Digital–Intelligent Synergy Empowers Chinese Firms’ Internationalization: A Dual Perspective Based on Green Innovation and Stable Investment
Abstract
1. Introduction
- Direct Impact: Data assets, artificial intelligence and their coupling coordination significantly enhance the level of corporate international business.
- Transmission Mechanism: Green technology innovation—whether substantive or symbolic, behavioral or outcome-based—acts as a key mediator in this relationship.
- Moderating Factor: Investor stability positively moderates the effect, strengthening the link between digital–intelligent synergy and international operations, as well as the effect between digital–intelligent synergy and green technology innovation.
- Component-specific Analysis: The analysis confirms that self-use data assets, AI technology, AI application and digital–intelligent coordination significantly enhance firm internationalization, while transactional data assets and digital–intelligent coupling intensity does not show a significant impact.
- Theoretical Framework Innovation: This study conceptualizes digital–intelligent synergy as a dynamic strategic capability and develops an integrated framework of “digital–intelligent driving—green orientation—investor stability—market expansion.” It reveals the mechanism through which digital–intelligent synergy drives green innovation, thereby facilitating international market entry. This provides a new theoretical explanation for unpacking the black box between digital–intelligent synergy and corporate internationalization.
- Boundary Condition Innovation: A key contribution lies in identifying “investor stability” as a critical contextual factor and boundary condition for the success of digital–intelligent strategies. This finding shifts the focus from “whether digital–intelligent strategies are effective” to “under what market conditions they work best,” highlighting the specific capital market environment on which strategic success depends and expanding existing understanding of digital–intelligent outcomes.
- Research Method Innovation: This study introduces the coupling coordination model from ecology into management research, creatively quantifying digital–intelligent synergy. This approach accurately captures the degree of coupling and coordination between corporate data assets and artificial intelligence, thereby establishes a necessary foundation for conducting refined empirical research in this field.
- Policy Tool Innovation: By integrating the coupling coordination model from environmental science, investment theory from finance, and strategic management theory, this study establishes a new research paradigm. Based on this, it proposes a “digital infrastructure—green finance—capital market” policy framework, facilitating the transformation of theoretical insights into actionable governance tools.
2. Theoretical Analysis and Research Hypotheses
2.1. Mechanism of Digital–Intelligent Synergy
2.2. The Impact of Digital–Intelligent Synergy on Internationalization Level
2.3. The Mediating Role of Green Technology Innovation
2.4. The Moderating Role of Investor Stability
3. Research Design
3.1. Sample Selection and Data Sources
3.2. Variable Definitions
3.2.1. Explanatory Variables
3.2.2. Explained Variable
3.2.3. Mediating Variable
3.2.4. Moderating Variable
3.2.5. Control Variables
3.3. Model Construction
3.3.1. Main Effect Model
3.3.2. Mediation Effect Model
3.3.3. Mediated Moderation Model
4. Analysis of Empirical Results
4.1. Descriptive Statistics
4.2. Diagnosing Multicollinearity
4.3. Baseline Regression
4.3.1. Data–Intelligent Synergy and Internationalization Level
4.3.2. Discussion on Baseline Regression
4.4. Robustness and Endogeneity Tests
4.4.1. Replacing the Explained Variable
4.4.2. Replacing the Explanatory Variables
4.4.3. Lagged Variables
4.4.4. Modifying the Fixed Effects Specification
4.4.5. Interactive Fixed Effects
4.4.6. Instrumental Variable Approach
5. Further Analysis
5.1. The Mediating Effect of Green Technology Innovation
5.1.1. Substantive Green Innovation Behavior
5.1.2. Substantive Green Innovation Outcome
5.1.3. Strategic Green Innovation Behavior
5.1.4. Strategic Green Innovation Outcome
5.1.5. Discussion on Mediating Effect
5.2. Mediated Moderation Effects
5.2.1. The Moderating Effect of Investor Stability on the Main Relationship
5.2.2. The Moderating Effect of Investor Stability Between Digital–Intelligent Synergy and Green Technology Innovation
5.2.3. The Moderating Effect of Investor Stability Between Green Technology Innovation and Internationalization
5.2.4. Discussion on Mediated Moderation Effects
5.3. Segmented Explanatory Variables
5.3.1. Regression Results on Segmented Data Assets
5.3.2. Regression Results on Segmented Artificial Intelligence
5.3.3. Regression Results on Segmented Digital–Intelligent Coupling Coordination
5.3.4. Discussion on Segmented Explanatory Variables
6. Conclusions, Implications and Future Directions
6.1. Conclusions
6.2. Implications
6.2.1. Theoretical Implications
6.2.2. Practical Implications
6.3. Limitations and Future Directions
6.3.1. Measurement Method
6.3.2. Mechanism Exploration
6.3.3. Contextual Boundary
6.3.4. Generalizability of Findings
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| DA | Data Assets |
| SDAs | Self-use Data Assets |
| TDAs | Transactional Data Assets |
| AI | Artificial Intelligence |
| AIT | Artificial Intelligence Technology |
| AIA | Artificial Intelligence Application |
| DICD | Digital–Intelligent Coupling Coordination |
| DICC | Digital–Intelligent Coupling |
| DICT | Digital–Intelligent Coordination |
| IL | Internationalization Level |
| GTI | Green Technology Innovation |
| GSubB | Substantive Green Innovation Behavior |
| GSubO | Substantive Green Innovation Outcome |
| GStrB | Strategic Green Innovation Behavior |
| GStrO | Strategic Green Innovation Outcome |
| IS | Investor Stability |
Appendix A. Data Asset Indicator Construction Process and Validity Verification
Appendix A.1. Construction Process
Appendix A.1.1. Definition of Seed Words
Appendix A.1.2. Corpus Construction
Appendix A.1.3. Similar Word Expansion Based on the Word2Vec Model
Appendix A.1.4. Screening and Validation of Similar Words
Appendix A.1.5. Keyword Statistics in Annual Reports and Indicator Generation
Appendix A.1.6. Indicator Dimension Division
| DA Type | Keyword Type | DA Keywords |
|---|---|---|
| SDA | Digital | Digital infrastructure, digital facilities, digital factories, digital equipment, digital economy, digital technology innovation, digital governance, digital management, digital operations and maintenance, digital design, digital technology means, digital technology, digital resources, digital elements, digital science and technology, digital backbone enterprises, digital applications, digital ecosystem, digital capabilities, digital literacy, digital industry, digital space |
| Data | Data infrastructure, data laboratory, data acquisition, data collection, data development, data development and utilization, data governance, data storage, data-driven, data processing, data computation, data utilization, data innovation, data standardization, data resource management, data strategy, data resource integration, data monitoring, data refinement, data economy, data research, data protection, data interaction, data optimization, data aggregation, data talent cultivation, data encryption, data desensitization, data research and development, data cleaning, data networking, data operations, data supply, data integration, data consolidation, data interfacing, data migration to the cloud, data management, data access, data analysis, centralized data management, data resources, data factors, data assets, data technology, data talent, key data technologies, data experts, data algorithms, data information, data information technology, data business, data networks, data talent teams, data computing power, data engineering, data engineering technology, data enterprises, data SMEs, data leading enterprises, data industrial bases, data ecosystem, data visualization, data resource advantages, data space, data auditing, data querying, data research institutes, data industrial parks, data verification, data industrial layout, data scale, data capabilities, data application, data simulation, data interfaces, data security levels, data acquisition, data technology industry, data confidentiality, data industry chain, data projects, data artificial intelligence, data empowerment, data production, data usage, data industry, data applications, data development | |
| Information | Information infrastructure, information facilities, information terminals, information equipment, information disclosure, information acquisition, information collection, information management, information gathering, information interfacing, information research and development, information access, information and communications, information resources, information technology, information data, information science and technology, information networks, information carriers, information operations, information manufacturing, information protection, information inclusion, information identification, information monitoring, information recording | |
| Network | Network infrastructure, network information system, network data center, network facilities, network construction, network storage, network governance, network access, network data, network technology, network information technology, network information, network digital, network services, network industry chain, network performance, network establishment, network optimization, network functions, network applications, network expansion, network layout, network operations, network operation | |
| TDA | Digital | Digital platform, digital trade, digital authentication, digital consumption, digital products, digital currency, digital product security |
| Data | Data platform, data trading platform, data open platform, data service platform, data trading, data openness, data circulation, data resource sharing, data sharing, data collaboration, data synergy, data delivery, data application services, data hosting, data consumption, data property rights, data usage rights, data security, data and information security, data evaluation, data service providers, data disclosure, data supervision, data service vendors, data interoperability, data exchange, data market, data provision | |
| Information | Information platform, information sharing, information services, information consumption, information resource sharing, information interconnection and interoperability, information service system, information exchange, information service level, information service platform | |
| Network | Network transactions, network sales, network data security, network information security, network security, network risks, network provision, network services, network interoperability, network convergence, network interconnection, network service providers, cyberspace sovereignty |
Appendix A.1.7. Keywords: Narrowed Lexicon for Data Assets
Appendix A.2. Validity Verification
Appendix A.2.1. Manual Verification
Scoring Framework
Scoring Rules
| Evaluation Dimension | High-Level Data Assets | Low-Level Data Assets |
|---|---|---|
| Strategy & Governance | Recognizes data as an important resource; assigns clear data management responsibilities; has a plan or initiative for data management or utilization. | Mentions data-related terms only in broad context; shows no defined responsibility or plan for data governance. |
| Investment & Activities | Discloses resource allocation directed towards data-related initiatives, such as system upgrades, or analytics tools. | Shows no evidence of targeted investment or dedicated activities for data capability enhancement; data efforts are ad hoc or passive. |
| Output & Application | Provides examples of using data to support business decisions, optimize processes, or improve customer insights in one or more operational areas. | Fails to cite concrete instances of data application; describes potential benefits in general terms without operational linkage. |
| Risk & Disclosure | Acknowledges data-related risks and outlines basic response measures or compliance status | Disclosure on data risks is absent, extremely minimal, or purely generic with no substantive content. |
Scoring Process
Calculation and Reporting of Inter-Rater Reliability
| Expert B: High | Expert B: Low | Total | |
|---|---|---|---|
| Expert A: High | 10 | 2 | 12 |
| Expert A: Low | 1 | 7 | 8 |
| Total | 11 | 9 | 20 |
Comparison Between Manual Scores and Text Analysis Results
| No. | Id | Year | Expert A | Expert B | Percentile | No. | Id | Year | Expert A | Expert B | Percentile |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 01 | 300342 | 2022 | High | High | 99.6% | 11 | 000421 | 2021 | High | Low | 67.4% |
| 02 | 301117 | 2023 | High | High | 98.7% | 12 | 002363 | 2018 | Low | High | 63.2% |
| 03 | 600756 | 2019 | High | High | 97.3% | 13 | 300442 | 2021 | High | Low | 53.1% |
| 04 | 002401 | 2017 | High | High | 93.6% | 14 | 300447 | 2021 | Low | Low | 50.0% |
| 05 | 002195 | 2016 | High | High | 92.4% | 15 | 300913 | 2020 | Low | Low | 47.3% |
| 06 | 000701 | 2020 | High | High | 91.8% | 16 | 002077 | 2022 | Low | Low | 30.7% |
| 07 | 000408 | 2024 | High | High | 85.4% | 17 | 000533 | 2018 | Low | Low | 20.4% |
| 08 | 000829 | 2018 | High | High | 82.0% | 18 | 300217 | 2020 | Low | Low | 17.3% |
| 09 | 001255 | 2024 | High | High | 75.1% | 19 | 000069 | 2021 | Low | Low | 11.5% |
| 10 | 000100 | 2019 | High | High | 73.8% | 20 | 000570 | 2023 | Low | Low | 4.8% |
Appendix A.2.2. Spearman Rank Correlation Test
| Spearman Rand Correlation | Data Source | Number of Obs. | Spearman’s Rho | p-Value |
|---|---|---|---|---|
| Data Asset Digital Transformation Index | This Study CSMAR Database | 36,493 | 0.5835 | 0.000 |
| Data Asset Proportion of Digital Intangible Assets | This Study CSMAR Database | 36,493 | 0.2988 | 0.000 |
Appendix B. Artificial Intelligence Construction Process and Validity Verification
Appendix B.1. Construction Process
Appendix B.1.1. Corpus Construction and Keyword Extraction
Appendix B.1.2. Text Processing and Word Frequency Statistics
Appendix B.1.3. Indicator Generation and Processing
| AI Type | Keyword Type | AI Keywords |
|---|---|---|
| AIT | AIT Keywords | Big data, cloud computing, machine learning, deep learning, semantic search, biometric identification technology, identity verification, natural language processing, Internet of Things, digital technology, automatic control |
| AIA | AIA Keywords | Autonomous driving, unmanned retail, human–computer interaction, intelligent robots, smart wearables, intelligent healthcare, smart homes, intelligent transportation systems, intelligent customer service, robo-advisors, intelligent marketing, intelligent control, intelligent logistics, smart manufacturing, intelligent warehousing, intelligent connectivity, intelligent production, intelligent management |
Appendix B.1.4. Keywords: Narrowed Lexicon for Artificial Intelligence
Appendix B.2. Validity Verification
Appendix B.2.1. Manual Verification
Scoring Framework
Scoring Rules
| Evaluation Dimension | High-Level Artificial Intelligence | Low-Level Artificial Intelligence |
|---|---|---|
| Strategy & Positioning | Explicitly identifies AI as an important business enabler or innovation initiative; mentions specific application goals for AI in business unit strategies or plans. | Only mentions AI incidentally when discussing technology trends; fails to integrate AI into any concrete business or functional planning. |
| Organization & Investment | Has a dedicated AI project team or responsible lead; discloses resource allocation for AI technology exploration, pilot projects, or skill development. | Lacks designated personnel or teams for AI; discloses no specific resource investment related to AI initiatives. |
| Technology & Capability | Describes specific AI technology applications under implementation or pilot; mentions using mainstream AI development platforms or cloud services. | Only refers to general automation or IT tools; does not mention any specific AI technologies, platforms, or application development. |
| Business Impact & Value | Illustrates application scenarios of AI in specific business processes and describes qualitative benefits. | Descriptions of AI application and its effects are highly vague, conceptual, or lack clear connection to specific business processes. |
Scoring Process
Calculation and Reporting of Inter-Rater Reliability
| Expert B: High | Expert B: Low | Total | |
|---|---|---|---|
| Expert A: High | 6 | 1 | 7 |
| Expert A: Low | 1 | 12 | 13 |
| Total | 7 | 13 | 20 |
Comparison Between Manual Scores and Text Analysis Results
| No. | Id | Year | Expert A | Expert B | Percentile | No. | Id | Year | Expert A | Expert B | Percentile |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 01 | 300151 | 2024 | High | High | 95.7% | 11 | 001326 | 2023 | Low | Low | 73.1% |
| 02 | 002084 | 2017 | High | High | 92.9% | 12 | 300863 | 2024 | Low | Low | 71.2% |
| 03 | 001288 | 2024 | High | High | 90.7% | 13 | 000404 | 2016 | Low | Low | 68.8% |
| 04 | 300124 | 2019 | High | High | 89.2% | 14 | 600893 | 2021 | Low | Low | 66.1% |
| 05 | 601107 | 2024 | High | High | 87.5% | 15 | 000019 | 2024 | Low | Low | 58.8% |
| 06 | 301235 | 2023 | High | High | 85.5% | 16 | 600828 | 2019 | Low | Low | 58.8% |
| 07 | 002546 | 2019 | Low | High | 83.7% | 17 | 300791 | 2023 | Low | Low | 53.6% |
| 08 | 000719 | 2021 | High | Low | 82.2% | 18 | 603199 | 2023 | Low | Low | 47.1% |
| 09 | 000969 | 2017 | Low | Low | 79.1% | 19 | 300762 | 2020 | Low | Low | 47.1% |
| 10 | 000680 | 2020 | Low | Low | 77.9% | 20 | 002077 | 2015 | Low | Low | 38.8% |
Appendix B.2.2. Spearman Rank Correlation Test
| Spearman Rand Correlation | Data Source | Number of Obs. | Spearman’s Rho | p-Value |
|---|---|---|---|---|
| Artificial Intelligence Text-Based Word-Frequency Measure | This Study Measure of Yao J [22] | 36,493 | 0.7685 | 0.000 |
| Artificial Intelligence Number of AI Patent Applications | This Study CNRDS Database | 36,493 | 0.3132 | 0.000 |
Appendix C. Entropy Weight Method
Appendix C.1. Step 1: Data Normalization
Appendix C.2. Step 2: Calculation of Proportion
Appendix C.3. Step 3: Calculation of Entropy
Appendix C.4. Step 4: Determination of Weights
Appendix C.5. Step 5: Calculation of Comprehensive Score
Appendix D
- A
- Agriculture, Forestry, Animal Husbandry and Fishery
- B
- Mining
- C
- Manufacturing
- D
- Production and Supply of Electricity, Heat, Gas and Water
- E
- Construction
- F
- Wholesale and Retail Trade
- G
- Transport, Storage and Post
- H
- Accommodation and Catering Services
- I
- Information Transmission, Software and Information Technology Services
- J
- Financial Intermediation
- K
- Real Estate Activities
- L
- Leasing and Business Services
- M
- Scientific Research and Technical Services
- N
- Management of Water Conservancy, Environment and Public Facilities
- O
- Services to Households, Repair and Other Services
- P
- Education
- Q
- Health and Social Work
- R
- Culture, Sports and Entertainment
- S
- Public Management, Social Security and Social Organization
- T
- Activities of International Organizations
Appendix E. Results of the Moderated Mediation Model Test Using Uncentered and Non-Lagged Variables
Appendix E.1. The Mediating Effect of Green Technology Innovation
Appendix E.1.1. Substantive Green Innovation Behavior
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|---|---|---|---|---|---|---|---|---|---|
| IL | GSubB | IL | IL | GSubB | IL | IL | GSubB | IL | |
| DA | 0.431 *** | 0.137 *** | 0.400 *** | ||||||
| (3.02) | (7.33) | (2.81) | |||||||
| AI | 0.182 *** | 0.061 *** | 0.168 ** | ||||||
| (2.71) | (8.21) | (2.51) | |||||||
| DICD | 3.060 *** | 1.106 *** | 2.806 ** | ||||||
| (2.74) | (8.59) | (2.53) | |||||||
| GSubB | 0.230 *** | 0.231 *** | 0.229 *** | ||||||
| (3.45) | (3.46) | (3.44) | |||||||
| Constant | 5.361 *** | 0.213 * | 5.312 *** | 6.572 *** | 0.595 *** | 6.435 *** | 6.497 *** | 0.563 *** | 6.368 *** |
| (5.18) | (1.89) | (5.14) | (7.43) | (6.12) | (7.28) | (7.30) | (5.80) | (7.16) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.703 | 0.815 | 0.815 | 0.703 | 0.815 | 0.815 | 0.704 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Appendix E.1.2. Substantive Green Innovation Outcome
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|---|---|---|---|---|---|---|---|---|---|
| IL | GSubO | IL | IL | GSubO | IL | IL | GSubO | IL | |
| DA | 0.431 *** | 0.055 *** | 0.422 *** | ||||||
| (3.02) | (4.28) | (2.96) | |||||||
| AI | 0.182 *** | 0.020 *** | 0.178 *** | ||||||
| (2.71) | (3.81) | (2.66) | |||||||
| DICD | 3.060 *** | 0.498 *** | 2.977 *** | ||||||
| (2.74) | (5.46) | (2.68) | |||||||
| GSubO | 0.168 ** | 0.169 ** | 0.165** | ||||||
| (2.15) | (2.18) | (2.12) | |||||||
| Constant | 5.361 *** | 0.240 *** | 5.320 *** | 6.572 *** | 0.398 *** | 6.505 *** | 6.497 *** | 0.376 *** | 6.435 *** |
| (5.18) | (2.90) | (5.15) | (7.43) | (5.29) | (7.37) | (7.30) | (4.99) | (7.24) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.634 | 0.815 | 0.815 | 0.634 | 0.815 | 0.815 | 0.634 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Appendix E.1.3. Strategic Green Innovation Behavior
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|---|---|---|---|---|---|---|---|---|---|
| IL | GStrB | IL | IL | GStrB | IL | IL | GStrB | IL | |
| DA | 0.431 *** | 0.065 *** | 0.423 *** | ||||||
| (3.02) | (4.08) | (2.97) | |||||||
| AI | 0.182 *** | 0.041 *** | 0.177 *** | ||||||
| (2.71) | (6.38) | (2.64) | |||||||
| DICD | 3.060 *** | 0.507 *** | 2.996 *** | ||||||
| (2.74) | (4.77) | (2.69) | |||||||
| GStrB | 0.127 ** | 0.125 ** | 0.126 ** | ||||||
| (2.03) | (2.00) | (2.02) | |||||||
| Constant | 5.361 *** | 0.071 | 5.352 *** | 6.572 *** | 0.242 *** | 6.542 *** | 6.497 *** | 0.240 *** | 6.466 *** |
| (5.18) | (0.70) | (5.18) | (7.43) | (2.69) | (7.40) | (7.30) | (2.66) | (7.27) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.663 | 0.815 | 0.815 | 0.663 | 0.815 | 0.815 | 0.663 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Appendix E.1.4. Strategic Green Innovation Outcome
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|---|---|---|---|---|---|---|---|---|---|
| IL | GStrO | IL | IL | GStrO | IL | IL | GStrO | IL | |
| DA | 0.431 *** | 0.082 *** | 0.416 *** | ||||||
| (3.02) | (4.97) | (2.92) | |||||||
| AI | 0.182 *** | 0.048 *** | 0.173 *** | ||||||
| (2.71) | (7.19) | (2.59) | |||||||
| DICD | 3.060 *** | 0.645 *** | 2.944 *** | ||||||
| (2.74) | (5.73) | (2.65) | |||||||
| GStrO | 0.180 *** | 0.178 *** | 0.179 *** | ||||||
| (2.72) | (2.70) | (2.72) | |||||||
| Constant | 5.361 *** | 0.263 ** | 5.313 *** | 6.572 *** | 0.481 *** | 6.487 *** | 6.497 *** | 0.475 *** | 6.412 *** |
| (5.18) | (2.54) | (5.14) | (7.43) | (5.14) | (7.35) | (7.30) | (5.07) | (7.22) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.682 | 0.815 | 0.815 | 0.682 | 0.815 | 0.815 | 0.682 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Appendix E.2. Mediated Moderation Effects
Appendix E.2.1. The Moderating Effect of Investor Stability on the Main Relationship
| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| IL | IL | IL | IL | IL | IL | |
| DA | 0.431 *** | 0.408 *** | ||||
| (3.02) | (2.86) | |||||
| AI | 0.182 *** | 0.174 *** | ||||
| (2.71) | (2.59) | |||||
| DICD | 3.060 *** | 2.878 *** | ||||
| (2.74) | (2.58) | |||||
| IS | 1.807 * | 1.970 * | 1.984 * | |||
| (1.71) | (1.86) | (1.87) | ||||
| DA × IS | 5.432 *** | |||||
| (4.11) | ||||||
| AI × IS | 1.761 *** | |||||
| (2.65) | ||||||
| DICD × IS | 29.406 *** | |||||
| (3.20) | ||||||
| Constant | 5.361 *** | 5.615 *** | 6.572 *** | 6.838 *** | 6.497 *** | 6.761 *** |
| (5.18) | (5.33) | (7.43) | (7.56) | (7.30) | (7.44) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES |
Appendix E.2.2. The Moderating Effect of Investor Stability Between Digital–Intelligent Synergy and Green Technology Innovation
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GSubB | GSubO | GStrB | GStrO | GSubB | GSubO | GStrB | GStrO | GSubB | GSubO | GStrB | GStrO | |
| DA | 0.151 *** | 0.073 *** | 0.061 *** | 0.082 *** | ||||||||
| (7.50) | (5.23) | (3.61) | (4.68) | |||||||||
| AI | 0.070 *** | 0.033 *** | 0.043 *** | 0.055 *** | ||||||||
| (8.68) | (5.58) | (6.14) | (7.53) | |||||||||
| DICD | 1.205 *** | 0.640 *** | 0.516 *** | 0.706 *** | ||||||||
| (8.87) | (6.56) | (4.65) | (6.01) | |||||||||
| DA × IS | 0.493 *** | 0.588 *** | −0.097 | 0.049 | ||||||||
| (2.86) | (4.64) | (−0.77) | (0.38) | |||||||||
| AI × IS | 0.312 *** | 0.406 *** | 0.076 | 0.229 *** | ||||||||
| (3.72) | (6.41) | (1.08) | (3.10) | |||||||||
| DICD × IS | 3.688 *** | 4.990 *** | 0.431 | 2.310 ** | ||||||||
| (2.95) | (5.15) | (0.47) | (2.39) | |||||||||
| IS | −1.188 ** | −1.885 *** | 0.547 | 0.227 | 0.033 | −0.501 *** | 0.111 | 0.057 | 0.060 | −0.498 *** | 0.183 | 0.132 |
| (−2.08) | (−4.48) | (1.23) | (0.49) | (0.20) | (−4.08) | (0.72) | (0.36) | (0.34) | (−3.64) | (1.14) | (0.79) | |
| Constant | 0.229 * | 0.184 ** | 0.119 | 0.321 *** | 0.650 *** | 0.387 *** | 0.270 *** | 0.526 *** | 0.620 *** | 0.366 *** | 0.273 *** | 0.525 *** |
| (1.94) | (2.10) | (1.13) | (2.99) | (6.50) | (4.97) | (2.93) | (5.50) | (6.20) | (4.68) | (2.95) | (5.48) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.703 | 0.634 | 0.663 | 0.682 | 0.704 | 0.634 | 0.663 | 0.682 | 0.704 | 0.635 | 0.663 | 0.682 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Appendix E.2.3. The Moderating Effect of Investor Stability Between Green Technology Innovation and Internationalization
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IL | IL | IL | IL | IL | IL | IL | IL | IL | IL | IL | IL | |
| DA | 0.559 *** | 0.581 *** | 0.586 *** | 0.579 *** | ||||||||
| (3.77) | (3.91) | (3.95) | (3.90) | |||||||||
| AI | 0.217 *** | 0.227 *** | 0.230 *** | 0.224 *** | ||||||||
| (3.06) | (3.21) | (3.25) | (3.18) | |||||||||
| DICD | 3.606 *** | 3.768 *** | 3.826 *** | 3.755 *** | ||||||||
| (3.16) | (3.30) | (3.36) | (3.30) | |||||||||
| IS | −16.144 *** | −16.052 *** | −16.580 *** | −16.424 *** | −0.608 | −0.503 | −0.922 | −0.672 | −1.583 | −1.438 | −1.782 | −1.569 |
| (−3.56) | (−3.59) | (−3.73) | (−3.68) | (−0.43) | (−0.37) | (−0.69) | (−0.50) | (−1.06) | (−1.00) | (−1.25) | (−1.09) | |
| DA × IS | 5.308 *** | 5.312 *** | 5.436 *** | 5.420 *** | ||||||||
| (3.98) | (4.02) | (4.11) | (4.10) | |||||||||
| AI × IS | 1.653 ** | 1.657 ** | 1.787 *** | 1.713 ** | ||||||||
| (2.46) | (2.50) | (2.68) | (2.58) | |||||||||
| DICD × IS | 28.395 *** | 28.230 *** | 29.587 *** | 28.902 *** | ||||||||
| (3.07) | (3.10) | (3.22) | (3.14) | |||||||||
| GSubB | 0.225 *** | 0.224 *** | 0.224 *** | |||||||||
| (3.37) | (3.37) | (3.37) | ||||||||||
| GSubB × IS | 0.057 | 0.269 | 0.091 | |||||||||
| (0.05) | (0.23) | (0.08) | ||||||||||
| GSubO | 0.158 ** | 0.157 ** | 0.154 ** | |||||||||
| (2.06) | (2.04) | (2.01) | ||||||||||
| GSubO × IS | 0.210 | 0.597 | 0.392 | |||||||||
| (0.12) | (0.35) | (0.23) | ||||||||||
| GStrB | 0.130 ** | 0.128 ** | 0.129 ** | |||||||||
| (2.08) | (2.07) | (2.08) | ||||||||||
| GStrB × IS | −0.396 | −0.769 | −0.649 | |||||||||
| (−0.38) | (−0.73) | (−0.62) | ||||||||||
| GStrO | 0.175 *** | 0.173 *** | 0.174 *** | |||||||||
| (2.67) | (2.64) | (2.65) | ||||||||||
| GStrO × IS | 0.381 | 0.196 | 0.278 | |||||||||
| (0.34) | (0.18) | (0.25) | ||||||||||
| Constant | 4.941 *** | 4.964 *** | 4.976 *** | 4.933 *** | 6.601 *** | 6.683 *** | 6.708 *** | 6.654 *** | 6.500 *** | 6.580 *** | 6.601 *** | 6.545 *** |
| (4.64) | (4.67) | (4.67) | (4.64) | (7.29) | (7.39) | (7.42) | (7.37) | (7.14) | (7.24) | (7.26) | (7.20) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
References
- Buckley, P.J.; Casson, M.C. Analyzing Foreign Market Entry Strategies: Extending the Internalization Approach. J. Int. Bus. Stud. 1998, 29, 539–561. [Google Scholar] [CrossRef]
- Sasaki, I.; Nummela, N.; Ravasi, D. Managing Cultural Specificity and Cultural Embeddedness When Internationalizing: Cultural Strategies of Japanese Craft Firms. J. Int. Bus. Stud. 2020, 52, 245–281. [Google Scholar] [CrossRef]
- Pacheco, L.; Lobo, C.; Maldonado, I. Do ISO Certifications Enhance Internationalization? The Case of Portuguese Industrial Smes. Sustainability 2022, 14, 1335. [Google Scholar] [CrossRef]
- Kiessling, T.; Dabić, M.; Yadav, S.; Huck, N.; Maley, J.F. Supply Chain Disruptions and Need for Resilience: Smes Direct/Indirect Exporting and Rapid Internationalization. IEEE Trans. Eng. Manag. 2025, 72, 115–133. [Google Scholar] [CrossRef]
- Park, S. Multinationals and Sustainable Development: Does Internationalization Develop Corporate Sustainability of Emerging Market Multinationals? Bus. Strategy Environ. 2018, 27, 1514–1524. [Google Scholar] [CrossRef]
- Xinhua Net. China to Build World’s Largest Optical Telescope. Fortune 2025. Available online: https://www.news.cn/fortune/20250516/8d7a1d27a52c4377b9952a269b320b5e/c.html (accessed on 16 May 2025). (In Chinese).
- Sohu. China’s FAST Telescope Detects Key Signal in Search for Extraterrestrial Life. News 2025. Available online: https://news.sohu.com/a/929582941_267106 (accessed on 28 August 2025). (In Chinese).
- National Development and Reform Commission. Report on the Progress of Expanding Middle-Income Groups and Promoting Common Prosperity; National Development and Reform Commission: Beijing, China, 2024. Available online: https://www.ndrc.gov.cn/xwdt/ztzl/NEW_srxxgcjjpjjsx/yjcg/zw/202409/t20240914_1393016_ext.html (accessed on 14 September 2024). (In Chinese)
- Imran; Qayyum, F.; Kim, D.-H.; Bong, S.-J.; Chi, S.-Y.; Choi, Y.-H. A Survey of Datasets, Preprocessing, Modeling Mechanisms, and Simulation Tools Based on AI for Material Analysis and Discovery. Materials 2022, 15, 1428. [Google Scholar] [CrossRef] [PubMed]
- Azhar, A.; Rehman, N.; Alyas, T.; Makki, B.I. AI Adoption for Green Performance: An Understanding of Moderated Mediation Model. Int. J. Hosp. Manag. 2025, 129, 104191. [Google Scholar] [CrossRef]
- Farmanesh, P.; Solati Dehkordi, N.; Vehbi, A.; Chavali, K. Artificial Intelligence and Green Innovation in Small and Medium-Sized Enterprises and Competitive-Advantage Drive toward Achieving Sustainable Development Goals. Sustainability 2025, 17, 2162. [Google Scholar] [CrossRef]
- Zha, D.; Bhat, Z.P.; Lai, K.-H.; Yang, F.; Jiang, Z.; Zhong, S.; Hu, X. Data-Centric Artificial Intelligence: A Survey. ACM Comput. Surv. 2025, 57, 1–42. [Google Scholar] [CrossRef]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial Intelligence for Decision Making in the Era of Big Data—Evolution, Challenges and Research Agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise Performance. Strateg. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef]
- Helfat, C.E.; Raubitschek, R.S. Dynamic and Integrative Capabilities for Profiting from Innovation in Digital Platform-Based Ecosystems. Res. Policy 2018, 47, 1391–1399. [Google Scholar] [CrossRef]
- Vial, G. Understanding Digital Transformation: A Review and a Research Agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Bhuiyan, N.; Kamruzzaman; Saha, S.; Siddiki, S.; Mondal, R.S. Role of Data Analysis and Integration of Artificial Intelligence. Int. J. Comput. Artif. Intell. 2025, 6, 111–118. [Google Scholar] [CrossRef]
- Kar, A.K.; Kushwaha, A.K. Facilitators and Barriers of Artificial Intelligence Adoption in Business—Insights from Opinions Using Big Data Analytics. Inf. Syst. Front. 2021, 25, 1351–1374. [Google Scholar] [CrossRef]
- He, Y.; Chen, L.; Du, Y. Does Data Assetization Alleviate Financing Constraints of SRDI SMEs. China Ind. Econ. 2024, 8, 154–173. (In Chinese) [Google Scholar] [CrossRef]
- He, Q.; Li, X. The Nonlinear Impact of Artificial Intelligence on Enterprise Income Distribution: A Test Based on Listed Company Data from 2007 to 2022. Popul. Econ. 2024, 3, 111–128. (In Chinese) [Google Scholar] [CrossRef]
- Qi, H.; Wei, Y.; Liu, Y. Corporate Digital Transformation and Trade Credit Financing. Econ. Manage 2022, 44, 158–184. (In Chinese) [Google Scholar] [CrossRef]
- Yao, J.; Zhang, K.; Guo, L.; Feng, X. How Does Artificial Intelligence Enhance Corporate Productivity?—A Perspective Based on the Restructuring of Labor Skills. Manag. World 2024, 40, 101–116+133+117–122. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Yao, X.; Xi, X. Digital-Intelligence Transformation, for Better or Worse? The Roles of Pace, Scope and Rhythm. Internet Res. 2024, 35, 1465–1507. [Google Scholar] [CrossRef]
- Ru, J.; Li, J.; Gan, L.; Sun, J.; Wang, S. Urbanization, Digital–Intelligent Integration, and Carbon Productivity: Spatiotemporal Dynamics in the Middle Reaches Urban Agglomeration of the Yellow River. Land 2025, 14, 2087. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, F.; Xu, S.; Dong, Z.; He, Z. The Impact of Digital Intelligence on Energy-Intensive Firms’ Green Transformation. Environ. Res. Commun. 2025, 7, 025016. [Google Scholar] [CrossRef]
- Noailly, J.; Ryfisch, D. Multinational Firms and the Internationalization of Green R&D: A Review of the Evidence and Policy Implications. Energy Policy 2015, 83, 218–228. [Google Scholar] [CrossRef]
- Lambertini, L. Green Innovation and Market Power. Annu. Rev. Resour. Econ. 2017, 9, 231–252. [Google Scholar] [CrossRef]
- Johnstone, N.; Haščič, I.; Popp, D. Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts. Environ. Resour. Econ. 2009, 45, 133–155. [Google Scholar] [CrossRef]
- Aghion, P.; Dechezleprêtre, A.; Hémous, D.; Martin, R.; Van Reenen, J. Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry. J. Political Econ. 2016, 124, 1–51. [Google Scholar] [CrossRef]
- Xu, A.; Zhu, Y.; Wang, W. Micro Green Technology Innovation Effects of Green Finance Pilot Policy—From the Perspectives of Action Points and Green Value. J. Bus. Res. 2023, 159, 113724. [Google Scholar] [CrossRef]
- Tanasiichuk, A.; Kovalchuk, S.; Sokoliuk, S.; Kovtun, E.; Dodon, O.; Sakun, H.; Serednytska, L. International Business Strategy: Ensuring Enterprise Stability amidst Turmoil. Eur. J. Sustain. Dev. 2024, 13, 278. [Google Scholar] [CrossRef]
- Loh, R.K. Investor Inattention and the Underreaction to Stock Recommendations. Financ. Manag. 2010, 39, 1223–1252. [Google Scholar] [CrossRef]
- Jakhar, D.; Kaur, I. Artificial Intelligence, Machine Learning and Deep Learning: Definitions and Differences. Clin. Exp. Dermatol. 2019, 45, 131–132. [Google Scholar] [CrossRef]
- Vapnik, V.N. An Overview of Statistical Learning Theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, K.; Sun, H.; Zhang, Y.; Tao, F. Data and Knowledge Mining with Big Data towards Smart Production. J. Ind. Inf. Integr. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Brous, P.; Janssen, M.; Herder, P. Next Generation Data Infrastructures: Towards an Extendable Model of the Asset Management Data Infrastructure as Complex Adaptive System. Complexity 2019, 2019, 5415828. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning and Data Mining. Commun. ACM 1999, 42, 30–36. [Google Scholar] [CrossRef]
- Grimes, M.; von Krogh, G.; Feuerriegel, S.; Rink, F.; Gruber, M. From Scarcity to Abundance: Scholars and Scholarship in an Age of Generative Artificial Intelligence. Acad. Manag. J. 2023, 66, 1617–1624. [Google Scholar] [CrossRef]
- Hu, K.; Bi, Z.; He, Q.; Peng, Z. A Feature Extension and Reconstruction Method with Incremental Learning Capabilities under Limited Samples for Intelligent Diagnosis. Adv. Eng. Inform. 2024, 62, 102796. [Google Scholar] [CrossRef]
- Rafailidis, D.; Nanopoulos, A. Modeling Users Preference Dynamics and Side Information in Recommender Systems. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 782–792. [Google Scholar] [CrossRef]
- Gurkan, H.; de Véricourt, F. Contracting, Pricing, and Data Collection under the AI Flywheel Effect. Manag. Sci. 2022, 68, 8791–8808. [Google Scholar] [CrossRef]
- Liu, Y.; Li, R.; Song, X. Analysis of coupling degrees of urbanization and ecological environment in China. J. Nat. Resour. 2005, 20, 105–112. (In Chinese) [Google Scholar] [CrossRef]
- De Rodes, D.M. Risk Perception and Risk Communication in the Public Decision-Making Process. J. Plan. Lit. 1994, 8, 324–334. [Google Scholar] [CrossRef]
- Ye, M.; Li, G. Internet Big Data and Capital Markets: A Literature Review. Financ. Innov. 2017, 3, 6. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Qi Dong, J.; Fabian, N.; Haenlein, M. Digital Transformation: A Multidisciplinary Reflection and Research Agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Levitt, B. Organizational Learning. Annu. Rev. Sociol. 1988, 14, 319–340. [Google Scholar] [CrossRef]
- Zdolsek Draksler, T.; Cimperman, M.; Obrecht, M. Data-Driven Supply Chain Operations—The Pilot Case of Postal Logistics and the Cross-Border Optimization Potential. Sensors 2023, 23, 1624. [Google Scholar] [CrossRef]
- Richer, S.M.; Canioni, J. The Role of AI and Emerging Technologies in Global Trade Compliance. J. Supply Chain Manag. Logist. Procure. 2024, 7, 34. [Google Scholar] [CrossRef]
- Hou, L.; Su, J.; Ye, Y. Exploring the Influence of Smart Product Service Systems on Enterprise Competitive Advantage from the Perspective of Value Creation. Sustainability 2023, 15, 13828. [Google Scholar] [CrossRef]
- Fast, V.; Schnurr, D.; Wohlfarth, M. Regulation of Data-Driven Market Power in the Digital Economy: Business Value Creation and Competitive Advantages from Big Data. J. Inf. Technol. 2023, 38, 202–229. [Google Scholar] [CrossRef]
- Akter, S.; Michael, K.; Uddin, M.R.; McCarthy, G.; Rahman, M. Transforming Business Using Digital Innovations: The Application of AI, Blockchain, Cloud and Data Analytics. Ann. Oper. Res. 2020, 308, 7–39. [Google Scholar] [CrossRef]
- Han, B.A.; Varshney, K.R.; LaDeau, S.; Subramaniam, A.; Weathers, K.C.; Zwart, J. A Synergistic Future for AI and Ecology. Proc. Natl. Acad. Sci. USA 2023, 120, e2220283120. [Google Scholar] [CrossRef]
- Butler, J.E. Theories of Technological Innovation as Useful Tools for Corporate Strategy. Strateg. Manag. J. 1988, 9, 15–29. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Subramanian, N.; Ghadge, A.; Belhadi, A.; Venkatesh, M. Blockchain Technology’s Impact on Supply Chain Integration and Sustainable Supply Chain Performance: Evidence from the Automotive Industry. Ann. Oper. Res. 2021, 327, 575–600. [Google Scholar] [CrossRef]
- Tan, L.; Yang, Z.; Irfan, M.; Ding, C.J.; Hu, M.; Hu, J. Toward Low-carbon Sustainable Development: Exploring the Impact of Digital Economy Development and Industrial Restructuring. Bus. Strategy Environ. 2023, 33, 2159–2172. [Google Scholar] [CrossRef]
- Li, X.; Shen, Y.; Cheng, H.; Yuan, F.; Huang, L. Identifying the Development Trends and Technological Competition Situations for Digital Twin: A Bibliometric Overview and Patent Landscape Analysis. IEEE Trans. Eng. Manag. 2024, 71, 1998–2021. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Alam, M.S.; Hoque, M.; Lameesa, A.; Afrin, S.; Farah, T.; Kabir, M.; Shafiullah, G.; Muyeen, S.M. Industrial Internet of Things Enabled Technologies, Challenges, and Future Directions. Comput. Electr. Eng. 2023, 110, 108847. [Google Scholar] [CrossRef]
- Nhu Laursen, L.; Houman Andersen, P. Resource and Supplier Interaction in Network Innovation Governance: The Case of Innovating at Unilever. J. Bus. Res. 2023, 156, 113465. [Google Scholar] [CrossRef]
- Le, T.T.; Vo, X.V.; Venkatesh, V.G. Role of Green Innovation and Supply Chain Management in Driving Sustainable Corporate Performance. J. Clean. Prod. 2022, 374, 133875. [Google Scholar] [CrossRef]
- Lee, H.J.; Rhee, T. How Does Corporate ESG Management Affect Consumers’ Brand Choice? Sustainability 2023, 15, 6795. [Google Scholar] [CrossRef]
- Luan, X.; Wang, X. Open Innovation, Overseas Business Income and the Mediating Effect of Environmental, Social and Governance. Bus. Strategy Environ. 2024, 33, 6235–6253. [Google Scholar] [CrossRef]
- López-Malest, A.; Gabor, M.R.; Panait, M.; Brezoi, A.; Veres, C. Green Innovation for Carbon Footprint Reduction in Construction Industry. Buildings 2024, 14, 374. [Google Scholar] [CrossRef]
- Le Breton-Miller, I.; Miller, D. The Paradox of Resource Vulnerability: Considerations for Organizational Curatorship. Strateg. Manag. J. 2014, 36, 397–415. [Google Scholar] [CrossRef]
- Nunes, M.P.; Malagri, C.N.; Steinbruch, F.K.; Schreiber, D.; Damacena, C. The Relation between Digital Transformation and Internationalization—A Systematic Literature Review. Eur. J. Innov. Manag. 2024, 28, 3217–3237. [Google Scholar] [CrossRef]
- Deeg, R.; Hardie, I. What Is Patient Capital and Who Supplies It? Socio Econ. Rev. 2016, 14, 627–645. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Y.; Ke, Z.; Shen, Q.; Li, Z.; Zhang, R.; Ouyang, K. A Generative Adversarial Network-Based Investor Sentiment Indicator: Superior Predictability for the Stock Market. Mathematics 2025, 13, 1476. [Google Scholar] [CrossRef]
- Bataineh, M.J.; Sánchez-Sellero, P.; Ayad, F. Green Is the New Black: How Research and Development and Green Innovation Provide Businesses a Competitive Edge. Bus. Strategy Environ. 2023, 33, 1004–1023. [Google Scholar] [CrossRef]
- Lu, H.; Oh, W.-Y.; Kleffner, A.; Chang, Y.K. How Do Investors Value Corporate Social Responsibility? Market Valuation and the Firm Specific Contexts. J. Bus. Res. 2021, 125, 14–25. [Google Scholar] [CrossRef]
- Khan, S.I.; Rahman, M.S.; Ashik, A.A.; Islam, S.; Rahman, M.M.; Hossain, E. Big Data and Business Intelligence for Supply Chain Sustainability: Risk Mitigation and Green Optimization in the Digital Era. Eur. J. Manag. Econ. Bus. 2024, 1, 262–276. [Google Scholar] [CrossRef]
- Gao, J.; Hu, W. Investor Attention, Corporate Technology Investment, and Green Innovation. Financ. Res. Lett. 2025, 85, 107874. [Google Scholar] [CrossRef]
- Jie, G.; Jiahui, L. Media Attention, Green Technology Innovation and Industrial Enterprises’ Sustainable Development: The Moderating Effect of Environmental Regulation. Econ. Anal. Policy 2023, 79, 873–889. [Google Scholar] [CrossRef]
- He, Z.; Hirshleifer, D. The Exploratory Mindset and Corporate Innovation. J. Financ. Quant. Anal. 2020, 57, 127–169. [Google Scholar] [CrossRef]
- Lu, Z.; Li, H. Does Environmental Information Disclosure Affect Green Innovation? Econ. Anal. Policy 2023, 80, 47–59. [Google Scholar] [CrossRef]
- Connelly, B.L.; Certo, S.T.; Ireland, R.D.; Reutzel, C.R. Signaling Theory: A Review and Assessment. J. Manag. 2010, 37, 39–67. [Google Scholar] [CrossRef]
- Jia, H.; Che, W. Institutional Investor Stability, Executive Equity Incentives, and Corporate Innovation. Financ. Res. Lett. 2025, 83, 107691. [Google Scholar] [CrossRef]
- Rossi, F.; Harjoto, M.A. Corporate Non-Financial Disclosure, Firm Value, Risk, and Agency Costs: Evidence from Italian Listed Companies. Rev. Manag. Sci. 2019, 14, 1149–1181. [Google Scholar] [CrossRef]
- Li, R.; Xu, G.; Ramanathan, R. The Impact of Environmental Investments on Green Innovation: An Integration of Factors That Increase or Decrease Uncertainty. Bus. Strategy Environ. 2022, 31, 3388–3405. [Google Scholar] [CrossRef]
- Breuer, W.; Renerken, T.; Salzmann, A.J. Measuring Risk-taking and Patience in Financial Decision Making. Rev. Financ. Econ. 2021, 40, 97–114. [Google Scholar] [CrossRef]
- Figueira-de-Lemos, F.; Hadjikhani, A. Internationalization Processes in Stable and Unstable Market Conditions: Towards a Model of Commitment Decisions in Dynamic Environments. J. World Bus. 2014, 49, 332–349. [Google Scholar] [CrossRef]
- Di, L.; Bu, D. Introduction of Foreign Shareholders and the Internationalization Strategy of State-owned Enterprises: Taking the Realization of Overseas Sales Income as an Example. World Econ. Stud. 2021, 5, 83–102+136. (In Chinese) [Google Scholar] [CrossRef]
- Li, X. Behind the Recent Surge of Chinese Patenting: An Institutional View. Res. Policy 2012, 41, 236–249. [Google Scholar] [CrossRef]
- GB/T 4754-2017; Industrial Classification for National Economic Activities. Standards Press of China: Beijing, China, 2017.
- Grashof, N.; Kopka, A. Artificial Intelligence and Radical Innovation: An Opportunity for All Companies? Small Bus. Econ. 2022, 61, 771–797. [Google Scholar] [CrossRef]


| Type | Name | Symbol | Description |
|---|---|---|---|
| Explanatory Variable | Digital–Intelligent Synergy | DIS | |
| Data Assets | DA | Ln (Data Asset Word Frequency +1) | |
| Self-use Data Assets | SDAs | Ln (Self-use Data Asset Word Frequency +1) | |
| Transactional Data Assets | TDAs | Ln (Transactional Data Asset Word Frequency +1) | |
| Data Assets in Robustness Tests | DA-replace | The ratio of digital transformation-related intangible assets to total intangible assets. | |
| Artificial Intelligence | AI | Ln (AI Word Frequency +1) | |
| Artificial Intelligence Technology | AIT | Ln (AI Technology Word Frequency +1) | |
| Artificial Intelligence Application | AIA | Ln (AI Application Word Frequency +1) | |
| Artificial Intelligence in Robustness Tests | AI-replace | Following the measurement approach of Yao et al. | |
| Digital–Intelligent Coupling Coordination | DICD | Coupling Coordination Degree (AI & Data) | |
| Digital–Intelligent Coupling | DICC | Coupling degree (AI & Data) | |
| Digital–Intelligent Coordination | DICT | Coordination degree (AI & Data) | |
| DICD in Robustness Tests | DICD-replace | Coupling Coordination Degree (PCA) | |
| Explained Variable | Internationalization Level | IL | Ln (Overseas Revenue +1) |
| IL-dummy | Equals 1 if the firm has overseas revenue, and 0 otherwise. | ||
| Mediating Variable | Green Technology Innovation | GTI | Natural Logarithm of (Green Patents + 1) |
| Substantive Green Innovation Behavior | GSubB | Ln (Green Invention Patent Applications +1) | |
| Substantive Green Innovation Outcome | GSubO | Ln (Green Invention Patent Grants +1) | |
| Strategic Green Innovation Behavior | GStrB | Ln (Green Utility Model Patent Applications +1) | |
| Strategic Green Innovation Outcome | GStrO | Ln (Green Utility Model Patent Grants +1) | |
| Moderating Variable | Investor Stability | IS | (-) Avg Turnover Ratio (30 days pre-earnings announcement) |
| Control Variable | Cash Flow Ratio | Cashflow | Operating Cash Flow/Total Assets |
| Inventory-to-Asset Ratio | INV | Net Inventory/Total Assets | |
| Board Size | Board | Ln (Number of Board Directors +1) | |
| Years Since Listing | ListAge | Ln (Years Since Listing +1) | |
| Tunneling by Largest Shareholder | Occupy | Other Receivables/Total Assets |
| Variables | (1) | (2) | (3) | (4) | (5) |
|---|---|---|---|---|---|
| Number | Mean | SD | Min | Max | |
| DA | 36,493 | 3.363 | 0.672 | 1.792 | 5.961 |
| SDAs | 36,493 | 3.319 | 0.645 | 1.792 | 5.855 |
| TDAs | 36,493 | 0.618 | 0.856 | 0 | 3.970 |
| DA-replace | 36,493 | 12.98 | 5.652 | 0 | 20.07 |
| AI | 36,493 | 1.522 | 1.295 | 0 | 4.500 |
| AIT | 36,493 | 1.055 | 1.204 | 0 | 4.407 |
| AIA | 36,493 | 0.899 | 1.037 | 0 | 3.738 |
| AI-replace | 36,493 | 0.983 | 1.212 | 0 | 4.913 |
| DICD | 36,493 | 0.122 | 0.0935 | 0.0176 | 0.503 |
| DICC | 36,493 | 0.562 | 0.245 | 0.175 | 1.000 |
| DICT | 36,493 | 0.0477 | 0.0754 | 0.000535 | 0.385 |
| IL | 36,493 | 9.588 | 9.942 | 0 | 24.50 |
| IL-dummy | 36,493 | 0.489 | 0.500 | 0 | 1 |
| GSubB | 36,493 | 0.623 | 0.982 | 0 | 4.511 |
| GStrB | 36,493 | 0.575 | 0.910 | 0 | 4.043 |
| GSubO | 36,493 | 0.330 | 0.687 | 0 | 3.871 |
| GStrO | 36,493 | 0.603 | 0.922 | 0 | 4.094 |
| IS | 36,493 | −0.0339 | 0.0365 | −0.266 | 0 |
| Cashflow | 36,493 | 0.0486 | 0.0664 | −0.167 | 0.267 |
| INV | 36,493 | 0.128 | 0.111 | 0 | 0.719 |
| Board | 36,493 | 2.094 | 0.195 | 1.609 | 2.708 |
| ListAge | 36,493 | 2.045 | 0.963 | 0 | 3.466 |
| Occupy | 36,493 | 0.0125 | 0.0207 | 6.10 × 10−5 | 0.184 |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
|---|---|---|---|---|---|---|---|---|
| VIF | 1/VIF | VIF | 1/VIF | VIF | 1/VIF | VIF | 1/VIF | |
| DA | 1.48 | 0.673819 | 1.14 | 0.878975 | ||||
| AI | 6.07 | 0.164864 | 1.12 | 0.892584 | ||||
| DICD | 7.13 | 0.140261 | 1.14 | 0.877161 | ||||
| Cashflow | 1.01 | 0.988062 | 1.07 | 0.938570 | 1.06 | 0.946213 | 1.06 | 0.942343 |
| INV | 1.02 | 0.984527 | 1.06 | 0.939880 | 1.04 | 0.957144 | 1.05 | 0.952426 |
| Board | 1.00 | 0.998427 | 1.04 | 0.962550 | 1.04 | 0.961081 | 1.04 | 0.962390 |
| ListAge | 1.02 | 0.981003 | 1.49 | 0.670024 | 1.49 | 0.669433 | 1.49 | 0.670666 |
| Occupy | 1.01 | 0.991096 | 1.06 | 0.946950 | 1.05 | 0.949578 | 1.05 | 0.949399 |
| IS | 1.51 | 0.662804 | 1.51 | 0.662574 | 1.51 | 0.663118 | ||
| DA × IS | 1.09 | 0.916001 | ||||||
| AI × IS | 1.08 | 0.927453 | ||||||
| DICD × IS | 1.10 | 0.906075 | ||||||
| GSubB | 2.97 | 0.336868 | 2.97 | 0.337055 | 3.00 | 0.333187 | ||
| GSubO | 2.25 | 0.445275 | 2.25 | 0.445346 | 2.25 | 0.445176 | ||
| GStrB | 3.68 | 0.271377 | 3.62 | 0.275995 | 3.64 | 0.274494 | ||
| GStrO | 3.63 | 0.275302 | 3.63 | 0.275379 | 3.63 | 0.275267 | ||
| GSubB × IS | 2.83 | 0.352968 | 2.83 | 0.352841 | 2.86 | 0.349199 | ||
| GSubO × IS | 2.14 | 0.466794 | 2.14 | 0.467770 | 2.14 | 0.467310 | ||
| GStrB × IS | 3.48 | 0.287708 | 3.42 | 0.292102 | 3.44 | 0.290635 | ||
| GStrO × IS | 3.21 | 0.311965 | 3.21 | 0.311895 | 3.21 | 0.311620 | ||
| Mean VIF | 2.47 | 2.10 | 2.09 | 2.10 |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| IL | IL | IL | |
| DA | 0.431 *** | ||
| (3.02) | |||
| AI | 0.182 *** | ||
| (2.71) | |||
| DICD | 3.060 *** | ||
| (2.74) | |||
| Constant | 6.811 *** | 6.849 *** | 6.871 *** |
| (7.79) | (7.84) | (7.87) | |
| Obs. | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.815 | 0.815 |
| Id | YES | YES | YES |
| Year | YES | YES | YES |
| Controls | YES | YES | YES |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| IL | IL | IL | |
| DA | 0.019 ** | ||
| (2.53) | |||
| AI | 0.007 ** | ||
| (2.00) | |||
| DICD | 0.118 ** | ||
| (2.03) | |||
| Constant | 0.383 *** | 0.384 *** | 0.385 *** |
| (8.52) | (8.55) | (8.58) | |
| Obs. | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.811 | 0.811 | 0.811 |
| Id | YES | YES | YES |
| Year | YES | YES | YES |
| Controls | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| IL | IL | IL | IL | IL | IL | |
| DA-replace | 0.012 * | |||||
| (1.68) | ||||||
| AI-replace | 0.083 * | |||||
| (1.66) | ||||||
| DICD-replace | 0.298 *** | |||||
| (3.44) | ||||||
| DA-narrow | 0.279 ** | |||||
| (2.24) | ||||||
| AI-narrow | 0.270 *** | |||||
| (3.81) | ||||||
| DICD-narrow | 8.121 *** | |||||
| (4.12) | ||||||
| Constant | 6.611 *** | 6.728 *** | 6.881 *** | 6.769 *** | 6.857 *** | 6.879 *** |
| (7.50) | (7.66) | (7.89) | (7.72) | (7.84) | (12.22) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| IL | IL | IL | |
| L.DA | 0.310 ** | ||
| (2.10) | |||
| L.AI | 0.151 ** | ||
| (2.28) | |||
| L.DICD | 2.372 ** | ||
| (2.19) | |||
| Constant | 7.141 *** | 7.175 *** | 7.184 *** |
| (7.10) | (7.15) | (7.15) | |
| Obs. | 30,668 | 30,668 | 30,668 |
| Adj. R2 | 0.824 | 0.824 | 0.824 |
| Id | YES | YES | YES |
| Year | YES | YES | YES |
| Controls | YES | YES | YES |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| IL | IL | IL | |
| DA | 0.613 *** | ||
| (2.67) | |||
| AI | 0.904 *** | ||
| (8.97) | |||
| DICD | 11.920 *** | ||
| (7.74) | |||
| Constant | 6.097 *** | 5.988 *** | 6.112 *** |
| (4.77) | (4.70) | (4.80) | |
| Obs. | 30,668 | 30,668 | 30,668 |
| Adj. R2 | 0.824 | 0.824 | 0.824 |
| Id | YES | YES | YES |
| Year | YES | YES | YES |
| Controls | YES | YES | YES |
| Variables | Ind × Year Fixed | Region × Year Fixed | ||||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| IL | IL | IL | IL | IL | IL | |
| DA | 0.445 *** | 0.402 *** | ||||
| (3.05) | (2.81) | |||||
| AI | 0.185 *** | 0.181 *** | ||||
| (2.74) | (2.71) | |||||
| DICD | 3.228 *** | 2.947 *** | ||||
| (2.86) | (2.67) | |||||
| Constant | 6.718 *** | 6.743 *** | 6.767 *** | 6.918 *** | 6.955 *** | 6.972 *** |
| (7.80) | (7.84) | (7.87) | (7.75) | (7.81) | (7.83) | |
| Obs. | 36,483 | 36,483 | 36,483 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.816 | 0.816 | 0.816 | 0.816 | 0.816 | 0.816 |
| Id | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES |
| Ind × Year | YES | YES | YES | - | - | - |
| Region × Year | - | - | - | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES |
| Variables | DA | AI | DICD | |||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| First Stage | Second Stage | First Stage | Second Stage | First Stage | Second Stage | |
| IV | 0.0588 *** | 0.2082 *** | 0.0136 *** | |||
| (14.4915) | (24.3113) | (22.1605) | ||||
| DA | 1.8020 * | |||||
| (1.7684) | ||||||
| AI | 0.5090 * | |||||
| (1.7862) | ||||||
| DICD | 7.8066 * | |||||
| (1.7817) | ||||||
| Constant | −1.5953 *** | −1.0439 | −0.1704 *** | |||
| (−2.9825) | (−1.3514) | (−3.0238) | ||||
| Obs. | 31,110 | 31,110 | 31,110 | 31,110 | 31,110 | 31,110 |
| R-squared | 0.890 | −0.005 | 0.855 | 0.001 | 0.894 | 0.001 |
| Controls FE (Firm&Province) | Yes | Yes | Yes | Yes | Yes | Yes |
| Id FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Kleibergen–Paap rk Wald F | 210.010 [16.38] | 591.059 [16.38] | 491.106 [16.38] | |||
| Kleibergen–Paap rk LM | 173.641 *** | 386.393 *** | 333.882 *** | |||
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|---|---|---|---|---|---|---|---|---|---|
| IL | GSubB | IL | IL | GSubB | IL | IL | GSubB | IL | |
| DA | 0.431 *** | 0.137 *** | 0.400 *** | ||||||
| (3.02) | (7.33) | (2.81) | |||||||
| AI | 0.182 *** | 0.061 *** | 0.168 ** | ||||||
| (2.71) | (8.21) | (2.51) | |||||||
| DICD | 3.060 *** | 1.106 *** | 2.806 ** | ||||||
| (2.74) | (8.59) | (2.53) | |||||||
| GSubB | 0.230 *** | 0.231 *** | 0.229 *** | ||||||
| (3.45) | (3.46) | (3.44) | |||||||
| Constant | 6.811 *** | 0.052 | 6.799 *** | 6.849 *** | 0.688 *** | 6.834 *** | 6.871 *** | 0.076 | 6.853 *** |
| (7.79) | (0.54) | (7.79) | (7.84) | (7.09) | (7.84) | (7.87) | (0.79) | (7.86) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.703 | 0.815 | 0.815 | 0.703 | 0.815 | 0.815 | 0.704 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|---|---|---|---|---|---|---|---|---|---|
| IL | GSubO | IL | IL | GSubO | IL | IL | GSubO | IL | |
| DA | 0.300 ** | 0.063 *** | 0.289 * | ||||||
| (2.04) | (4.93) | (1.96) | |||||||
| AI | 0.146 ** | 0.022 *** | 0.142 ** | ||||||
| (2.20) | (4.31) | (2.14) | |||||||
| DICD | 2.268 ** | 0.494 *** | 2.177 ** | ||||||
| (2.09) | (5.45) | (2.01) | |||||||
| GSubO | 0.184 ** | 0.185 ** | 0.183 ** | ||||||
| (2.09) | (2.10) | (2.08) | |||||||
| Constant | 7.816 *** | 0.082 | 7.801 *** | 7.840 *** | 0.082 | 7.824 *** | 7.846 *** | 0.089 | 7.830 *** |
| (8.55) | (1.12) | (8.53) | (8.58) | (1.12) | (8.57) | (8.58) | (1.22) | (8.57) | |
| Obs. | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 |
| Adj. R2 | 0.824 | 0.641 | 0.824 | 0.824 | 0.641 | 0.824 | 0.824 | 0.641 | 0.824 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|---|---|---|---|---|---|---|---|---|---|
| IL | GStrB | IL | IL | GStrB | IL | IL | GStrB | IL | |
| DA | 0.431 *** | 0.065 *** | 0.423 *** | ||||||
| (3.02) | (4.08) | (2.97) | |||||||
| AI | 0.182 *** | 0.041 *** | 0.177 *** | ||||||
| (2.71) | (6.38) | (2.64) | |||||||
| DICD | 3.060 *** | 0.507 *** | 2.996 *** | ||||||
| (2.74) | (4.77) | (2.69) | |||||||
| GStrB | 0.127 ** | 0.125 ** | 0.126 ** | ||||||
| (2.03) | (2.00) | (2.02) | |||||||
| Constant | 6.811 *** | −0.282 *** | 6.847 *** | 6.849 *** | −0.270 *** | 6.883 *** | 6.871 *** | −0.272 *** | 6.905 *** |
| (7.79) | (−3.15) | (7.83) | (7.84) | (−3.03) | (7.89) | (7.87) | (−3.04) | (7.91) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.663 | 0.815 | 0.815 | 0.663 | 0.815 | 0.815 | 0.663 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
|---|---|---|---|---|---|---|---|---|---|
| IL | GStrO | IL | IL | GStrO | IL | IL | GStrO | IL | |
| DA | 0.300 ** | 0.066 *** | 0.293 ** | ||||||
| (2.04) | (3.70) | (1.99) | |||||||
| AI | 0.146 ** | 0.051 *** | 0.140 ** | ||||||
| (2.20) | (7.22) | (2.12) | |||||||
| DICD | 2.268 ** | 0.675 *** | 2.193 ** | ||||||
| (2.09) | (5.64) | (2.02) | |||||||
| GStrO | 0.113 * | 0.109 * | 0.110 * | ||||||
| (1.68) | (1.65) | (1.65) | |||||||
| Constant | 7.816 *** | 0.029 | 7.813 *** | 7.840 *** | 0.046 | 7.835 *** | 7.846 *** | 0.043 | 7.842 *** |
| (8.55) | (0.28) | (8.55) | (8.58) | (0.45) | (8.59) | (8.58) | (0.42) | (8.59) | |
| Obs. | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 | 30,668 |
| Adj. R2 | 0.824 | 0.683 | 0.824 | 0.824 | 0.683 | 0.824 | 0.824 | 0.683 | 0.824 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| IL | IL | IL | IL | IL | IL | |
| DA | 0.431 *** | 0.408 *** | ||||
| (3.02) | (2.86) | |||||
| AI | 0.182 *** | 0.174 *** | ||||
| (2.71) | (2.59) | |||||
| DICD | 3.060 *** | 2.878 *** | ||||
| (2.74) | (2.58) | |||||
| IS | 1.807 * | 1.970 * | 1.984 * | |||
| (1.71) | (1.86) | (1.87) | ||||
| DA × IS | 5.432 *** | |||||
| (4.11) | ||||||
| AI × IS | 1.761 *** | |||||
| (2.65) | ||||||
| DICD × IS | 29.406 *** | |||||
| (3.20) | ||||||
| Constant | 6.811 *** | 6.926 *** | 6.849 *** | 7.035 *** | 6.871 *** | 7.045 *** |
| (7.79) | (7.80) | (7.84) | (7.94) | (7.87) | (7.95) | |
| Obs. | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 | 0.815 |
| Id | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GSubB | GSubO | GStrB | GStrO | GSubB | GSubO | GStrB | GStrO | GSubB | GSubO | GStrB | GStrO | |
| DA | 0.134 *** | 0.025 * | 0.065 *** | 0.082 *** | ||||||||
| (7.17) | (1.94) | (4.05) | (4.68) | |||||||||
| AI | 0.060 *** | 0.010 * | 0.040 *** | 0.037 *** | ||||||||
| (8.03) | (1.93) | (6.33) | (4.94) | |||||||||
| DICD | 1.079 *** | 0.254 *** | 0.501 *** | 0.572 *** | ||||||||
| (8.43) | (2.80) | (4.74) | (4.75) | |||||||||
| DA × IS | 0.493 *** | 0.445 ** | −0.097 | 0.680 *** | ||||||||
| (2.86) | (2.35) | (−0.77) | (3.19) | |||||||||
| AI × IS | 0.312 *** | 0.286 *** | 0.076 | 0.186 | ||||||||
| (3.72) | (3.04) | (1.08) | (1.52) | |||||||||
| DICD × IS | 3.688 *** | 3.121 ** | 0.431 | 2.931 * | ||||||||
| (2.95) | (2.23) | (0.47) | (1.81) | |||||||||
| IS | 0.471 *** | 0.258 ** | 0.220 * | 0.214 | 0.508 *** | 0.280 ** | 0.227 * | 0.283 | 0.511 *** | 0.281 ** | 0.236 ** | 0.283 |
| (3.76) | (2.15) | (1.84) | (1.21) | (4.03) | (2.30) | (1.90) | (1.63) | (4.06) | (2.33) | (1.98) | (1.62) | |
| Constant | 0.098 | 0.141 * | −0.256 *** | 0.036 | 0.117 | 0.152 * | −0.246 *** | 0.068 | 0.128 | 0.156 * | −0.246 *** | 0.070 |
| (0.99) | (1.66) | (−2.81) | (0.31) | (1.19) | (1.78) | (−2.71) | (0.59) | (1.30) | (1.83) | (−2.71) | (0.61) | |
| Obs. | 36,493 | 30,668 | 36,493 | 30,668 | 36,493 | 30,668 | 36,493 | 30,668 | 36,493 | 30,668 | 36,493 | 30,668 |
| Adj. R2 | 0.703 | 0.641 | 0.663 | 0.683 | 0.704 | 0.641 | 0.663 | 0.683 | 0.704 | 0.641 | 0.663 | 0.683 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IL | IL | IL | IL | IL | IL | IL | IL | IL | IL | IL | IL | |
| DA | 0.378 *** | 0.245 * | 0.400 *** | 0.241 * | ||||||||
| (2.66) | (1.86) | (2.81) | (1.75) | |||||||||
| AI | 0.160 ** | 0.141 * | 0.169 ** | 0.139 * | ||||||||
| (2.41) | (1.92) | (2.53) | (1.89) | |||||||||
| DICD | 2.636 ** | 2.177 * | 2.815 ** | 2.164 * | ||||||||
| (2.38) | (1.80) | (2.53) | (1.79) | |||||||||
| IS | 1.713 * | 2.994 * | 1.706 * | 3.147 ** | 1.909 * | 3.526 ** | 1.799 * | 3.571 ** | 1.888 * | 3.402 ** | 1.834 * | 3.497 ** |
| (1.65) | (1.93) | (1.66) | (2.02) | (1.73) | (2.30) | (1.66) | (2.32) | (1.71) | (2.21) | (1.69) | (2.26) | |
| DA × IS | 5.308 *** | 6.501 *** | 5.436 *** | 6.295 *** | ||||||||
| (3.98) | (3.34) | (4.11) | (3.26) | |||||||||
| AI × IS | 1.653 ** | 2.129 * | 1.787 *** | 2.101 * | ||||||||
| (2.46) | (1.94) | (2.68) | (1.91) | |||||||||
| DICD × IS | 28.395 *** | 37.295 *** | 29.587 *** | 36.031 ** | ||||||||
| (3.07) | (2.62) | (3.22) | (2.53) | |||||||||
| GSubB | 0.225 *** | 0.224 *** | 0.224 *** | |||||||||
| (3.37) | (3.37) | (3.37) | ||||||||||
| GSubB × IS | 0.057 | 0.269 | 0.091 | |||||||||
| (0.05) | (0.23) | (0.08) | ||||||||||
| GSubO | 0.189 ** | 0.187 ** | 0.187 ** | |||||||||
| (2.21) | (2.19) | (2.19) | ||||||||||
| GSubO × IS | −1.396 | −1.020 | −1.339 | |||||||||
| (−0.62) | (−0.45) | (−0.59) | ||||||||||
| GStrB | 0.130 ** | 0.128 ** | 0.129 ** | |||||||||
| (2.08) | (2.07) | (2.08) | ||||||||||
| GStrB × IS | −0.396 | −0.769 | −0.649 | |||||||||
| (−0.38) | (−0.73) | (−0.62) | ||||||||||
| GStrO | 0.107 * | 0.109 * | 0.109 * | |||||||||
| (1.92) | (1.66) | (1.66) | ||||||||||
| GStrO × IS | −0.069 | −0.424 | −0.326 | |||||||||
| (−0.04) | (−0.26) | (−0.20) | ||||||||||
| Constant | 6.903 *** | 7.241 *** | 6.961 *** | 7.244 *** | 7.006 *** | 7.409 *** | 7.071 *** | 7.420 *** | 7.015 *** | 7.406 *** | 7.080 *** | 7.411 *** |
| (7.79) | (7.10) | (7.85) | (7.11) | (7.92) | (7.29) | (7.98) | (7.31) | (7.93) | (7.29) | (7.99) | (7.30) | |
| Obs. | 36,493 | 30,668 | 36,493 | 30,668 | 36,493 | 30,668 | 36,493 | 30,668 | 36,493 | 30,668 | 36,493 | 30,668 |
| Adj. R2 | 0.815 | 0.824 | 0.815 | 0.824 | 0.815 | 0.824 | 0.815 | 0.824 | 0.815 | 0.824 | 0.815 | 0.824 |
| Id | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Year | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Controls | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| IL | IL | IL | |
| DA | 0.431 *** | ||
| (3.02) | |||
| SDAs | 0.425 *** | ||
| (2.98) | |||
| TDAs | 0.084 | ||
| (1.12) | |||
| Constant | 6.811 *** | 6.803 *** | 6.779 *** |
| (7.79) | (7.77) | (7.74) | |
| Obs. | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.815 | 0.815 |
| Id | YES | YES | YES |
| Year | YES | YES | YES |
| Controls | YES | YES | YES |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| IL | IL | IL | |
| AI | 0.182 *** | ||
| (2.71) | |||
| AIT | 0.088 * | ||
| (1.66) | |||
| AIA | 0.254 *** | ||
| (3.50) | |||
| Constant | 6.849 *** | 6.796 *** | 6.845 *** |
| (7.84) | (7.77) | (7.82) | |
| Obs. | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.815 | 0.815 |
| Id | YES | YES | YES |
| Year | YES | YES | YES |
| Controls | YES | YES | YES |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| IL | IL | IL | |
| DICD | 3.060 *** | ||
| (2.74) | |||
| DICC | −0.089 | ||
| (−0.59) | |||
| DICT | 3.510 ** | ||
| (2.22) | |||
| Constant | 6.871 *** | 6.749 *** | 6.844 *** |
| (7.87) | (7.69) | (7.81) | |
| Obs. | 36,493 | 36,493 | 36,493 |
| Adj. R2 | 0.815 | 0.815 | 0.815 |
| Id | YES | YES | YES |
| Year | YES | YES | YES |
| Controls | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, J.; Zhang, Y. Digital–Intelligent Synergy Empowers Chinese Firms’ Internationalization: A Dual Perspective Based on Green Innovation and Stable Investment. Sustainability 2026, 18, 588. https://doi.org/10.3390/su18020588
Zhang J, Zhang Y. Digital–Intelligent Synergy Empowers Chinese Firms’ Internationalization: A Dual Perspective Based on Green Innovation and Stable Investment. Sustainability. 2026; 18(2):588. https://doi.org/10.3390/su18020588
Chicago/Turabian StyleZhang, Jinsong, and Yu Zhang. 2026. "Digital–Intelligent Synergy Empowers Chinese Firms’ Internationalization: A Dual Perspective Based on Green Innovation and Stable Investment" Sustainability 18, no. 2: 588. https://doi.org/10.3390/su18020588
APA StyleZhang, J., & Zhang, Y. (2026). Digital–Intelligent Synergy Empowers Chinese Firms’ Internationalization: A Dual Perspective Based on Green Innovation and Stable Investment. Sustainability, 18(2), 588. https://doi.org/10.3390/su18020588

