Investigating Land Surface Temperature (LST) and Its Influencing Factors in the Laut Tawar Sub-Watershed, Indonesia, Using Landsat 9 Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Source of Data
2.2.1. Data Characteristics
- Operational Land Imager 2 (OLI-2)—This captures images in the visible, near-infrared, and shortwave infrared ranges and is used for vegetation studies, water quality tests, and land monitoring.
- Thermal Infrared Sensor 2 (TIRS-2)—This receives thermal emissions data, which are used to report the LST, heat anomalies, and-+ urban heat island effects.
2.2.2. Data Processing and Analysis
2.3. LST Retrieval
2.4. The LULC Classification Process
2.5. Kappa Accuracy Measurements
3. Results
3.1. LST Distribution in the Laut Tawar Sub-Watershed
3.2. Spatial Patterns of Land Surface Temperature and the Factors That Influence Them
3.2.1. Topography
3.2.2. LULC Classification
3.2.3. Regression Analysis of Elevation and LULC Influence on LST
3.2.4. Accuracy Assessment
4. Discussion
4.1. LST Distribution Patterns
4.2. Topography and LST Variations
4.3. LULC and LST Distribution
4.4. Comparison with Analogous Upland Watershed and Methodological Advances
4.5. Landsat 9 Data in LST Measurement
4.6. Implications for Spatial Management and Climate Adaptation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LST | Land surface temperature |
| LULC | Land use and land cover |
| TIRS | Thermal Infrared Sensor |
| UHI | Urban heat island |
| m.a.s.l. | Meters above sea level |
References
- Pongratz, J.; Schwingshackl, C.; Bultan, S.; Obermeier, W.; Havermann, F.; Guo, S. Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Curr. Clim. Change Rep. 2021, 7, 99–120. [Google Scholar] [CrossRef]
- Achmad, A.; Fadhly, N.; Deli, A.; Ramli, I. Urban growth and its impact on land surface temperature in an industrial city in Aceh, Indonesia. Lett. Spat. Resour. Sci. 2022, 15, 39–58. [Google Scholar] [CrossRef]
- Kara, Y.; Yavuz, V. Urban Microclimates in a Warming World: Land Surface Temperature (LST) Trends Across Ten Major Cities on Seven Continents. Urban Sci. 2025, 9, 115. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Liu, Q.; Li, J.; Sacchi, M.D.; Zhuang, M.; Liu, Q.H. Simultaneous prediction of petrophysical properties and formation layered thickness from acoustic logging data using a modular cascading residual neural network (MCARNN) with physical constraints. J. Appl. Geophys. 2024, 224, 105362. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, M.; Wang, X.; Shi, Z.; Sacchi, M.D.; Chen, W.; Liu, Z.; Wang, X. Enhancing Ground-Penetrating Radar (GPR) Data Resolution Through Weakly Supervised Learning. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5107513. [Google Scholar] [CrossRef]
- Adhar, S.; Barus, T.A.; Nababan, E.S.N.; Wahyuningsih, H. Trophic state index and spatio-temporal analysis of trophic parameters of Laut Tawar Lake, Aceh, Indonesia. AACL Bioflux 2023, 16, 342–355. [Google Scholar]
- Ramli, I.; Murthada, S.; Nasution, Z.; Achmad, A. Hydrograph separation method and baseflow separation using Chapman Method—A case study in Peusangan Watershed. IOP Conf. Ser. Earth Environ. Sci. 2019, 314, 012026. [Google Scholar] [CrossRef]
- Solanky, V.; Singh, S.; Katiyar, S.K. Land Surface Temperature Estimation Using Remote Sensing Data; Springer: Berlin/Heidelberg, Germany, 2018; pp. 343–351. [Google Scholar]
- Putri, D.R.; Ismail, N.; Idroes, R.; Rizal, S.; Nur, S.; Nanda, M. Analysis of Land Surface Temperature (LST) in Bur Ni Geureudong Geothermal Field, Aceh, Indonesia Using Landsat 8 OLI / TIRS Images. Chiang Mai Univ. J. Nat. Sci. 2021, 20, e2021084. [Google Scholar] [CrossRef]
- Farhan, A.; Haryanto, A.D.; Hutabarat, J.; Siahaan, M.R.P. Identifikasi Zona Prospek Panas Bumi Menggunakan Digital Elevation Model Dengan Metode Densitas Kelurusan Dan Temperatur Suhu Permukaan Di Daerah Seulawah, Provinsi Aceh. Padjadjaran Geosci. J. 2021, 5, 80–90. [Google Scholar]
- Ramli, I.; Achmad, A.; Anhar, A. Temporal changes in Land Use and Land Cover (LULC) and local climate in the Krueng Peusangan Watershed (KPW) area, Aceh, Indonesia. Bull. Geogr. Socio-Econ. Ser. 2023, 59, 151–165. [Google Scholar] [CrossRef]
- Halefom, A.; He, Y.; Nemoto, T.; Feng, L.; Li, R.; Raghavan, V.; Jing, G.; Song, X.; Duan, Z. The Impact of Urbanization-Induced Land Use Change on Land Surface Temperature. Remote Sens. 2024, 16, 4502. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Bi, Y.; Li, Z.A.; Xia, J. Generalized split-window algorithm for estimate of land surface temperature from Chinese geostationary FengYun meteorological satellite (FY-2C) data. Sensors 2008, 8, 933–951. [Google Scholar] [CrossRef]
- Hardiyanto, D.W.; Setianto, A.; Harijoko, A. Spatial Analysis to Determine the Geothermal Potential Index: The Case Study of Dieng Geothermal Complex. J. Geosains Dan Remote Sens. 2024, 5, 81–90. [Google Scholar] [CrossRef]
- Yasin, A.; Ali, A.; Ahmed, N. Time-series analysis of Leaf Area Index and Land Surface Temperature Association using Sentinel-2 and Landsat OLI data. Environ. Syst. Res. 2024, 6, 43. [Google Scholar] [CrossRef]
- Ye, X.; Liu, R.; Hui, J.; Zhu, J. Land Surface Temperature Estimation from Landsat-9 Thermal Infrared Data Using Ensemble Learning Method Considering the Physical Radiance Transfer Process. Land 2023, 12, 1287. [Google Scholar] [CrossRef]
- Cuce, P.M.; Cuce, E.; Santamouris, M. Towards Sustainable and Climate-Resilient Cities: Mitigating Urban Heat Islands Through Green Infrastructure. Sustainability 2025, 17, 1303. [Google Scholar] [CrossRef]
- Nurlina, N.; Kadir, S.; Kurnain, A.; Ilham, W.; Ridwan, I. Impact of Land Cover Changing on Wetland Surface Temperature Based on Multitemporal Remote Sensing Data. Pol. J. Environ. Stud. 2023, 32, 2281–2291. [Google Scholar] [CrossRef]
- Gupta, R.K. Geospatial and Statistical Analysis of Land Surface Temperature and Land Surface Characteristics of Jaipur and Ahmedabad Cities of India. J. Geosci. Environ. Prot. 2024, 12, 1–19. [Google Scholar] [CrossRef]
- Kocur-Bera, K.; Małek, A. Assessing the Feasibility of Using Remote Sensing Data and Vegetation Indices in the Estimation of Land Subject to Consolidation. Sensors 2024, 24, 7736. [Google Scholar] [CrossRef] [PubMed]
- Achmad, A.; Sari, L.H.; Ramli, I. A study of urban heat island of Banda Aceh City, Indonesia based on land use/cover changes and land surface temperature. Aceh Int. J. Sci. Technol. 2019, 8, 41–51. [Google Scholar] [CrossRef]
- Jagtap, A.A.; Shedge, D.K.; Mane, P.B. Exploring the Effects of Land Use/Land Cover (LULC) Modifications and Land Surface Temperature (LST) in Pune, Maharashtra with Anticipated LULC for 2030. Int. J. Geoinform. 2024, 20, 42–63. [Google Scholar]
- Orlov, A.; De Hertog, S.; Havermann, F.; Guo, S.; Luo, F.; Manola, I.; Thiery, W.; Lejeune, Q.; Pongratz, J.; Humpenöder, F.; et al. Changes in Land Cover and Management Affect Heat Stress and Labor Capacity. Earth’s Futur. 2023, 11, e2022EF002909. [Google Scholar] [CrossRef]
- Gao, Y.; Li, N.; Gao, M.; Hao, M.; Liu, X. Modelling Future Land Surface Temperature: A Comparative Analysis between Parametric and Non-Parametric Methods. Sustainability 2024, 16, 8195. [Google Scholar] [CrossRef]
- Maheng, D.; Pathirana, A.; Bhattacharya, B.; Zevenbergen, C.; Lauwaet, D.; Siswanto, S.; Suwondo, A. Impact of land use land cover changes on urban temperature in Jakarta: Insights from an urban boundary layer climate model. Front. Environ. Sci. 2024, 12, 1399041. [Google Scholar] [CrossRef]
- Achmad, A.; Ramli, I.; Nizamuddin, N. Impact of land use and land cover changes on carbon stock in Aceh Besar District, Aceh, Indonesia. J. Water Land Dev. 2023, 145, 159–166. [Google Scholar] [CrossRef]
- Kustura, K.; Conti, D.; Sammer, M.; Riffler, M. Harnessing Multi-Source Data and Deep Learning for High-Resolution Land Surface Temperature Gap-Filling Supporting Climate Change Adaptation Activities. Remote Sens. 2025, 17, 318. [Google Scholar] [CrossRef]
- Achmad, A.; Ramli, I.; Irwansyah, M. The impacts of land use and cover changes on ecosystem services value in urban highland areas. IOP Conf. Ser. Earth Environ. Sci. 2020, 447, 012047. [Google Scholar] [CrossRef]
- Singh, V. Estimating land surface temperature in ArcGIS using Landsat-8, Hoshangabad district, (Madhya Pradesh). Int. J. Appl. Res. 2017, 3, 1374–1379. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Santos Orozco, D.L.; Ruiz Corral, J.A.; Villavicencio García, R.F.; Rodríguez Moreno, V.M. Deforestation and Its Effect on Surface Albedo and Weather Patterns. Sustainability 2023, 15, 11531. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, J.; Chen, D.; Thiery, W.; Mercado-Bettín, D.; Xiong, L.; Xia, J.; Woolway, R.I. Enhanced heating effect of lakes under global warming. Nat. Commun. 2025, 16, 3954. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, L.; Zhu, L.; Li, X. Lake Evaporation and Its Effects on Basin Evapotranspiration and Lake Water Storage on the Inner Tibetan Plateau. Water Resour. Res. 2023, 59, e2022WR034030. [Google Scholar] [CrossRef]
- Ellison, D.; Pokorný, J.; Wild, M. Even cooler insights: On the power of forests to (water the Earth and) cool the planet. Glob. Change Biol. 2024, 30, e17195. [Google Scholar] [CrossRef]
- Huang, D.; Xu, L.; Zou, S.; Liu, B.; Li, H.; Pu, L.; Chi, H. Mapping Paddy Rice in Rice–Wetland Coexistence Zone by Integrating Sentinel-1 and Sentinel-2 Data. Agriculture 2024, 14, 345. [Google Scholar] [CrossRef]
- Jamei, Y.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Investigating the Relationship between Land Use/Land Cover Change and Land Surface Temperature Using Google Earth Engine; Case Study: Melbourne, Australia. Sustainability 2022, 14, 14868. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, X.; Zeng, Z.; Liu, S.; Wang, Z.; Tang, X.; He, B.J. Impacts of Water Bodies on Microclimates and Outdoor Thermal Comfort: Implications for Sustainable Rural Revitalization. Front. Environ. Sci. 2022, 10, 940482. [Google Scholar] [CrossRef]
- Sweeney, B.W.; Newbold, J.D. Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: A literature review. J. Am. Water Resour. Assoc. 2014, 50, 560–584. [Google Scholar] [CrossRef]
- Imran, H.M.; Issa Shammas, M.; Rahman, A.; Jacobs, S.J.; Ng, A.W.M.; Muthukumaran, S. Causes, Modeling and Mitigation of Urban Heat Island: A Review. Earth Sci. 2021, 10, 244. [Google Scholar] [CrossRef]
- Ullah, N.; Siddique, M.A.; Ding, M.; Grigoryan, S.; Khan, I.A.; Kang, Z.; Tsou, S.; Zhang, T.; Hu, Y.; Zhang, Y. The Impact of Urbanization on Urban Heat Island: Predictive Approach Using Google Earth Engine and CA-Markov Modelling (2005–2050) of Tianjin City, China. Int. J. Environ. Res. Public Health 2023, 20, 2642. [Google Scholar] [CrossRef] [PubMed]
- Kowe, P.; Dube, T.; Mushore, T.D.; Ncube, A.; Nyenda, T.; Mutowo, G.; Chinembiri, T.S.; Traore, M.; Kizilirmak, G. Impacts of the spatial configuration of built-up areas and urban vegetation on land surface temperature using spectral and local spatial autocorrelation indices. Remote Sens. Lett. 2022, 13, 1222–1235. [Google Scholar] [CrossRef]
- Komeh, Z.; Hamzeh, S.; Memarian, H.; Attarchi, S.; Alavipanah, S.K. A Remote Sensing Approach to Spatiotemporal Analysis of Land Surface Temperature in Response to Land Use/Land Cover Change via Cloud Base and Machine Learning Methods, Case Study: Sari Metropolis, Iran. Int. J. Environ. Res. 2025, 19, 98. [Google Scholar] [CrossRef]
- Achmad, A.; Ramli, I.; Nizamuddin, N. Monitoring Land Use and Land Cover Changes in Aceh Province-Indonesia for Sustainable Spatial Planning BT—Inclusive and Integrated Disaster Risk Reduction; Opdyke, A., Pascua de Rivera, L., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 82–94. [Google Scholar]
- Zhao, P.; He, Z.; Ma, D.; Wang, W.; Qian, L. Temperature trends and its elevation-dependent warming over the Qilian Mountains. J. Mt. Sci. 2024, 21, 500–510. [Google Scholar] [CrossRef]
- McGuire, C.R.; Nufio, C.R.; Bowers, M.D.; Guralnick, R.P. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record. PLoS ONE 2012, 7, e44370. [Google Scholar] [CrossRef]
- Navarro-Serrano, F.; López-Moreno, J.I.; Azorin-Molina, C.; Alonso-González, E.; Aznarez-Balta, M.; Buisán, S.T.; Revuelto, J. Elevation effects on air temperature in a topographically complex mountain valley in the Spanish pyrenees. Atmosphere 2020, 11, 656. [Google Scholar] [CrossRef]
- Xu, L.; Du, J.; Ren, J.; Hu, Q.; Qin, F.; Mu, W.; Hu, J. Improving the ERA5-Land Temperature Product through a Deep Spatiotemporal Model That Uses Fused Multi-Source Remote Sensing Data. Remote Sens. 2024, 16, 3510. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, X.; Fan, G. Elevation-dependent trend in diurnal temperature range in the northeast china during 1961–2015. Atmosphere 2021, 12, 319. [Google Scholar] [CrossRef]
- Achmad, A.; Ramli, I.; Sugiarto, S.; Irzaidi, I.; Izzaty, A. Assessing and Forecasting Carbon Stock Variations in Response to Land Use and Land Cover Changes in Central Aceh, Indonesia. Int. J. Des. Nat. Ecodynamics 2024, 19, 465–475. [Google Scholar] [CrossRef]
- Bindajam, A.A.; Mallick, J.; AlQadhi, S.; Singh, C.K.; Hang, H.T. Impacts of vegetation and topography on land surface temperature variability over the semi-arid mountain cities of Saudi Arabia. Atmosphere 2020, 11, 762. [Google Scholar] [CrossRef]
- Awasthi, M.P. Mapping and analyzing temporal variability of spectral indices in the lowland region of Far Western Nepal. Water Pract. Technol. 2023, 18, 2971–2988. [Google Scholar] [CrossRef]
- Peng, X.; Wu, W.; Zheng, Y.; Sun, J.; Hu, T.; Wang, P. Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Sci. Rep. 2020, 10, 10451. [Google Scholar] [CrossRef]
- Taripanah, F.; Ranjbar, A. Quantitative analysis of spatial distribution of land surface temperature (LST) in relation Ecohydrological, terrain and socio- economic factors based on Landsat data in mountainous area. Adv. Sp. Res. 2021, 68, 3622–3640. [Google Scholar] [CrossRef]
- Nitis, T.; Klaic, Z.B.; Moussiopoulos, N. Effects of topography on urban heat island. In Proceedings of the 10th Conference on Harmonisation Within Atmospheric Dispersion Modelling for Regulatory Purposes, Crete, Greece, 17–20 October 2005; Volume 1, pp. 473–477. [Google Scholar]
- Andrés-Anaya, P.; Sánchez-Aparicio, M.; del Pozo, S.; Lagüela, S. Correlation of Land Surface Temperature with IR Albedo for the Analysis of Urban Heat Island †. Eng. Proc. 2021, 8, 9. [Google Scholar]
- Xu, F.; Shen, Y.; Zheng, M.; Zhang, X.; Zuo, Y.; Wang, X.; Zhang, M. Characterizing the Thermal Effects of Urban Morphology Through Unsupervised Clustering and Explainable AI. Remote Sens. 2025, 17, 3211. [Google Scholar] [CrossRef]
- Singh, S.; Kushwaha, S.K.P.; Jain, K. a Correlation Analysis of Land Surface Temperature and Evapotranspiration in an Urban Setting. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2023, 48, 1569–1574. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Z.; Wen, Q.; Chen, J.; Kojima, S. Spatiotemporal Land Use/Land Cover Changes and Impact on Urban Thermal Environments: Analyzing Cool Island Intensity Variations. Sustainability 2024, 16, 3205. [Google Scholar] [CrossRef]
- Achmad, A.; Ramli, I.; Nizamuddin, N.; Gunawan, A.; Fakhrana, S.Z.; Zhong, X. The impact of land use and land cover changes on ecosystem service value in Aceh Besar Regency, Aceh, Indonesia. Land 2024, 13, 69–76. [Google Scholar] [CrossRef]
- Basnet, P.; Grieger, S.; Putzenlechner, B.; Seidel, D. Forests with high structural complexity contribute more to land surface cooling: Empirical support for management for complexity. J. For. Res. 2025, 36, 59. [Google Scholar] [CrossRef]
- Gök, D.T.; Scherler, D.; Wulf, H. Land surface temperature trends derived from Landsat imagery in the Swiss Alps. Cryosphere 2024, 18, 5259–5276. [Google Scholar] [CrossRef]
- Debnath, M.; Poddar, I.; Saha, A.; Islam, N.; Roy, R. Analysis of land surface temperature and its correlation with urban, water, vegetation, and surface indices in the Siliguri Urban Agglomeration area of the Himalayan foothill region. Geomat. Nat. Hazards Risk 2025, 16, 2470393. [Google Scholar] [CrossRef]
- Tran, D.X.; Tran, T.V.; Pearson, D.; Myint, S.W.; Lowry, J.; Nguyen, T.T. Spatiotemporal analysis of forest cover change and associated environmental challenges: A case study in the Central Highlands of Vietnam. Geocarto Int. 2022, 37, 9277–9297. [Google Scholar] [CrossRef]
- Muche, M.; Yemata, G.; Molla, E.; Adnew, W.; Muasya, A.M. Land use and land cover changes and their impact on ecosystem service values in the north-eastern highlands of Ethiopia. PLoS ONE 2023, 18, e0289962. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, D.; Luo, F.; Tian, X.; Bi, X.; Zhou, Z.; Hu, W. High-Temporal-Resolution Modeling of Land Surface Temperature and Groundwater Level Impacts on Shallow Aquifer Thermal Regimes. Water 2025, 17, 1107. [Google Scholar] [CrossRef]
- Zarei, M.; Shahab, S. Nature-Based Solutions in Urban Green Infrastructure: A Systematic Review of Success Factors and Implementation Challenges. Land 2025, 14, 818. [Google Scholar] [CrossRef]
- Cetin, M.; Ozenen Kavlak, M.; Senyel Kurkcuoglu, M.A.; Bilge Ozturk, G.; Cabuk, S.N.; Cabuk, A. Determination of land surface temperature and urban heat island effects with remote sensing capabilities: The case of Kayseri, Türkiye. Nat. Hazards 2024, 120, 5509–5536. [Google Scholar] [CrossRef]
- Parvar, Z.; Salmanmahiny, A. PyLST: A remote sensing application for retrieving land surface temperature (LST) from Landsat data. Environ. Earth Sci. 2024, 83, 373. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Andronache, I. Analysis of Forest Fragmentation and Connectivity Using Fractal Dimension and Succolarity. Land 2024, 13, 138. [Google Scholar] [CrossRef]
- Muhoza, J.P.; Zhou, W. Urban Land Expansion and Spatiotemporal Dynamics of Urban Green Spaces in Africa. Sustainability 2025, 17, 2880. [Google Scholar] [CrossRef]
- Kadić, A.; Maljković, B.; Rogulj, K.; Pamuković, J.K. Green Infrastructure’s Role in Climate Change Adaptation: Summarizing the Existing Research in the Most Benefited Policy Sectors. Sustainability 2025, 17, 4178. [Google Scholar] [CrossRef]
- Shao, H.; Kim, G. A Comprehensive Review of Different Types of Green Infrastructure to Mitigate Urban Heat Islands: Progress, Functions, and Benefits. Land 2022, 11, 1792. [Google Scholar] [CrossRef]







| Sensor | Scene ID | Acquisition Date | Time (GMT) | Season | Note |
|---|---|---|---|---|---|
| Landsat 9 OLI/TIRS | LC91300572024188LGN00 | 6 June 2024 | 08:28:39 | Dry | Use for LST retrieval and LULC classification |
| LULC | Temperature Range (°C) | Characteristic |
|---|---|---|
| Forest highland and water bodies | 9.5–17 | Natural cooling by vegetation and water bodies |
| Moderate vegetation and hillside slopes | 18–19 | Transition between cold and warm zones |
| Agricultural and semi-vegetative land | 20–21 | The impact of land conversion is starting to be felt |
| Urban and intensive agriculture | 22–24 | Decrease in vegetation; increase in solar radiation |
| Dense settlements and UHI zones | 25–32 | Urban heat island effect; hard surface dominance |
| Elevation (m.a.s.l.) | LST Based on Color in the Map (°C) | LST Average (°C) | |
|---|---|---|---|
| 900 | 20–21 | 22–24 | 21.75 |
| 1000 | 20–21 | 22–24 | 21.75 |
| 1100 | 20–21 | 22–24 | 21.75 |
| 1200 | 20–21 | 22–24 | 21.75 |
| 1300 | 18–19 | 20–21 | 19.5 |
| 1400 | 18–19 | 20–21 | 19.5 |
| 1500 | 18–19 | 20–21 | 19.5 |
| 1600 | 9.5–17 | 20–21 | 16.88 |
| 1700 | 9.5–17 | 18–19 | 15.88 |
| 1800 | 9.5–17 | 18–19 | 15.88 |
| 1900 | 9.5–17 | 18–19 | 15.88 |
| 2000 | 9.5–17 | 18–19 | 15.88 |
| 2100 | 9.5–17 | 9.5–17 | 13.25 |
| 2200 | 9.5–17 | 9.5–17 | 13.25 |
| 2300 | 9.5–17 | 9.5–17 | 13.25 |
| 2400 | 9.5–17 | 9.5–17 | 13.25 |
| LULC | Area (Ha) | Proportion of Total Area (%) | Thermal Influence |
|---|---|---|---|
| Water Bodies | 5670 | 39.5% | Strong cooling effect, stabilizes LST |
| Dense Forest | 2187 | 15.2% | High evapotranspiration, lowers LST |
| Grassland | 1530 | 10.6% | Moderate temperature variation |
| Built-up Area | 1438 | 10.0% | High LST due to impervious surfaces |
| Medium Forest | 1159 | 8.1% | Moderate cooling capacity |
| Sparse Forest | 873 | 6.1% | Limited cooling, transitional vegetation |
| Plantation | 832 | 5.8% | Variable impact depending on canopy density |
| Rice Fields | 679 | 4.7% | Strong cooling due to water saturation |
| LULC | Reference Data | Total | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Waterbody | Dense Forest Cover | Moderate Forest Cover | Sparse Forest Cover | Built-up Area | Ricefield | Plantation | Grassland | ||
| 2024 | |||||||||
| Waterbody | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35 |
| Dense Forest Cover | 0 | 28 | 10 | 0 | 0 | 0 | 0 | 0 | 38 |
| Moderate Forest Cover | 0 | 1 | 20 | 0 | 0 | 0 | 0 | 0 | 21 |
| Sparse Forest Cover | 0 | 1 | 3 | 20 | 0 | 0 | 0 | 0 | 24 |
| Built-up Area | 0 | 0 | 0 | 0 | 28 | 0 | 0 | 0 | 28 |
| Ricefield | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 1 | 20 |
| Plantation | 0 | 0 | 0 | 0 | 1 | 1 | 15 | 1 | 18 |
| Grassland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 16 |
| Total | 35 | 30 | 33 | 20 | 29 | 20 | 15 | 18 | 200 |
| Error | 0 | 0.067 | 0.394 | 0 | 0.0345 | 0.05 | 0 | 0.111 | |
| Overall Classified Accuracy (%) | 90.5 | ||||||||
| Kappa Coefficient (%) | 89.04 | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fahmi, M.; Achmad, A.; Husin, H.; Dewi, C. Investigating Land Surface Temperature (LST) and Its Influencing Factors in the Laut Tawar Sub-Watershed, Indonesia, Using Landsat 9 Data. Sustainability 2026, 18, 96. https://doi.org/10.3390/su18010096
Fahmi M, Achmad A, Husin H, Dewi C. Investigating Land Surface Temperature (LST) and Its Influencing Factors in the Laut Tawar Sub-Watershed, Indonesia, Using Landsat 9 Data. Sustainability. 2026; 18(1):96. https://doi.org/10.3390/su18010096
Chicago/Turabian StyleFahmi, Mursal, Ashfa Achmad, Husni Husin, and Cut Dewi. 2026. "Investigating Land Surface Temperature (LST) and Its Influencing Factors in the Laut Tawar Sub-Watershed, Indonesia, Using Landsat 9 Data" Sustainability 18, no. 1: 96. https://doi.org/10.3390/su18010096
APA StyleFahmi, M., Achmad, A., Husin, H., & Dewi, C. (2026). Investigating Land Surface Temperature (LST) and Its Influencing Factors in the Laut Tawar Sub-Watershed, Indonesia, Using Landsat 9 Data. Sustainability, 18(1), 96. https://doi.org/10.3390/su18010096

