | 10 October 2023 | 75.00 | 105.28 | 0.71 |
| 18 August 2023 | 80.00 | 130.00 | 0.62 | 11 October 2023 | 80.10 | 120.71 | 0.66 |
| 23 August 2023 | 80.01 | 132.53 | 0.60 | 16 October 2023 | 80.00 | 118.44 | 0.68 |
| 24 August 2023 | 84.81 | 122.50 | 0.69 | 18 October 2023 | 74.00 | 124.41 | 0.59 |
| 25 August 2023 | 88.00 | 133.50 | 0.66 | 20 October 2023 | 70.42 | 119.90 | 0.59 |
| 29 August 2023 | 80.00 | 128.00 | 0.63 | 24 October 2023 | 78.00 | 119.96 | 0.65 |
| 1 September 2023 | 69.70 | 123.03 | 0.57 | 25 October 2023 | 79.51 | 113.01 | 0.70 |
| 5 September 2023 | 81.40 | 127.50 | 0.64 | 26 October 2023 | 79.14 | 109.92 | 0.72 |
| 6 September 2023 | 80.00 | 119.18 | 0.67 | 27 October 2023 | 85.00 | 118.49 | 0.72 |
| 7 September 2023 | 69.38 | 123.57 | 0.56 | 1 November 2023 | 80.00 | 116.00 | 0.69 |
| 8 September 2023 | 70.50 | 123.77 | 0.57 | 10 November 2023 | 65.01 | 100.00 | 0.65 |
| 11 September 2023 | 80.44 | 121.28 | 0.66 | 8 December 2023 | 72.00 | 115.00 | 0.63 |
| 12 September 2023 | 83.90 | 123.00 | 0.68 | \ | \ | \ | \ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tang, H.; Wang, J.; Liu, Y.; Li, H.; Zou, B. Valuation of New Carbon Asset CCER. Sustainability 2026, 18, 940. https://doi.org/10.3390/su18020940
Tang H, Wang J, Liu Y, Li H, Zou B. Valuation of New Carbon Asset CCER. Sustainability. 2026; 18(2):940. https://doi.org/10.3390/su18020940
Chicago/Turabian StyleTang, Hua, Jiayi Wang, Yue Liu, Hanxiao Li, and Boyan Zou. 2026. "Valuation of New Carbon Asset CCER" Sustainability 18, no. 2: 940. https://doi.org/10.3390/su18020940
APA StyleTang, H., Wang, J., Liu, Y., Li, H., & Zou, B. (2026). Valuation of New Carbon Asset CCER. Sustainability, 18(2), 940. https://doi.org/10.3390/su18020940

