Soilless Agriculture at a Crossroads: Strengths, Challenges, and Prospects of Hydroponics, Aquaponics, and Bioponics in Relation to Precision Farming
Abstract
1. Introduction
2. Soilless Agricultural Systems
3. Precision Agriculture Strategies and Their Integration with Soilless Cultivation Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Navaneetham, K.; Arunachalam, D. Global Population Aging, 1950–2050. In Handbook of Aging, Health and Public Policy; Springer Nature: Singapore, 2023; pp. 1–18. ISBN 978-981-16-1914-4. [Google Scholar]
- Hussain, M.; Abdullah, M.; Ashraf, M.N.; Shaheen, A.; Farooqi, Z.U.R.; Abbas, A.; Tariq, Y. World Food Hunger in 2050 and Nano Solutions: Probabilities and Prospects Based on Plant-Based Food. In Nanomaterials for Enhanced Plant-Based Food Production; Elsevier: Amsterdam, The Netherlands, 2025; pp. 11–21. ISBN 978-0-443-23688-4. [Google Scholar]
- Vavilina, A.V.; Komarova, T.V.; Firsova, A.A. Study of Freshwater Resource Availability for Socio-Economic Sustainability in the World. WSEAS Trans. Environ. Dev. 2025, 21, 51–59. [Google Scholar] [CrossRef]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Hydroponic Systems. In Plant Factory; Elsevier: Amsterdam, The Netherlands, 2020; pp. 273–283. ISBN 978-0-12-816691-8. [Google Scholar]
- Nair, C.S.; Manoharan, R.; Nishanth, D.; Subramanian, R.; Neumann, E.; Jaleel, A. Recent Advancements in Aquaponics with Special Emphasis on Its Sustainability. J. World Aquac. Soc. 2025, 56, e13116. [Google Scholar] [CrossRef]
- Gartmann, F.; Hügly, J.; Krähenbühl, N.; Brinkmann, N.; Schmautz, Z.; Smits, T.H.M.; Junge, R. Bioponics—An Organic Closed-Loop Soilless Cultivation System: Yields and Characteristics Compared to Hydroponics and Soil Cultivation. Agronomy 2023, 13, 1436. [Google Scholar] [CrossRef]
- Mir, Y.H.; Mir, S.; Ganie, M.A.; Shah, A.M.; Majeed, U.; Chesti, M.H.; Mansoor, M.; Irshad, I.; Javed, A.; Sadiq, S. Soilless Farming: An Innovative Sustainable Approach in Agriculture. Pharma Innov. J. 2022, 11, 2663–2675. [Google Scholar]
- Gruda, N.S. Advances in Soilless Culture and Growing Media in Today’s Horticulture—An Editorial. Agronomy 2022, 12, 2773. [Google Scholar] [CrossRef]
- Aslanidou, M.; Elvanidi, A.; Mourantian, A.; Levizou, E.; Mente, E.; Katsoulas, N. Evaluation of Productivity and Efficiency of a Large-Scale Coupled or Decoupled Aquaponic System. Sci. Hortic. 2024, 337, 113552. [Google Scholar] [CrossRef]
- Alizaeh, P.; Sodaeizade, H.; Arani, A.M.; Hakimzadeh, M.A. Comparing Yield, Nutrient Uptake and Water Use Efficiency of Nasturtium officinale Cultivated in Aquaponic, Hydroponic, and Soil Systems. Heliyon 2025, 11, e42339. [Google Scholar] [CrossRef]
- Naresh, R.; Jadav, S.K.; Singh, M.; Patel, A.; Singh, B.; Beese, S.; Pandey, S.K. Role of Hydroponics in Improving Water-Use Efficiency and Food Security. Int. J. Environ. Clim. Change 2024, 14, 608–633. [Google Scholar] [CrossRef]
- Gebreegziher, W.G. Soilless Culture Technology to Transform Vegetable Farming, Reduce Land Pressure and Degradation in Drylands. Cogent Food Agric. 2023, 9, 2265106. [Google Scholar] [CrossRef]
- Gonnella, M.; Renna, M. The Evolution of Soilless Systems towards Ecological Sustainability in the Perspective of a Circular Economy: Is It Really the Opposite of Organic Agriculture? Agronomy 2021, 11, 950. [Google Scholar] [CrossRef]
- Sobczak, A.; Kowalczyk, K.; Gajc-Wolska, J.; Kowalczyk, W.; Niedzińska, M. Growth, Yield and Quality of Sweet Pepper Fruits Fertilized with Polyphosphates in Hydroponic Cultivation with LED Lighting. Agronomy 2020, 10, 1560. [Google Scholar] [CrossRef]
- Nithya, R.; Padma, T. Water Waste Management Technique in Self-Sustainable Indoor Aquaponics System. In Proceedings of the E3S Web of Conferences—First International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2023 (ICGEST 2023), Belagavi, India, 5–6 October 2023; EDP Sciences: Les Ulis, France, 2023; Volume 455, p. 01010. [Google Scholar]
- Mielcarek, A.; Kłobukowska, K.; Rodziewicz, J.; Janczukowicz, W.; Bryszewski, K.Ł. Water Nutrient Management in Soilless Plant Cultivation versus Sustainability. Sustainability 2023, 16, 152. [Google Scholar] [CrossRef]
- Nerlich, A.; Dannehl, D. Soilless Cultivation: Dynamically Changing Chemical Properties and Physical Conditions of Organic Substrates Influence the Plant Phenotype of Lettuce. Front. Plant Sci. 2021, 11, 601455. [Google Scholar] [CrossRef]
- Cámara-Zapata, J.M.; Brotons-Martínez, J.M.; Simón-Grao, S.; Martinez-Nicolás, J.J.; García-Sánchez, F. Cost–Benefit Analysis of Tomato in Soilless Culture Systems with Saline Water under Greenhouse Conditions. J. Sci. Food Agric. 2019, 99, 5842–5851. [Google Scholar] [CrossRef]
- Dutta, M.; Gupta, D.; Tharewal, S.; Goyal, D.; Kaur Sandhu, J.; Kaur, M.; Alzubi, A.A.; Mutared Alanazi, J. Internet of Things-Based Smart Precision Farming in Soilless Agriculture: Opportunities and Challenges for Global Food Security. IEEE Access 2025, 13, 34238–34268. [Google Scholar] [CrossRef]
- Kour, K.; Gupta, D.; Gupta, K.; Anand, D.; Elkamchouchi, D.H.; Pérez-Oleaga, C.M.; Ibrahim, M.; Goyal, N. Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation. Sensors 2022, 22, 8905. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae 2024, 10, 49. [Google Scholar] [CrossRef]
- Hanafi, A.M.; Hussien, S.A.; Elnahal, D.H.; Ahmed, S.E.H.; Salem, M.A.; Zainhum, A.R.; Elsayed, A.A.; Ibrahim, M.A.; Abdel Sattar, Y.S. Revolutionizing Agriculture with IoT, Mobile Apps, and Computer Vision in Automated Hydroponic Greenhouses. Int. J. Eng. Appl. Sci. 2025, 2, 1–16. [Google Scholar] [CrossRef]
- Lim, D.; Keerthi, K.; Perumbilavil, S.; Sandeep, C.S.S.; Antony, M.M.; Matham, M.V. A Real-Time On-Site Precision Nutrient Monitoring System for Hydroponic Cultivation Utilizing LIBS. Chem. Biol. Technol. Agric. 2024, 11, 111. [Google Scholar] [CrossRef]
- Mamatha, V.; Kavitha, J.C. Machine Learning-Based Crop Growth Management in Greenhouse Environment Using Hydroponics Farming Techniques. Measurement: Sensors 2023, 25, 100665. [Google Scholar] [CrossRef]
- Sodini, M.; Cacini, S.; Navarro, A.; Traversari, S.; Massa, D. Estimation of Pore-Water Electrical Conductivity in Soilless Tomato Cultivation Using an Interpretable Machine Learning Model. Comput. Electron. Agric. 2024, 218, 108746. [Google Scholar] [CrossRef]
- Mokhtar, A.; El-Ssawy, W.; He, H.; Al-Anasari, N.; Sammen, S.S.; Gyasi-Agyei, Y.; Abuarab, M. Using Machine Learning Models to Predict Hydroponically Grown Lettuce Yield. Front. Plant Sci. 2022, 13, 706042. [Google Scholar] [CrossRef]
- Dhal, S.B.; Bagavathiannan, M.; Braga-Neto, U.; Kalafatis, S. Nutrient Optimization for Plant Growth in Aquaponic Irrigation Using Machine Learning for Small Training Datasets. Artif. Intell. Agric. 2022, 6, 68–76. [Google Scholar] [CrossRef]
- Kumar, P.; Tiwari, P.; Reddy, U.S. Estimating Fish Weight Growth in Aquaponic Farming through Machine Learning Techniques. In Proceedings of the 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 23 June 2023; pp. 1–7. [Google Scholar]
- Khandakar, A.; Elzein, I.M.; Nahiduzzaman, M.; Ayari, M.A.; Ashraf, A.I.; Korah, L.; Zyoud, A.; Ali, H.; Badawi, A. Smart Aquaponics: An Innovative Machine Learning Framework for Fish Farming Optimization. Comput. Electr. Eng. 2024, 119, 109590. [Google Scholar] [CrossRef]
- Du, Y.-H.; Wang, M.-Y.; Yang, L.-H.; Tong, L.-L.; Guo, D.-S.; Ji, X.-J. Optimization and Scale-Up of Fermentation Processes Driven by Models. Bioengineering 2022, 9, 473. [Google Scholar] [CrossRef]
- Wongkiew, S.; Aksorn, S.; Amnuaychaichana, S.; Polprasert, C.; Noophan, P.L.; Kanokkantapong, V.; Koottatep, T.; Surendra, K.C.; Khanal, S.K. Bioponic Systems with Biochar: Insights into Nutrient Recovery, Heavy Metal Reduction, and Microbial Interactions in Digestate-Based Bioponics. Waste Manag. 2024, 178, 267–279. [Google Scholar] [CrossRef]
- Szekely, I.; Jijakli, M.H. Bioponics as a Promising Approach to Sustainable Agriculture: A Review of the Main Methods for Producing Organic Nutrient Solution for Hydroponics. Water 2022, 14, 3975. [Google Scholar] [CrossRef]
- Wang, L.; Norford, L.; Arkin, A.; Niu, G.; de Souza, S.V.; Zahid, A.; Shih, P.M.; Piette, M.A.; Ganapathysubramanian, B. Finding Sustainable, Resilient, and Scalable Solutions for Future Indoor Agriculture. NPJ Sci. Plants 2025, 1, 5. [Google Scholar] [CrossRef]
- Farhangi, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; Farhangi, M. Optimizing Growth Conditions in Vertical Farming: Enhancing Lettuce and Basil Cultivation through the Application of the Taguchi Method. Sci. Rep. 2023, 13, 6717. [Google Scholar] [CrossRef]
- Sowmya, C.; Anand, M.; Indu Rani, C.; Amuthaselvi, G.; Janaki, P. Recent Developments and Inventive Approaches in Vertical Farming. Front. Sustain. Food Syst. 2024, 8, 1400787. [Google Scholar] [CrossRef]
- Gould, D.; Caplow, T. Building-Integrated Agriculture: A New Approach to Food Production. In Metropolitan Sustainability; Elsevier: Amsterdam, The Netherlands, 2012; pp. 147–170. [Google Scholar]
- Lakhiar, I.A.; Yan, H.; Syed, T.N.; Zhang, C.; Shaikh, S.A.; Rakibuzzaman, M.; Vistro, R.B. Soilless Agricultural Systems: Opportunities, Challenges, and Applications for Enhancing Horticultural Resilience to Climate Change and Urbanization. Horticulturae 2025, 11, 568. [Google Scholar] [CrossRef]
- Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Salisu, M.A.; Oyebamiji, Y.O.; Ahmed, O.K.; Shamsudin, N.A.; Fairuz, Y.S.; Yusuff, O.; Yusop, M.R.; Sulaiman, Z.; Arolu, F. A Systematic Review of Emerging Trends in Crop Cultivation Using Soilless Techniques for Sustainable Agriculture and Food Security in Post-Pandemic. AIMS Agric. Food 2024, 9, 666–692. [Google Scholar] [CrossRef]
- Souza, S.V.; Gimenes, R.M.T.; Binotto, E. Economic Viability for Deploying Hydroponic System in Emerging Countries: A Differentiated Risk Adjustment Proposal. Land Use Policy 2019, 83, 357–369. [Google Scholar] [CrossRef]
- Cammies, C.; Mytton, D.; Crichton, R. Exploring Economic and Legal Barriers to Commercial Aquaponics in the EU through the Lens of the UK and Policy Proposals to Address Them. Aquacult. Int. 2021, 29, 1245–1263. [Google Scholar] [CrossRef]
- Eichelsbacher, S.; Luksch, C.R.; Bienert, G.P.; Alcock, T.D.; Steppe, K.; Marcelis, L.F.M.; Orsini, F.; Rosenqvist, E.; Lambers, H.; Runkle, E.; et al. What Is the Limit of Vertical Farming Productivity? Food Energy Secur. 2025, 14, e70061. [Google Scholar] [CrossRef]
- Califano, G.; Crichton-Fock, A.; Spence, C. Consumer Perceptions and Preferences for Urban Farming, Hydroponics, and Robotic Cultivation: A Case Study on Parsley. Future Foods 2024, 9, 100353. [Google Scholar] [CrossRef]
- Okomoda, V.T.; Oladimeji, S.A.; Solomon, S.G.; Olufeagba, S.O.; Ogah, S.I.; Ikhwanuddin, M. Aquaponics Production System: A Review of Historical Perspective, Opportunities and Challenges of Its Adoption. Food Sci. Nutr. 2023, 11, 1157–1165. [Google Scholar] [CrossRef]
- Sousa, R.D.; Bragança, L.; da Silva, M.V.; Oliveira, R.S. Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics. Sustainability 2024, 16, 817. [Google Scholar] [CrossRef]
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Manimozhi, R.; Krishnamoorthy, G. Innovative Techniques in Agriculture: Transitioning from Traditional Farming to Precision and Hydroponic Agriculture. Environ. Qual. Manag. 2025, 34, e70047. [Google Scholar] [CrossRef]
- Aires, L.M.I.; Ispolnov, K.; Luz, T.R.; Pala, H.; Vieira, J.S. Optimization of an Indoor DWC Hydroponic Lettuce Production System to Generate a Low N and P Content Wastewater. Processes 2023, 11, 365. [Google Scholar] [CrossRef]
- Helmy, H.; Nursyahid, A.; Setyawan, T.A.; Hasan, A. Nutrient Film Technique (NFT) Hydroponic Monitoring System. J. Appl. Inf. Commun. Technol. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Nursyahid, A.; Setyawan, T.A.; Sa’diyah, K.; Wardihani, E.D.; Helmy, H.; Hasan, A. Analysis of Deep Water Culture (DWC) Hydroponic Nutrient Solution Level Control Systems. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1108, 012032. [Google Scholar] [CrossRef]
- Ramos, C.; Nobrega, L.; Baras, K.; Gomes, L. Experimental NFT Hydroponics System with Lower Energy Consumption. In Proceedings of the 2019 5th Experiment International Conference (exp.at’19), Funchal, Portugal, 12–14 June 2019; pp. 102–106. [Google Scholar]
- Pandey, R.; Jain, V.; Singh, K.P. Hydroponics Agriculture: Its Status, Scope and Limitations. Indian Agric. Res. Inst. 2009, 20, 20–29. [Google Scholar]
- Quagrainie, K.K.; Flores, R.M.V.; Kim, H.-J.; McClain, V. Economic Analysis of Aquaponics and Hydroponics Production in the U.S. Midwest. J. Appl. Aquac. 2018, 30, 1–14. [Google Scholar] [CrossRef]
- Baniya, U.; Khaniya, S.; Karki, R. Evaluating the Economic Feasibility of Hydroponics in Urban Agriculture at Kathmandu, Nepal. Nepal. J. Agric. Sci. 2025, 28, 187–195. [Google Scholar] [CrossRef]
- Michalis, E.; Giatra, C.-E.; Skordos, D.; Ragkos, A. Assessing the Different Economic Feasibility Scenarios of a Hydroponic Tomato Greenhouse Farm: A Case Study from Western Greece. Sustainability 2023, 15, 14233. [Google Scholar] [CrossRef]
- Lazo, R.P.; Gonzabay, J.Q. Economic Analysis of Hydroponic Lettuce under Floating Root System in Semi-Arid Climate. LGR 2020, 31, 118–130. [Google Scholar]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Pedrazzi, S.; Santunione, G.; Mustone, M.; Cannazza, G.; Citti, C.; Francia, E.; Allesina, G. Techno-Economic Study of a Small-Scale Gasifier Applied to an Indoor Hemp Farm: From Energy Savings to Biochar Effects on Productivity. Energy Convers. Manag. 2021, 228, 113645. [Google Scholar] [CrossRef]
- Rodziewicz, J.; Mielcarek, A.; Janczukowicz, W.; Bryszewski, K. Electric Power Consumption and Current Efficiency of Electrochemical and Electrobiological Rotating Disk Contactors Removing Nutrients from Wastewater Generated in Soilless Plant Cultivation Systems. Water 2020, 12, 213. [Google Scholar] [CrossRef]
- Mielcarek, A.; Kłobukowska, K.; Kalisz, B.; Rodziewicz, J.; Janczukowicz, W. Separation and Recovery of Elements from Drainage Water Arising in Soilless Tomato Cultivation—Application of Electrocoagulation. Sep. Purif. Technol. 2025, 354, 128805. [Google Scholar] [CrossRef]
- Barbosa, G.; Gadelha, F.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.; Halden, R. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef]
- Pomoni, D.I.; Koukou, M.K.; Vrachopoulos, M.G.; Vasiliadis, L. A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use. Energies 2023, 16, 1690. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and Crop Performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Calvo-Agudo, M.; Dregni, J.; González-Cabrera, J.; Dicke, M.; Heimpel, G.E.; Tena, A. Neonicotinoids from Coated Seeds Toxic for Honeydew-Feeding Biological Control Agents. Environ. Pollut. 2021, 289, 117813. [Google Scholar] [CrossRef] [PubMed]
- Viecelli, M.; Pagnoncelli, F.B., Jr.; Trezzi, M.M.; Cavalheiro, B.M.; Gobetti, R.C.R. Response of Wheat Plants to Combinations of Herbicides with Insecticides and Fungicides. Planta Daninha 2019, 37, e019187012. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, J.; Zhou, C.; Ma, L.; Chen, X.; Li, Y.; Sun, X.; Yan, X.; Geng, R.; Wan, Q.; et al. Uptake Kinetics and Subcellular Distribution of Three Classes of Typical Pesticides in Rice Plants. Sci. Total Environ. 2023, 858, 159826. [Google Scholar] [CrossRef]
- Decourtye, A.; Devillers, J. Ecotoxicity of Neonicotinoid Insecticides to Bees. In Insect Nicotinic Acetylcholine Receptors; Thany, S.H., Ed.; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2010; Volume 683, pp. 85–95. [Google Scholar]
- Schuhmann, A.; Schmid, A.P.; Manzer, S.; Schulte, J.; Scheiner, R. Interaction of Insecticides and Fungicides in Bees. Front. Insect Sci. 2022, 1, 808335. [Google Scholar] [CrossRef]
- Kołodziej, B.; Bryk, M.; Otremba, K. Effect of Rockwool and Lignite Dust on Physical State of Rehabilitated Post-Mining Soil. Soil Tillage Res. 2020, 199, 104603. [Google Scholar] [CrossRef]
- Blievernicht, A.; Irrgang, S.; Zander, M.; Ulrichs, C. The Youngest Peat—Sustainable Production of Peat Moss and Its Use as Growing Medium in Professional Horticulture. In Proceedings of the 14th International Peat Congress, Stockholm, Sweden, 3–8 June 2012; Volume 247, pp. 1–7. [Google Scholar]
- Olasehinde, A.A. Biodegradable Growth Media Alternatives for Sustainable Hydroponic Farming. Curr. J. Appl. Sci. Technol. 2025, 44, 147–152. [Google Scholar] [CrossRef]
- Freire, A.L.F.; de Araújo Júnior, C.P.; de Freitas Rosa, M.; de Almeida Neto, J.A.; de Figueirêdo, M.C.B. Environmental Assessment of Bioproducts in Development Stage: The Case of Fiberboards Made from Coconut Residues. J. Clean. Prod. 2017, 153, 230–241. [Google Scholar] [CrossRef]
- Dannehl, D.; Suhl, J.; Ulrichs, C.; Schmidt, U. Evaluation of Substitutes for Rockwool as Growing Substrate for Hydroponic Tomato Production. J. Appl. Bot. Food Qual. 2015, 88, 68–77. [Google Scholar]
- Panova, G.G.; Udalova, O.R.; Kanash, E.V.; Galushko, A.S.; Kochetov, A.A.; Priyatkin, N.S.; Arkhipov, M.V.; Chernousov, I.N. Fundamentals of Physical Modeling of “Ideal” Agroecosystems. Tech. Phys. 2020, 65, 1563–1569. [Google Scholar] [CrossRef]
- Panova, G.G.; Teplyakov, A.V.; Novak, A.B.; Levinskikh, M.A.; Udalova, O.R.; Mirskaya, G.V.; Khomyakov, Y.V.; Shved, D.M.; Ilyin, E.A.; Kuleshova, T.E.; et al. Growth and Development of Leaf Vegetable Crops under Conditions of the Phytotechnical Complex in Antarctica. Agronomy 2023, 13, 3038. [Google Scholar] [CrossRef]
- Beithou, N.; Qandil, A.; Khalid, M.B.; Horvatinec, J.; Ondrasek, G. Review of Agricultural-Related Water Security in Water-Scarce Countries: Jordan Case Study. Agronomy 2022, 12, 1643. [Google Scholar] [CrossRef]
- Ayres, R.U. The History and Future of Technology: Can Technology Save Humanity from Extinction? Springer: Cham, Switzerland, 2021. [Google Scholar]
- Esteves, C.; Silva, A.A.; Mota, M.; Coutinho, J.; Fraga, I.; Fangueiro, D. Replacing Mineral with Organic Fertilisers in Maize Basal Fertilisation: Impacts on GHG Emissions and Yield. Agronomy 2025, 15, 865. [Google Scholar] [CrossRef]
- Verdoliva, S.G.; Gwyn-Jones, D.; Detheridge, A.; Robson, P. Controlled Comparisons between Soil and Hydroponic Systems Reveal Increased Water Use Efficiency and Higher Lycopene and β-Carotene Contents in Hydroponically Grown Tomatoes. Sci. Hortic. 2021, 279, 109896. [Google Scholar] [CrossRef]
- Hamza, A.; Abdelraouf, R.E.; Helmy, Y.I.; El-Sawy, S.M.M. Using Deep Water Culture as One of the Important Hydroponic Systems for Saving Water, Mineral Fertilizers and Improving the Productivity of Lettuce Crop. Int. J. Health Sci. 2022, 6, 2311–2331. [Google Scholar] [CrossRef]
- Yolanda, Y.D.; Kim, S.; Sohn, W.; Shon, H.K.; Yang, E.; Lee, S. Simultaneous Nutrient-Abundant Hydroponic Wastewater Treatment, Direct Carbon Capture, and Bioenergy Harvesting Using Microalgae–Microbial Fuel Cells. Desalination Water Treat. 2025, 321, 100941. [Google Scholar] [CrossRef]
- Komorowska-Kaufman, M.; Majcherek, H.; Klaczyński, E. Factors Affecting the Biological Nitrogen Removal from Wastewater. Process Biochem. 2006, 41, 1015–1021. [Google Scholar] [CrossRef]
- Stanghellini, M.E.; Rasmussen, S.L. Identification and Origin of Plant Pathogenic Microorganisms in Recirculating Nutrient Solutions. Adv. Space Res. 1994, 14, 349–355. [Google Scholar] [CrossRef]
- Mehle, N.; Ravnikar, M. Plant Viruses in Aqueous Environment—Survival, Water Mediated Transmission and Detection. Water Res. 2012, 46, 4902–4917. [Google Scholar] [CrossRef]
- Punja, Z.K.; Rodriguez, G. Fusarium and Pythium Species Infecting Roots of Hydroponically Grown Marijuana (Cannabis sativa L.) Plants. Can. J. Plant Pathol. 2018, 40, 498–513. [Google Scholar] [CrossRef]
- Sava, I.G.; Heikens, E.; Huebner, J. Pathogenesis and Immunity in Enterococcal Infections. Clin. Microbiol. Infect. 2010, 16, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Liu, J.; Addy, M.; Chen, P.; Necas, D.; Cheng, P.; Li, K.; Chai, H.; Liu, Y.; Ruan, R. The Influence of Microalgae on Vegetable Production and Nutrient Removal in Greenhouse Hydroponics. J. Clean. Prod. 2020, 243, 118563. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Deering, A.J.; Kim, H.-J. The Occurrence of Shiga Toxin-Producing E. coli in Aquaponic and Hydroponic Systems. Horticulturae 2020, 6, 1. [Google Scholar] [CrossRef]
- Sergeeva, L.I.; De Bruijn, S.M.; Koot-Gronsveld, E.A.M.; Navratil, O.; Vreugdenhil, D. Tuber Morphology and Starch Accumulation Are Independent Phenomena: Evidence from ipt-Transgenic Potato Lines. Physiol. Plant. 2000, 108, 435–443. [Google Scholar] [CrossRef]
- Evers, T.; Millar, S. Cereal Grain Structure and Development: Some Implications for Quality. J. Cereal Sci. 2002, 36, 261–284. [Google Scholar] [CrossRef]
- Costes, E.; Lauri, P.E.; Laurens, F.; Moutier, N.; Belouin, A.; Delort, F.; Legave, J.-M.; Regnard, J.L. Morphological and Architectural Traits on Fruit Trees Which Could Be Relevant for Genetic Studies: A Review. Acta Hortic. 2004, 663, 349–355. [Google Scholar] [CrossRef]
- Anza, M.; Riga, P.; Garbisu, C. Effects of Variety and Growth Season on the Organoleptic and Nutritional Quality of Hydroponically Grown Tomato. J. Food Qual. 2006, 29, 16–37. [Google Scholar] [CrossRef]
- Korčok, M.; Vietorisová, N.; Martišová, P.; Štefániková, J.; Mravcová, A.; Vietoris, V. Aromatic Profile of Hydroponically and Conventionally Grown Tomatoes. Appl. Sci. 2021, 11, 8012. [Google Scholar] [CrossRef]
- Fontana, L.; Rossi, C.A.; Hubinger, S.Z.; Ferreira, M.D.; Spoto, M.H.F.; Sala, F.C.; Verruma-Bernardi, M.R. Physicochemical Characterization and Sensory Evaluation of Lettuce Cultivated in Three Growing Systems. Hortic. Bras. 2018, 36, 20–26. [Google Scholar] [CrossRef]
- Krastanova, M.; Sirakov, I.; Ivanova-Kirilova, S.; Yarkov, D.; Orozova, P. Aquaponic Systems: Biological and Technological Parameters. Biotechnol. Biotechnol. Equip. 2022, 36, 305–316. [Google Scholar] [CrossRef]
- Naranjo-Robayo, N.; Castro-González, M.; Gómez-Ramírez, E. Quantification and Characterization of Nitrifying Bacteria Isolated from an Aquaponic System. Rev. UDCA Act. Div. Cient. 2025, 28, 1. [Google Scholar] [CrossRef]
- Papadopoulos, D.K.; Lattos, A.; Chatzigeorgiou, I.; Tsaballa, A.; Ntinas, G.K.; Giantsis, I.A. The Influence of Water Nitrate Concentration Combined with Elevated Temperature on Rainbow Trout Oncorhynchus mykiss in an Experimental Aquaponic Setup. Fishes 2024, 9, 74. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G.M. (Eds.) Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Simeonidou, M.; Paschos, I.; Gouva, E.; Kolygas, M.; Perdikaris, C. Performance of a Small-Scale Modular Aquaponic System. Aquac. Aquarium Conserv. Legis. 2012, 5, 182–188. [Google Scholar]
- Lopchan Lama, S.; Marcelino, K.R.; Wongkiew, S.; Surendra, K.C.; Hu, Z.; Lee, J.W.; Khanal, S.K. Recent Advances in Aquaponic Systems: A Critical Review. Rev. Aquac. 2025, 17, e70029. [Google Scholar] [CrossRef]
- Pallottino, F.; Violino, S.; Figorilli, S.; Pane, C.; Aguzzi, J.; Colle, G.; Nerio Nemmi, E.; Montaghi, A.; Chatzievangelou, D.; Antonucci, F.; et al. Applications and Perspectives of Generative Artificial Intelligence in Agriculture. Comput. Electron. Agric. 2025, 230, 109919. [Google Scholar] [CrossRef]
- Upadhyay, A.; Chandel, N.S.; Singh, K.P.; Chakraborty, S.K.; Nandede, B.M.; Kumar, M.; Subeesh, A.; Upendar, K.; Salem, A.; Elbeltagi, A. Deep Learning and Computer Vision in Plant Disease Detection: A Comprehensive Review of Techniques, Models, and Trends in Precision Agriculture. Artif. Intell. Rev. 2025, 58, 92. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A Decision Support System for Urban Agriculture Using Digital Twin: A Case Study with Aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Schoor, M.; Arenas-Salazar, A.P.; Torres-Pacheco, I.; Guevara-González, R.G.; Rico-García, E. A Review of Sustainable Pillars and Their Fulfillment in Agriculture, Aquaculture, and Aquaponic Production. Sustainability 2023, 15, 7638. [Google Scholar] [CrossRef]
- Diatin, I.; Shafruddin, D.; Hude, N.; Sholihah, M.; Mutsmir, I. Production Performance and Financial Feasibility Analysis of Farming Catfish (Clarias gariepinus) Utilizing Water Exchange System, Aquaponic, and Biofloc Technology. J. Saudi Soc. Agric. Sci. 2021, 20, 344–351. [Google Scholar] [CrossRef]
- Vasdravanidis, C.; Alvanou, M.V.; Lattos, A.; Papadopoulos, D.K.; Chatzigeorgiou, I.; Ravani, M.; Liantas, G.; Georgoulis, I.; Feidantsis, K.; Ntinas, G.K.; et al. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals 2022, 12, 2523. [Google Scholar] [CrossRef]
- Zappernick, N.; Nedunuri, K.V.; Islam, K.R.; Khanal, S.; Worley, T.; Laki, S.L.; Shah, A. Techno-Economic Analysis of a Recirculating Tilapia–Lettuce Aquaponics System. J. Clean. Prod. 2022, 365, 132753. [Google Scholar] [CrossRef]
- Cohen, A.; Malone, S.; Morris, Z.; Weissburg, M.; Bras, B. Combined Fish and Lettuce Cultivation: An Aquaponics Life Cycle Assessment. Procedia CIRP 2018, 69, 551–556. [Google Scholar] [CrossRef]
- Saha, S.; Monroe, A.; Day, M.R. Growth, Yield, Plant Quality and Nutrition of Basil (Ocimum basilicum L.) under Soilless Agricultural Systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced Aquaponics: Evaluation of Intensive Tomato Production in Aquaponics vs. Conventional Hydroponics. Agric. Water Manag. 2016, 178, 335–344. [Google Scholar] [CrossRef]
- Petrea, S.M.; Coadă, M.T.; Cristea, V.; Dediu, L.; Cristea, D.; Rahoveanu, A.T.; Zugravu, A.G.; Rahoveanu, M.M.T.; Mocuta, D.N. A Comparative Cost–Effectiveness Analysis in Different Tested Aquaponic Systems. Agric. Agric. Sci. Procedia 2016, 10, 555–565. [Google Scholar] [CrossRef]
- Gillani, S.A.; Abbasi, R.; Martinez, P.; Ahmad, R. Review on Energy Efficient Artificial Illumination in Aquaponics. Cleaner Circ. Bioecon. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Karimanzira, D.; Rauschenbach, T. Optimal Utilization of Renewable Energy in Aquaponic Systems. Energy Power Eng. 2018, 10, 279. [Google Scholar] [CrossRef]
- Aslanidou, M.; Elvanidi, A.; Mourantian, A.; Levizou, E.; Mente, E.; Katsoulas, N. Nutrients Use Efficiency in Coupled and Decoupled Aquaponic Systems. Horticulturae 2023, 9, 1077. [Google Scholar] [CrossRef]
- Rašković, B.; Gebauer, R.; Folorunso, E.A.; Božić, G.; Velíšek, J.; Dvořák, P.; Bořík, A.; Grabic, R.; Mráz, J. Botanical and Microbial Insecticides Application in Aquaponics—Is There a Risk for Biofilter Bacteria and Fish? Front. Mar. Sci. 2022, 9, 1055560. [Google Scholar] [CrossRef]
- Folorunso, E.A.; Roy, K.; Gebauer, R.; Bohatá, A.; Mraz, J. Integrated Pest and Disease Management in Aquaponics: A Metadata-Based Review. Rev. Aquac. 2021, 13, 971–995. [Google Scholar] [CrossRef]
- Soni, S.; Jaiswal, N.; Nayak, S.; Verma, P.K.; Choudhary, V. An Economic Analysis of Marketing and Price Spread of Biopesticides in Chhattisgarh. Int. J. Adv. Biochem. Res. 2024, 8, 438–444. [Google Scholar] [CrossRef]
- Valiente, F.L.; Garcia, R.G.; Domingo, E.J.A.; Estante, S.M.T.; Ochaves, E.J.L.; Villanueva, J.C.C.; Balbin, J.R. Internet of Things (IoT)-Based Mobile Application for Monitoring of Automated Aquaponics System. In Proceedings of the 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 29 November–2 December 2018; pp. 1–6. [Google Scholar]
- Kok, C.L.; Kusuma, I.M.B.P.; Koh, Y.Y.; Tang, H.; Lim, A.B. Smart Aquaponics: An Automated Water Quality Management System for Sustainable Urban Agriculture. Electronics 2024, 13, 820. [Google Scholar] [CrossRef]
- Elings, A.; Campen, J.B.; Victoria, N.G.; van der Valk, O.M.C. A Greenhouse Design for Mexico: The Case of La Huerta, Aguascalientes; Wageningen UR Greenhouse Horticulture: Wageningen, The Netherlands, 2013. [Google Scholar]
- Atique, F. The Effect of Plants on Microbes, Water Quality, and Fish Performance in an Aquaponic System. Ph.D. Thesis, University of Jyväskylä, Jyväskylä, Finland, 2023. [Google Scholar]
- Bracino, A.A.; Concepcion, R.S.; Dadios, E.P.; Vicerra, R.R.P. Biofiltration for Recirculating Aquaponic Systems: A Review. In Proceedings of the 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 3–7 December 2020; pp. 1–6. [Google Scholar]
- Jacobs, T.D.B.; Junge, T.; Pastewka, L. Quantitative Characterization of Surface Topography Using Spectral Analysis. Surf. Topogr. Metrol. Prop. 2017, 5, 013001. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Chang, C.-Y.; Dahms, H.-U.; Lai, H.-T. Effects of Stocking Density of Tilapia on the Performance of a Membrane Filtration–Recirculating Aquaponic System. Desalination Water Treat. 2017, 96, 22–32. [Google Scholar] [CrossRef]
- Declercq, A.M.; Haesebrouck, F.; Van Den Broeck, W.; Bossier, P.; Decostere, A. Columnaris Disease in Fish: A Review with Emphasis on Bacterium–Host Interactions. Vet. Res. 2013, 44, 27. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, P.; Samanta, S. The Impact of Dropsy on Labeo rohita and Its Prevention Strategies. Int. J. Res. Publ. Rev. 2024, 5, 3326–3334. [Google Scholar] [CrossRef]
- Turnbull, J.F.; Richards, R.H.; Robertson, D.A. Gross, Histological and Scanning Electron Microscopic Appearance of Dorsal Fin Rot in Farmed Atlantic Salmon, Salmo salar L., Parr. J. Fish Dis. 1996, 19, 415–427. [Google Scholar] [CrossRef]
- Dinev, T.; Velichkova, K.; Stoyanova, A.; Sirakov, I. Microbial Pathogens in Aquaponics Potentially Hazardous for Human Health. Microorganisms 2023, 11, 2824. [Google Scholar] [CrossRef]
- Jossefa, A.A.; Dos Anjo Viagem, L.; Cerozi, B.D.S.; Chenyambuga, S.W. Microbiological Contamination of Lettuce (Lactuca sativa) Reared with Tilapia in Aquaponic Systems and Use of Bacillus Strains as Probiotics to Prevent Diseases: A Systematic Review. PLoS ONE 2024, 19, e0313022. [Google Scholar] [CrossRef] [PubMed]
- Owen-Going, N.; Sutton, J.C.; Grodzinski, B. Relationships of Pythium Isolates and Sweet Pepper Plants in Single-Plant Hydroponic Units. Can. J. Plant Pathol. 2003, 25, 155–167. [Google Scholar] [CrossRef]
- Van West, P. Saprolegnia parasitica, an Oomycete Pathogen with a Fishy Appetite: New Challenges for an Old Problem. Mycologist 2006, 20, 99–104. [Google Scholar] [CrossRef]
- Love, D.C.; Uhl, M.S.; Genello, L. Energy and Water Use of a Small-Scale Raft Aquaponics System in Baltimore, Maryland, United States. Aquac. Eng. 2015, 68, 19–27. [Google Scholar] [CrossRef]
- Rooker, J.R.; Alvarado Bremer, J.R.; Block, B.A.; Dewar, H.; De Metrio, G.; Corriero, A.; Kraus, R.T.; Prince, E.D.; Rodríguez-Marín, E.; Secor, D.H. Life History and Stock Structure of Atlantic Bluefin Tuna (Thunnus thynnus). Rev. Fish. Sci. 2007, 15, 265–310. [Google Scholar] [CrossRef]
- Hatzonikolakis, Y.; Tsiaras, K.; Tserpes, G.; Somarakis, S.; John, M.A.S.; Peristeraki, P.; Raitsos, D.E.; Triantafyllou, G. Investigating Growth and Reproduction of the Mediterranean Swordfish Xiphias gladius through a Full Life Cycle Bioenergetics Model. Mar. Ecol. Prog. Ser. 2021, 680, 51–77. [Google Scholar] [CrossRef]
- Kok, B.; Malcorps, W.; Tlusty, M.F.; Eltholth, M.M.; Auchterlonie, N.A.; Little, D.C.; Harmsen, R.; Newton, R.W.; Davies, S.J. Fish as Feed: Using Economic Allocation to Quantify the Fish In: Fish Out Ratio of Major Fed Aquaculture Species. Aquaculture 2020, 528, 735474. [Google Scholar] [CrossRef]
- Zlaugotne, B.; Pubule, J.; Blumberga, D. Advantages and Disadvantages of Using More Sustainable Ingredients in Fish Feed. Heliyon 2022, 8, e10527. [Google Scholar] [CrossRef]
- Waithanji, E.; Affognon, D.H.; King’ori, S.; Diiro, G.; Nakimbugwe, D.; Fiaboe, K.K.M. Insects as Feed: Gendered Knowledge, Attitudes and Practices among Poultry and Pond Fish Farmers in Kenya. NJAS–Wageningen J. Life Sci. 2020, 92, 100312. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Mente, E.; Karapanagiotidis, I.T.; Vlontzos, G.; Athanassiou, C.G. Insect-Based Feed Ingredients for Aquaculture: A Case Study for Their Acceptance in Greece. Insects 2021, 12, 586. [Google Scholar] [CrossRef]
- López-Mas, L.; Claret, A.; Reinders, M.J.; Banovic, M.; Krystallis, A.; Guerrero, L. Farmed or Wild Fish? Segmenting European Consumers Based on Their Beliefs. Aquaculture 2021, 532, 735992. [Google Scholar] [CrossRef]
- Korkmaz, C.; Agilkaya, G.Ş.; Karaytug, S.; Ay, Ö. Composition and Human Health Risk Analysis of Elements in Muscle Tissues of Wild and Farmed Fish Species from Northeast Mediterranean. J. Food Compos. Anal. 2022, 111, 104606. [Google Scholar] [CrossRef]
- Rubalingeswari, N.; Thulasimala, D.; Giridharan, L.; Gopal, V.; Magesh, N.S.; Jayaprakash, M. Bioaccumulation of Heavy Metals in Water, Sediment, and Tissues of Major Fisheries from Adyar Estuary, Southeast Coast of India: An Ecotoxicological Impact of a Metropolitan City. Mar. Pollut. Bull. 2021, 163, 111964. [Google Scholar] [CrossRef]
- Anabtawi, F.; Mahmoud, N.; Al-Khatib, I.A.; Hung, Y.-T. Heavy Metals in Harvested Rainwater Used for Domestic Purposes in Rural Areas: Yatta Area, Palestine as a Case Study. Int. J. Environ. Res. Public Health 2022, 19, 2683. [Google Scholar] [CrossRef]
- Garai, P.; Banerjee, P.; Mondal, P.; Saha, N.C. Effect of Heavy Metals on Fishes: Toxicity and Bioaccumulation. J. Clin. Toxicol. 2021, 18, 1–7. [Google Scholar]
- Kiran; Bharti, R.; Sharma, R. Effect of Heavy Metals: An Overview. Mater. Today Proc. 2022, 51, 880–885. [Google Scholar] [CrossRef]
- Mata, F.; dos-Santos, M. Analysis of the Policies and Constraints Limiting the Aquaponics Industry in Portugal. Aquac. Rep. 2025, 40, 102572. [Google Scholar] [CrossRef]
- Fruscella, L.; Kotzen, B.; Milliken, S. Organic Aquaponics in the European Union: Towards Sustainable Farming Practices in the Framework of the New EU Regulation. Rev. Aquac. 2021, 13, 1661–1682. [Google Scholar] [CrossRef]
- Wongkiew, S.; Polprasert, C.; Koottatep, T.; Limpiyakorn, T.; Surendra, K.C.; Khanal, S.K. Chicken Manure-Based Bioponics: Effects of Acetic Acid Supplementation on Nitrogen and Phosphorus Recoveries and Microbial Communities. Waste Manag. 2022, 137, 264–274. [Google Scholar] [CrossRef]
- Heintze, S.; Beckett, M.; Kriem, L.S.; Germer, J.; Asch, F. A Low-Tech Approach to Mobilize Nutrients from Organic Residues to Produce Bioponic Stock Solutions. Agriculture 2024, 14, 928. [Google Scholar] [CrossRef]
- Szekely, I.; Zeaiter, Z.; Jijakli, M.H. Development of a Simple Bioponic Method Using Manure and Offering Comparable Lettuce Yield than Hydroponics. Water 2023, 15, 2335. [Google Scholar] [CrossRef]
- Rachma, D.F.; Maeda, K.; Yamanouchi, Y.; Ueda, H.; Shinohara, M.; Ahn, D.-H. Tomato Production with Organic Fertilizer from Soluble Bonito Fish Waste in Hydroponic Cultivation Systems. Horticulturae 2025, 11, 381. [Google Scholar] [CrossRef]
- Guruchandran, S.; Muninathan, C.; Ganesan, N.D. Novel Strategy for Effective Utilization of Anaerobic Digestate as a Nutrient Medium for Crop Production in a Recirculating Deep Water Culture Hydroponics System. Biomass Convers. Biorefin. 2024, 14, 9491–9503. [Google Scholar] [CrossRef]
- Siregar, M.A.; Lubis, N.; Tarigan, R.R.A. Production of Lactuca sativa with Variations in Liquid Organic Fertilizer Concentration as an Ecoenzyme Derivative in a Hydroponic System. J. Inf. Technol. Comput. Sci. Electr. Eng. 2025, 2, 47–56. [Google Scholar]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and Challenges in Sustainable Treatment and Resource Reuse of Sewage Sludge: A Review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Duan, B.; Feng, Q. Comparison of the Potential Ecological and Human Health Risks of Heavy Metals from Sewage Sludge and Livestock Manure for Agricultural Use. Toxics 2021, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Hušek, M.; Moško, J.; Pohořelý, M. Sewage Sludge Treatment Methods and P-Recovery Possibilities: Current State-of-the-Art. J. Environ. Manag. 2022, 315, 115090. [Google Scholar] [CrossRef]
- Nunes, N.; Ragonezi, C.; Gouveia, C.S.S.; Pinheiro de Carvalho, M.Â.A. Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Czatzkowska, M.; Harnisz, M.; Korzeniewska, E.; Rusanowska, P.; Bajkacz, S.; Felis, E.; Jastrzębski, J.P.; Paukszto, Ł.; Koniuszewska, I. The Impact of Antimicrobials on the Efficiency of Methane Fermentation of Sewage Sludge, Changes in Microbial Biodiversity and the Spread of Antibiotic Resistance. J. Hazard. Mater. 2021, 416, 125773. [Google Scholar] [CrossRef]
- Gomi, R.; Matsumura, Y.; Yamamoto, M.; Tanaka, M.; Komakech, A.J.; Matsuda, T.; Harada, H. Genomic Surveillance of Antimicrobial-Resistant Escherichia coli in Fecal Sludge and Sewage in Uganda. Water Res. 2024, 248, 120830. [Google Scholar] [CrossRef]
- Schilling, T.; Hoelzle, K.; Philipp, W.; Hoelzle, L.E. Survival of Salmonella Typhimurium, Listeria monocytogenes, and ESBL Carrying Escherichia coli in Stored Anaerobic Biogas Digestates in Relation to Different Biogas Input Materials and Storage Temperatures. Agriculture 2022, 12, 67. [Google Scholar] [CrossRef]
- Rusanowska, P.; Zieliński, M.; Dębowski, M.; Harnisz, M.; Korzeniewska, E.; Amenda, E. Inhibition of Methane 978 Fermentation by Antibiotics Introduced to Municipal Anaerobic Sludge. In Proceedings of the Environment, Green 979 Technology, and Engineering International Conference, MDPI, Basel, Switzerland, 18 October 2018; p. 1274. [Google Scholar]
- Jimenez, J.; Latrille, E.; Harmand, J.; Robles, A.; Ferrer, J.; Gaida, D.; Wolf, C.; Mairet, F.; Bernard, O.; Alcaraz-Gonzalez, V.; et al. Instrumentation and Control of Anaerobic Digestion Processes: A Review and Some Research Challenges. Rev. Environ. Sci. Biotechnol. 2015, 14, 615–648. [Google Scholar] [CrossRef]
- Sharma, A.; Chetani, R. A Review on the Effect of Organic and Chemical Fertilizers on Plants. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 677–680. [Google Scholar] [CrossRef]
- Naseem, S.; Imam, A.; Rayadurga, A.S.; Ray, A.; Suman, S.K. Trends in Fisheries Waste Utilization: A Valuable Resource of Nutrients and Valorized Products for the Food Industry. Crit. Rev. Food Sci. Nutr. 2024, 64, 9240–9260. [Google Scholar] [CrossRef]
- Santos, F.S.S.D.; Viana, T.V.D.A.; Costa, S.C.; Sousa, G.G.D.; Azevedo, B.M.D. Growth and Yield of Semi-Hydroponic Bell Pepper under Desalination Wastewater and Organic and Mineral Fertilization. Rev. Caatinga 2020, 32, 1005–1014. [Google Scholar] [CrossRef]
- Radu, G.; Racoviţeanu, G.; Vulpaşu, E.; Vlad, C. Kinetics and Chemistry of Nitrification Process—A Review. Modell. Civil Environ. Eng. 2021, 2021, 55–65. [Google Scholar]
- Bland, C.E.G.; Bayley, R.W.; Thomas, E.V. Accumulation of Slime in Drainage Pipes and Their Effect on Flow Resistance. J. Water Pollut. Control Fed. 1978, 50, 134–143. [Google Scholar]
- Manos, D.-P.; Xydis, G. Hydroponics: Are We Moving towards That Direction Only Because of the Environment? A Discussion on Forecasting and a Systems Review. Environ. Sci. Pollut. Res. 2019, 26, 12662–12672. [Google Scholar] [CrossRef]
- Piao, C.; Kim, S.H.; Lee, J.K.; Choi, W.G.; Kim, Y.Y. Non-Invasive Ultrasonic Inspection of Sludge Accumulation in a Pipe. Ultrasonics 2022, 119, 106602. [Google Scholar] [CrossRef] [PubMed]
- Nadiroh; Fachrial, N.F.H.; Utomo, E. The Effect of Vocational Learning Strategy and Knowledge of Sustainable Development in Increasing Traditional Cattlemen’s Skill in Making Bio-Digester. IOP Conf. Ser. Earth Environ. Sci. 2019, 314, 012050. [Google Scholar] [CrossRef]
- Sharma, B.; Vaish, B.; Monika; Singh, U.K.; Singh, P.; Singh, R.P. Recycling of Organic Wastes in Agriculture: An Environmental Perspective. Int. J. Environ. Res. 2019, 13, 409–429. [Google Scholar] [CrossRef]
- Venglovsky, J.; Martinez, J.; Placha, I. Hygienic and Ecological Risks Connected with Utilization of Animal Manures and Biosolids in Agriculture. Livest. Sci. 2006, 102, 197–203. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision Agriculture—A Worldwide Overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- De Camargo, E.T.; Spanhol, F.A.; Slongo, J.S.; Da Silva, M.V.R.; Pazinato, J.; De Lima Lobo, A.V.; Coutinho, F.R.; Pfrimer, F.W.D.; Lindino, C.A.; Oyamada, M.S.; et al. Low-Cost Water Quality Sensors for IoT: A Systematic Review. Sensors 2023, 23, 4424. [Google Scholar] [CrossRef]
- Rodrigues, G.C. Precision Agriculture: Strategies and Technology Adoption. Agriculture 2022, 12, 1474. [Google Scholar] [CrossRef]
- Mehedi, I.M.; Hanif, M.S.; Bilal, M.; Vellingiri, M.T.; Palaniswamy, T. Remote Sensing and Decision Support System Applications in Precision Agriculture: Challenges and Possibilities. IEEE Access 2024, 12, 44786–44798. [Google Scholar] [CrossRef]
- Rohde, W.; Forni, F. Precision Agriculture for Iceberg Lettuce: From Spatial Sensing to per Plant Decision Making and Control. Smart Agric. Technol. 2025, 10, 100797. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2020, 9, 4843–4873. [Google Scholar] [CrossRef]
- Gorbe, E.; Calatayud, Á. Optimization of Nutrition in Soilless Systems: A Review. In Advances in Botanical Research; Kader, J.-C., Delseny, M., Eds.; Academic Press: London, UK, 2010; Volume 53, pp. 193–245. [Google Scholar]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Senapaty, M.K.; Ray, A.; Padhy, N. IoT-Enabled Soil Nutrient Analysis and Crop Recommendation Model for 1026 Precision Agriculture. Computers 2023, 12, 61. [Google Scholar] [CrossRef]
- Achour, Y.; Ouammi, A.; Zejli, D. Technological Progresses in Modern Sustainable Greenhouses Cultivation as the Path towards Precision Agriculture. Renew. Sustain. Energy Rev. 2021, 147, 111251. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Gotsis, A.; Wan, S.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S.K. Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2020, 21, 17539–17547. [Google Scholar] [CrossRef]
- Sagheer, A.; Mohammed, M.; Riad, K.; Alhajhoj, M. A Cloud-Based IoT Platform for Precision Control of Soilless Greenhouse Cultivation. Sensors 2020, 21, 223. [Google Scholar] [CrossRef] [PubMed]
- Mohmed, G.; Hasanaliyeva, G.; O’Mahony, R.; Lu, C. Optimizing Nutrient Formulations through Artificial Intelligence Model to Reduce Excessive Fertigation in Lettuce Grown in Hydroponic Systems. IEEE Access 2025, 13, 100183–100197. [Google Scholar] [CrossRef]
- Ang, H.N.; Lim, M.W.; Chua, W.S. Design of a Water Quality Monitoring System Utilizing IoT Platform for 1037 Hydroponics Application. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022. [Google Scholar]
- Safira, M.R.; Lim, M.W.; Chua, W.S. Design of Control System for Water Quality Monitoring System for Hydroponics Application. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1257, p. 012027. [Google Scholar] [CrossRef]
- Adiputra, D.; Kristanto, T.; Albana, A.S.; Samuel, G.W.; Andriyani, S.; Kurniawan, C.J.A.; Ramadaniputra, N.; Munna, E.A.N. Water Quality Monitoring with Regression-Based PPM Sensor for Controlling Hydroponic Dissolved Nutrient. J. Ilm. Tek. Elektro Komput. Inform. (JITEKI) 2023, 9, 298–306. [Google Scholar] [CrossRef]
- Subahi, A.F.; Bouazza, K.E. An Intelligent IoT-Based System Design for Controlling and Monitoring Greenhouse Temperature. IEEE Access 2020, 8, 125488–125500. [Google Scholar] [CrossRef]
- Hilal, Y.Y.; Khessro, M.K.; van Dam, J.; Mahdi, K. Automatic Water Control System and Environment Sensors in a Greenhouse. Water 2022, 14, 1166. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, V.; Kumar, S.; Jaiswal, S.P.; Bhadoria, V.S. IoT Enabled System to Monitor and Control Greenhouse. Mater. Today Proc. 2022, 49, 3137–3141. [Google Scholar] [CrossRef]
- Sahota, H.; Kumar, R.; Kamal, A. A Wireless Sensor Network for Precision Agriculture and Its Performance. Wirel. Commun. Mob. Comput. 2011, 11, 1628–1645. [Google Scholar] [CrossRef]
- Waheed, T.; Bonnell, R.B.; Prasher, S.O.; Paulet, E. Measuring Performance in Precision Agriculture: CART—A Decision Tree Approach. Agric. Water Manag. 2006, 84, 173–185. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Panagiotopoulou, V.C. Carbon Footprint of Manufacturing Processes: Conventional vs. Non-Conventional. Processes 2022, 10, 1858. [Google Scholar] [CrossRef]
- Pasca, E.M.; Delinschi, D.; Erdei, R.; Baraian, I.; Matei, O.D. A Vulnerable-by-Design IoT Sensor Framework for Cybersecurity in Smart Agriculture. Agriculture 2025, 15, 1253. [Google Scholar] [CrossRef]
- Cambra, C.; Sendra, S.; Lloret, J.; Lacuesta, R. Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors 2018, 18, 1333. [Google Scholar] [CrossRef] [PubMed]
- Maucieri, C.; Nicoletto, C.; Van Os, E.; Anseeuw, D.; Van Havermaet, R.; Junge, R. Hydroponic Technologies. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 157–199. [Google Scholar]
- Zou, X.; Liu, W.; Huo, Z.; Wang, S.; Chen, Z.; Xin, C.; Bai, Y.; Liang, Z.; Gong, Y.; Qian, Y.; et al. Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things. Sensors 2023, 23, 2528. [Google Scholar] [CrossRef]
- Goddek, S.; Körner, O. A Fully Integrated Simulation Model of Multi-Loop Aquaponics: A Case Study for System Sizing in Different Environments. Agric. Syst. 2019, 171, 143–154. [Google Scholar] [CrossRef]
- De Winter, C.; Palleti, V.R.; Worm, D.; Kooij, R. Measuring Imperfections of Water Quality Sensors in Water Distribution Networks. Meas. Sci. Technol. 2019, 30, 095101. [Google Scholar] [CrossRef]
- Licastro, A.; Salomone, R.; Mondello, G.; Calabrò, G. Soil-Less Is More? A Comparative Life Cycle Assessment Case Study of Agricultural Growing Methods. Int. J. Life Cycle Assess. 2025, 30, 1705–1723. [Google Scholar] [CrossRef]
- Nederhoff, E.; Stanghellini, C. Water Use Efficiency of Tomatoes. Pract. Hydroponics Greenh. 2010, 115, 52–59. [Google Scholar]
- Huang, G.; Zhang, Y.; He, J.; Cao, J. Fault Tolerance in Data Gathering Wireless Sensor Networks. Comput. J. 2011, 54, 976–987. [Google Scholar] [CrossRef]
- Andersson, J.A.; Sumberg, J. Knowledge Politics in Development-Oriented Agronomy. In Agronomy for Development; Routledge: London, UK, 2017; pp. 1–13. [Google Scholar]
- Djafour, S.; Pichon, L.; Crestey, T.; Ploteau, B.; Tisseyre, B. Designing Relevant Precision Agriculture Training Courses for Technical Advisors. In Precision Agriculture’23; Wageningen Academic Publishers: Wageningen, The Netherlands, 2023; pp. 1075–1081. [Google Scholar]
- Ivanov, B.; Sokolova, E. The Role of Agriculture for Income and Employment in Bulgarian Rural Areas. In Proceedings of the International Scientific Conference “Strategies for the Agri-Food Sector and Rural Areas-Dilemmas of Development”, Licheń Stary, Poland, 19–21 June 2017; pp. 19–21. [Google Scholar]
- Norboeva, D.J.; Gaffarov, A.B. Automation and the Future of Work: Assessing the Role of Labor Flexibility. Anal. World Sci. Views Int. Sci. J. 2025, 3, 20–28. [Google Scholar]
- Gaion, L.A.; Braz, L.T.; Carvalho, R.F. Grafting in Vegetable Crops: A Great Technique for Agriculture. Int. J. Veg. Sci. 2018, 24, 85–102. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Bibbiani, C.; Carmassi, G.; Malorgio, F.; Pardossi, A. Simulation of Crop Water and Mineral Relations in Greenhouse Soilless Culture. Environ. Model. Softw. 2011, 26, 711–722. [Google Scholar] [CrossRef]
- Singh, M.C.; Singh, J.P.; Singh, K.G. Mathematical Modeling of Greenhouse Microclimate under Vertically Trained Soilless Cropped Conditions. Agric. Res. 2022, 11, 672–682. [Google Scholar] [CrossRef]
- Kocian, A.; Carmassi, G.; Cela, F.; Chessa, S.; Milazzo, P.; Incrocci, L. IoT-Based Dynamic Bayesian Prediction of Crop Evapotranspiration in Soilless Cultivations. Comput. Electron. Agric. 2023, 205, 107608. [Google Scholar] [CrossRef]
- Catota-Ocapana, P.; Minaya-Andino, C.; Astudillo, P.; Pichoasamin, D. Smart Control Models Used for Nutrient Management in Hydroponic Crops: A Systematic Review. IEEE Access 2025, 13, 13070–13087. [Google Scholar] [CrossRef]
- Pacco, H.C.; Franco Medina, J.L. Modeling, Simulation and Control of the Nutritional Solution in the Hydroponic Cultivation of Blueberries. Procedia Comput. Sci. 2025, 253, 2971–2979. [Google Scholar] [CrossRef]
- Morales-García, J.; Terroso-Sáenz, F.; Cecilia, J.M. A Multi-Model Deep Learning Approach to Address Prediction Imbalances in Smart Greenhouses. Comput. Electron. Agric. 2024, 216, 108537. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart Controlled Environment Agriculture Methods: A Holistic Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Bafort, F.; Jijakli, M.H. Vertical Farming of Medicinal Plants. In Digital Agriculture; Priyadarshan, P.M., Jain, S.M., Penna, S., Al-Khayri, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 129–177. ISBN 978-3-031-43547-8. [Google Scholar]
- Mathieu, J.; Linker, R.; Levine, L.; Albright, L.; Both, A.J.; Spanswick, R.; Wheeler, R.; Wheeler, E.; deVilliers, D.; Langhans, R. Evaluation of the Nicolet Model for Simulation of Short-Term Hydroponic Lettuce Growth and Nitrate Uptake. Biosyst. Eng. 2006, 95, 323–337. [Google Scholar] [CrossRef]
- Sharmin, S.; Hossan, M.T.; Uddin, M.S. A Review of Machine Learning Approaches for Predicting Lettuce Yield in Hydroponic Systems. Smart Agric. Technol. 2025, 11, 100925. [Google Scholar] [CrossRef]
- Mi, J.-X.; Li, A.-D.; Zhou, L.-F. Review Study of Interpretation Methods for Future Interpretable Machine Learning. IEEE Access 2020, 8, 191969–191985. [Google Scholar] [CrossRef]
- Stalport, B.; Raulier, P.; Jijakli, M.H.; Lebeau, F. Modeling Aquaponics: A Review on Available Models and Simulation Tools. Biotechnol. Agron. Soc. Environ. 2022, 26, 155–165. [Google Scholar] [CrossRef]
- Karimanzira, D.; Keesman, K.J.; Kloas, W.; Baganz, D.; Rauschenbach, T. Dynamic Modeling of the INAPRO Aquaponic System. Aquacult. Eng. 2016, 75, 29–45. [Google Scholar] [CrossRef]
- d’Orbcastel, E.R.; Blancheton, J.-P.; Aubin, J. Towards Environmentally Sustainable Aquaculture: Comparison between Two Trout Farming Systems Using Life Cycle Assessment. Aquacult. Eng. 2009, 40, 113–119. [Google Scholar] [CrossRef]
- Kyaw, T.Y.; Ng, A.K. Smart Aquaponics System for Urban Farming. Energy Procedia 2017, 143, 342–347. [Google Scholar] [CrossRef]
- Stouvenakers, G.; Massart, S.; Jijakli, M.H. First Study Case of Microbial Biocontrol Agents Isolated from Aquaponics through the Mining of High-Throughput Sequencing Data to Control Pythium aphanidermatum on Lettuce. Microb. Ecol. 2023, 86, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Garnier, H.; Wang, L. (Eds.) Identification of Continuous-Time Models from Sampled Data; Advances in Industrial 1128 Control; Springer: London, UK, 2008; ISBN 978-1-84800-160-2. [Google Scholar]
- Chatzimparmpas, A.; Martins, R.M.; Jusufi, I.; Kerren, A. A Survey of Surveys on the Use of Visualization for Interpreting Machine Learning Models. Inf. Vis. 2020, 19, 207–233. [Google Scholar] [CrossRef]
- Lo Presti, D.; Di Tocco, J.; Massaroni, C.; Cimini, S.; De Gara, L.; Singh, S.; Raucci, A.; Manganiello, G.; Woo, S.L.; Schena, E.; et al. Current Understanding, Challenges and Perspective on Portable Systems Applied to Plant Monitoring and Precision Agriculture. Biosens. Bioelectron. 2023, 222, 115005. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Molnar, C.; König, G.; Herbinger, J.; Freiesleben, T.; Dandl, S.; Scholbeck, C.A.; Casalicchio, G.; Grosse-Wentrup, M.; Bischl, B. General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models. In xxAI—Beyond Explainable AI; Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., Samek, W., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 13200, pp. 39–68. ISBN 978-3-031-04082-5. [Google Scholar]
- Kadam, S.; Gohokar, V.; Kute, R. Machine Learning and Explainable AI for Thai Basil Growth Prediction in Hydroponics. IEEE Access 2025, 13, 99479–99489. [Google Scholar] [CrossRef]
- Kim, T.; Lee, S.-H.; Kim, J.-O. A Novel Shape-Based Plant Growth Prediction Algorithm Using Deep Learning and Spatial Transformation. IEEE Access 2022, 10, 37731–37742. [Google Scholar] [CrossRef]


| System | Principles | Advantages | Limitations/Challenges | References |
|---|---|---|---|---|
| Hydroponics | Plants cultivated on inert substrates with mineral nutrient solution. | High water-use efficiency; High yields; Precise control of cultivation parameters; Compatible with IoT & AI technologies. | High initial investment; High energy; Dependence on synthetic fertilizers; Unsustainable substrates; Pathogen spread through nutrient solution; Organoleptic differences compared to soil-grown crops. | [53,54,55,58,61,62,63,66,70,72,86] |
| Aquaponics | Integration of aquaculture and hydroponics through nitrifying bacteria. | Reduced water consumption; Dual production of fish and plants; Valorization of organic waste; Potential for high-value products; Circular food production model. | High capital investment; Significant energy demand; Complex management; Fish diseases; Dependence on fishmeal and fish oil; Regulatory barriers. | [95,98,111,112,113,125,126,127,146] |
| Bioponics | Use of organic matter as nutrient source. | Valorization of organic waste; Reduced dependence on mineral fertilizers; Sometimes comparable yields to hydroponics; Aligned with sustainability goals. | Requires large quantities of sludge; Mandatory treatment; Chemical risks and microbial risks; Nutrient imbalance; Slower growth; Pipe clogging from sludge particles; Infrastructure costs and technical expertise. | [6,153,156,157,161,164,165,168,169,170,171] |
| Aspect | Applications/Principles | Advantages | Limitations/Challenges | References |
|---|---|---|---|---|
| Monitoring & Control | Use of IoT, robotics, sensors, EC/pH probes, CO2 sensors, irrigation controllers. | Real-time monitoring of pH, EC, humidity, CO2, temperature; Dynamic control of nutrient dosing, irrigation, and climate; Preventive alerts. | Sensor drift and loss of accuracy; Failures may cause up to 30% yield loss; Frequent recalibration required; High acquisition/maintenance costs. | [172,174,185,186,187,190] |
| Sustainability & Technical Limitations | Automation relies on electronics, rare metals, plastics; advanced climate control. | Increased stability of crop production; Potential yield gains under controlled environments. | Unsustainable materials with high carbon footprint; Waste/recycling challenges; Energy use increased by 10 to 30% compared with traditional greenhouses; Need for technical expertise; Risk of reduced rural employment. | [193,194,199,201,203,205] |
| Modeling Approaches | Mechanistic models (mass balance, nutrient uptake, water dynamics); Data-driven models (RF, XGBoost, predictive algorithms). | Predictive insights beyond sensor data; Reduced need for physical trials; Improved yield predictions; Optimized water, fertilizer, and energy use. | Complexity higher in aquaponics (fish + plants + microbes); Lack of standardized transferable models; Nutrient sensors for NO3−, NH4+, PO43− still unreliable. | [98,103,208,217,218,219] |
| AI & Explainable AI | ML/DL for biomass, nutrient, and growth prediction; Explainability via SHAP values and LIME. | Detects nonlinear relationships; SHAP improves interpretability of complex models; Actionable insights for agronomists. | “Black box” nature of ML/DL limits trust in predictions; Need to integrate agronomic knowledge with AI outputs. | [217,218,225,226,227,228,229,230] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Elakrouch, M.; Mohaddab, M.; Rachid, A.; Jijakli, M.H. Soilless Agriculture at a Crossroads: Strengths, Challenges, and Prospects of Hydroponics, Aquaponics, and Bioponics in Relation to Precision Farming. Sustainability 2026, 18, 64. https://doi.org/10.3390/su18010064
Elakrouch M, Mohaddab M, Rachid A, Jijakli MH. Soilless Agriculture at a Crossroads: Strengths, Challenges, and Prospects of Hydroponics, Aquaponics, and Bioponics in Relation to Precision Farming. Sustainability. 2026; 18(1):64. https://doi.org/10.3390/su18010064
Chicago/Turabian StyleElakrouch, Mohammed, Marouane Mohaddab, Ahmed Rachid, and Mohamed Haissam Jijakli. 2026. "Soilless Agriculture at a Crossroads: Strengths, Challenges, and Prospects of Hydroponics, Aquaponics, and Bioponics in Relation to Precision Farming" Sustainability 18, no. 1: 64. https://doi.org/10.3390/su18010064
APA StyleElakrouch, M., Mohaddab, M., Rachid, A., & Jijakli, M. H. (2026). Soilless Agriculture at a Crossroads: Strengths, Challenges, and Prospects of Hydroponics, Aquaponics, and Bioponics in Relation to Precision Farming. Sustainability, 18(1), 64. https://doi.org/10.3390/su18010064

