A Study on the Impact of Artificial Intelligence on Urban Green Total Factor Efficiency from the Perspective of Spatial Spillover and Threshold Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Analysis and Research Hypotheses
2.1.1. Direct Effects
2.1.2. Indirect Effects
2.1.3. The Spatial Spillover Effect
2.2. Data Sources and Variable Selection
2.2.1. Data Source
2.2.2. Variable Selection
2.3. Model Selection and Model Construction
2.3.1. Model Selection
2.3.2. Model Construction
3. Results
3.1. Empirical Analysis
3.1.1. Descriptive Statistics and Collinearity Diagnosis
3.1.2. Benchmark Regression
3.2. Robustness Test
3.2.1. Extreme Value Treatment
3.2.2. Substitution of Core Variables
3.2.3. Excluding Policy Interference
3.3. Endogeneity Analysis
3.3.1. IV-2SLS
3.3.2. Change in Estimation Method
3.3.3. Lagged Effects
3.3.4. Principal Component Analysis
3.4. Heterogeneity Analysis
3.4.1. Regional Heterogeneity
3.4.2. Urban Scale Heterogeneity
3.4.3. Urban Levels Heterogeneity
3.4.4. Transportation Heterogeneity
3.4.5. Industrial Characteristic Heterogeneity
3.5. Mechanism Analysis
3.6. Spatial Spillover Effect
3.6.1. Global Spatial Autocorrelation Test
3.6.2. Spatial Econometric Model Regression
3.7. Game Theory Analysis
4. Discussion
4.1. Research Significance
4.2. Research Limitations
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuang, J.; Yang, K.; Shi, X.; Yao, Y. Spatial effect of provincial artificial intelligence development on green total factor productivity. Econ. Geogr. 2024, 44, 144–154. [Google Scholar]
- Chen, P.; Gao, J.; Ji, Z.; Liang, H.; Peng, Y. Do artificial intelligence applications affect carbon emission performance?—Evidence from panel data analysis of Chinese cities. Energies 2022, 15, 5730. [Google Scholar] [CrossRef]
- Ou, J.; Zheng, Z.; Ou, X.; Zhang, N. Smart city construction, artificial intelligence development, and the quality of export products: A study based on micro-level data of Chinese enterprises. Sustainability 2024, 16, 8640. [Google Scholar] [CrossRef]
- Acempglu, D.; Restrepo, P. Automation and new tasks: How technology displaces and reinstates labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
- Xu, X.; Ren, X.; Chang, Z. Big data and green development. China Ind. Econ. 2019, 4, 5–22. [Google Scholar]
- Yi, L.; Zhang, W.; Ding, Y. Cloud Computing and Green Total Factor Productivity in Urban China: Evidence from a Spatial Difference-in-Differences Approach. Sustainability 2025, 17, 9828. [Google Scholar] [CrossRef]
- Liang, P.; Sun, X.H.; Qi, L.Z. Does artificial intelligence technology enhance green transformation of enterprises: Based on green innovation perspective. Environ. Dev. Sustain. 2024, 26, 21651–21687. [Google Scholar] [CrossRef]
- Mao, R. Industrial robot application and employment reallocation. China Econ. 2025, 20, 2–31. [Google Scholar]
- Romer, P. Endogenous technological-change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Cao, J.; Spulbar, A.C. Does artificial intelligence improve energy efficiency? Evidence from provincial data in China. Energy Econ. 2025, 142, 108149. [Google Scholar] [CrossRef]
- Yuan, S.; Pan, X.; Wang, M. Environmental regulation, resource misallocation, and industrial low-carbontransformation. Stat. Res. 2025, 42, 79–92. [Google Scholar]
- Chang, L.; Taghizadeh-Hesary, F.; Mohsin, M. Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity. Resour. Policy 2023, 82, 103508. [Google Scholar] [CrossRef]
- Cohen, L.; Daniel, A. Absorptive capacity: A new perspective on learning and innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Xu, F.; Peng, G. Internet infrastructure, digital development and urban energy efficiency. J. Digit. Econ. 2024, 3, 62–74. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, T.; Li, R. Does Artificial Intelligence (AI) enhance green economy efficiency? The role of green finance, trade openness, and R&D investment. Humanit. Soc. Sci. Commun. 2025, 12, 1–22. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Zhang, Y. Research on the impact path of green finance on regional green total factor productivity: Based on fsQCA analysis. Secur. Futures China 2025, 3, 53–60+70. [Google Scholar]
- Meng, Y.; Yu, J.; Yu, Y.; Ren, Y. Impact of green finance on green total factor productivity: New evidence from improved synthetic control methods. J. Environ. Manag. 2024, 372, 123394. [Google Scholar] [CrossRef]
- Zhang, Z. Artificial intelligence, digital knowledge flow and new quality productivity. Stat. Decis. 2025, 19, 17–22. [Google Scholar]
- Jiang, W. Artificial intelligence, new quality productivity and high-quality development of finance. Stat. Decis. 2025, 41, 11–16. [Google Scholar]
- Xu, J.; Li, Z.; Han, X. Accelerating the development of new quality productive forces: Promoting ideas and policy suggestions. Reform 2025, 1, 40–52. [Google Scholar]
- Sun, X.; Li, M. Green technology innovation, new quality productivity and high-quality development of low-carbon economy. Stat. Decis. 2024, 40, 29–34. [Google Scholar]
- Xiang, X.; Yang, G. Factor market integration, spatial knowledge spillovers and low-carbon transition development. Ind. Econ. Res. 2023, 6, 128–142. [Google Scholar]
- Liu, S.; Yang, K.; Peng, Y.; Kuang, J. The spatial effect and mechanism of artificial intelligence development on total factor productivity. Sci. Technol. Manag. Res. 2025, 45, 44–52. [Google Scholar]
- Tan, Y.; Ren, B.; Shi, F. Research on the effect of artificial intelligence affecting synergistic industrial agglomeration. Economist 2023, 6, 66–77. [Google Scholar]
- Du, C.; Cao, X.; Ren, J. Research on the mechanism and effect of artificial intelligence on total factor productivity in China. Nankai Econ. Stud. 2024, 2, 3–24. [Google Scholar]
- Mei, D.; Xiu, C.; Feng, X.; Li, X.; Bai, L. Spatial and temporal change and its inner mechanism of china’s urban vulnerability: An analysis based on the Fifth Census and other resources data. Urban Probl. 2018, 9, 13–19. [Google Scholar]
- Hartwick, J.M. Intergenerational Equity and The Investing of Rents from Exhaustible Resources. Am. Econ. Rev. 1977, 67, 972–974. [Google Scholar]
- Malmquist, S. Index numbers and indifference surfaces. Trab. De Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Zhu, J.; Li, J. Digital economy, technological innovation and urban green economy efficiency—Empirical analysis based on spatial econometric model and mediating effect. Inq. Into Econ. Issues 2023, 2, 65–80. [Google Scholar]
- Liu, Q.; Ma, Y.; Xu, S. Has the development of digital economy improved the efficiency of China’s green economy? China Popul. Resour. Environ. 2022, 32, 72–85. [Google Scholar]
- Ma, Y.; Liu, Q. Research on mechanism and effect of industrial agglomeration on green economic efficiency. Inq. Into Econ. Issues 2021, 7, 101–111. [Google Scholar]
- Acemoglu, D.; Restrepo, P. AIs and Jobs: Evidence from US Labor Markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Xu, J.; Ji, K.; Liu, X.; Xia, Y. Robotics application, gender wage gap, and common prosperity. J. Quant. Technol. Econ. 2022, 39, 134–156. [Google Scholar]
- Zhang, X. Artificial intelligence and low-carbon economics transformation: Mechanisms of action and empirical tests. J. Tech. Econ. Manag. 2025, 5, 44–50. [Google Scholar]
- Feng, N.; Yan, M.; Yan, M. Spatiotemporal evolution and influencing factors of new-quality productivity. Sustainability 2024, 16, 10852. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Halik, T. Measurement and spatiotemporal evolution of the development level of China’s new quality productive forces. Stat. Decis. 2024, 40, 18–23. [Google Scholar]
- Wang, Y. New productive forces: A theoretical frame and index system. J. Northwest Univ. Philos. Social. Sci. Ed. 2024, 54, 35–44. [Google Scholar]
- Zhou, W.; Xu, L. On New quality productive forces: Connotations, characteristics, and key focus areas. Reform 2023, 10, 1–3. [Google Scholar]
- Qian, C.; Jiehua, L. How does aging of labor force impact labor productivity?: Analysis based on panel data of Chinese cities. Popul. Econ. 2024, 1, 34–46. [Google Scholar] [CrossRef]
- Li, H.; Tang, T. The regional gap in quality of labor based on human capital in China. J. Cent. Univ. Financ. Econ. 2015, 8, 72–80+86. [Google Scholar]
- Jiao, H.; Cui, Y.; Zhang, Y. Digital infrastructure construction and urban attraction for high-skilled migrant entrepreneurial talents. Econ. Res. J. 2023, 58, 150–166. [Google Scholar]
- Shen, K.; Lin, J.; Fu, Y. Network infrastructure construction, information accessibility and the innovation boundaries of enterprises. China Ind. Econ. 2023, 1, 57–75. [Google Scholar]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital economy, entrepreneurial activity and high-quality development: Empirical evidence from Chinese cities. Manag. World 2020, 36, 65–76. [Google Scholar]
- Hu, H. Theoretical logic and practical approach of general secretary Xi Jin-ping’s important discussion on new qualitative productivity. Economist 2023, 12, 16–25. [Google Scholar]
- Sun, Y.; Xu, C.; Xia, R. The analysis on the impact of different R&D input channels on the scientific and technological innovation: An empirical research based on the partial least square method. J. Financ. Res. 2009, 9, 165–174. [Google Scholar]
- Yang, M.; Zhang, H.; Sun, Y.; Li, Q. The study of the science and technology innovation ability in eight comprehensive economic areas of China. J. Quant. Technol. Econ. 2018, 35, 3–19. [Google Scholar]
- Huang, X.; Zhang, S. A study on the development path of China’s strategic emerging industries: Big market leading. China Ind. Econ. 2019, 11, 60–78. [Google Scholar]
- Liu, H.; Wang, Y.; Lei, M. Spatial agglomeration of strategic emerging industries in China. J. Quant. Technol. Econ. 2019, 36, 99–116. [Google Scholar]
- Zhu, Z.; Song, X.; Zhang, S.; Chen, L. Industrial policy, innovation behavior and firms’markups:research on the policy of strategic emerging industries. J. Financ. Res. 2021, 6, 59–75. [Google Scholar]
- Chen, N.; Cai, Y. AI Innovation and Coordinated Development of Regional Economy—Analysis of Technological Development and Regional Impact Using Patent Data. Res. Econ. Manag. 2023, 44, 16–40. [Google Scholar]
- Hansen, B.E. Threshold Effects in Non-dynamic Panels: Estimation, Testing and Inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Jiang, T. Mediation and moderation effects in empirical research on causal inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Elhorst, J.P. Specification and Estimation of Spatial Panel Data Models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Liao, G.; Wang, J. Spatial spillover effect and threshold effect of digital financial inclusion on farmers’ income growth—Based on provincial data of China. Sustainability 2022, 14, 1838. [Google Scholar] [CrossRef]
- Li, J. Development of Inclusive Finance and Adjustment of Urban-Rural Income Distribution Imbalance: An Empirical Study Based on Spatial Econometric Models. Res. Int. Financ. 2017, 10, 14–23. [Google Scholar]
- Wang, L.; Shao, J. The energy saving effects of digital infrastructure construction: Empirical evidence from Chinese industry. Energy 2024, 294, 130778. [Google Scholar] [CrossRef]
- Ai, H.; Tan, X.; Mangla, S.K.; Emrouznejad, A.; Liu, F.; Song, M. Renewable energy transition and sustainable development: Evidence from China. Energy Econ. 2025, 143, 108232. [Google Scholar] [CrossRef]
- Jiang, R.; Yang, S.; Wen, J. The Opening of high-speed rail and high-quality economic development: Mechanisms and effects. Nankai Econ. Stud. 2023, 7, 70–89. [Google Scholar]
- Liu, Y.; Deng, N. Does the environmental protection tax effectively produce the quadruple dividend effect? China Population. Resour. Environ. 2023, 33, 35–46. [Google Scholar]











| Green Total Factor Efficiency Accounting Indicators. | |||
|---|---|---|---|
| Primary Indicator | Secondary Indicator | Three-Level Indicator | Unit |
| Input | Capital input | Calculating capital stock using the perpetual inventory method | ten thousand yuan |
| Labor input | Year-end number of employees in the city | ten thousand people | |
| Land input | built-up area | square kilometers | |
| Energy input | total electricity consumption | tens of thousands of kilowatt-hours | |
| Water resource input | total water consumption | billion cubic meters. | |
| Expected Output | Economic output | Actual regional GDP | 100 million yuan |
| Unexpected Output | Three wastes of industry | Industrial wastewater discharge | ten thousand tons |
| Industrial SO2 emissions | ten thousand tons | ||
| Industrial smoke and dust emissions | ten thousand tons | ||
| Indicator | Meaning | Unit | Attribute |
|---|---|---|---|
| Green Credit | Credit amount for environmental protection projects in each province/total provincial credit | % | Positive |
| Green Investment | Investment in environmental pollution control/GDP | % | Positive |
| Green Insurance | Revenue from environmental liability insurance/total insurance premium income | % | Positive |
| Green Bonds | Total issuance of green bonds/total bond issuance | % | Positive |
| Green Support | Fiscal expenditure on environmental protection/total general budget expenditure | % | Positive |
| Green Funds | Total market value of green funds/total market value of all funds | % | Positive |
| Green Equity | Carbon trading, energy rights trading, and emission rights trading/total equity market transactions | % | Positive |
| Primary Indicator | Secondary Indicator | Three-Level Indicator | Attribute |
|---|---|---|---|
| Laborers | Education Level | Average years of education | Positive |
| Total Human Capital | Total human capital of the labor force | Positive | |
| Per Capita Human Capital | Per capita human capital of the labor force | Positive | |
| Innovation and Entrepreneurship Activity | Regional innovation and entrepreneurship index | Positive | |
| Employment Concept | Proportion of researchers in high-tech industries | Positive | |
| Labor Productivity | Real GDP/number of employed persons | Positive | |
| Labor Materials | Traditional Infrastructure | Railway mileage | Positive |
| Highway mileage | Positive | ||
| Transportation network density | Positive | ||
| Digital Development | Optical cable density | Positive | |
| E-commerce sales volume | Positive | ||
| Number of broadband internet access ports | Positive | ||
| Express delivery routes | Positive | ||
| Mobile phone users | Positive | ||
| Per capita telecommunications business volume | Positive | ||
| Technological Innovation | R&D expenditure/GDP | Positive | |
| Number of patent applications and authorizations | Positive | ||
| Innovation Index | Positive | ||
| Technology market transaction volume | Positive | ||
| Labor Objects | Strategic Emerging Industries and Future Industries | Railway mileage | Positive |
| Highway mileage | Positive | ||
| Green Environmental Protection and Pollution Reduction | Forest coverage rate | Positive | |
| Hazardous waste treatment capacity for household waste | Positive | ||
| Energy-saving and environmental protection expenditure/general public budget expenditure | Positive | ||
| Comprehensive utilization of industrial solid waste | Positive |
| Variable | (1) |
|---|---|
| FE | |
| AI | 0.000246 ** |
| (0.000107) | |
| Fin | −0.00108 |
| (0.00231) | |
| Urban | −0.0985 *** |
| (0.0334) | |
| Open | 0.0527 *** |
| (0.0194) | |
| FDI | −0.000272 *** |
| (3.80× 10−5) | |
| Ind | −3.35 × 10−5 |
| (0.000418) | |
| Constant | 0.348 *** |
| (0.0214) | |
| Observations | 2790 |
| Number of id | 279 |
| R-squared | 0.448 |
| Hausman | 146.7 |
| p-value | 0.000 |
| Name | Model Form | Test Conditions | LM Statistic | R-LM Statistic | Wald Statistic | LR Statistic |
|---|---|---|---|---|---|---|
| SDM | 23.67 *** | 21.89 *** | ||||
| SAR | 12.45 *** | 3.69 * | ||||
| SEM | 8.76 *** |
| Variable | N | Mean | p50 | SD | Min | Max |
|---|---|---|---|---|---|---|
| GTFE | 2790 | 0.337 | 0.305 | 0.146 | 0.0840 | 1.144 |
| AI | 2790 | 30.39 | 19.89 | 29.98 | 0.325 | 200.5 |
| Fin | 2790 | 2.589 | 2.278 | 1.235 | 0.635 | 21.30 |
| Urban | 2790 | 0.492 | 0.442 | 0.203 | 0.116 | 2.194 |
| Open | 2790 | 0.185 | 0.0770 | 0.303 | 0 | 2.649 |
| FDI | 2790 | 94.61 | 14 | 287.5 | 0 | 3292 |
| Ind | 2790 | 43.26 | 42.81 | 9.947 | 11.47 | 83.87 |
| AIPA | 2790 | 7.602 | 7.618 | 1.197 | 3.332 | 9.885 |
| AE | 2790 | 4.764 | 4.564 | 1.718 | 0 | 10.72 |
| Variable | VIF | 1/VIF |
|---|---|---|
| Ind | 1.990 | 0.504 |
| Fin | 1.890 | 0.529 |
| Open | 1.740 | 0.575 |
| FDI | 1.640 | 0.611 |
| Urban | 1.610 | 0.620 |
| AI | 1.110 | 0.898 |
| Mean | VIF | 1.660 |
| Variable | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| GTFE | GTFE | GTFE | GTFE | GTFE | GTFE | |
| AI | 0.0004 *** | 0.0004 *** | 0.0003 *** | 0.0003 *** | 0.0002 ** | 0.0002 ** |
| (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | (0.0001) | |
| Fin | −0.0008 | −0.0006 | −0.0007 | −0.0011 | −0.0011 | |
| (0.0023) | (0.0023) | (0.0023) | (0.0023) | (0.0023) | ||
| Urban | −0.0946 *** | −0.1080 *** | −0.0986 *** | −0.0985 *** | ||
| (0.0314) | (0.0337) | (0.0334) | (0.0334) | |||
| Open | 0.0205 | 0.0525 *** | 0.0527 *** | |||
| (0.0189) | (0.0192) | (0.0194) | ||||
| FDI | −0.0003 *** | −0.0003 *** | ||||
| (0.0000) | (0.0000) | |||||
| Ind | −0.0000 | |||||
| (0.0004) | ||||||
| _cons | 0.2767 *** | 0.2784 *** | 0.3258 *** | 0.3282 *** | 0.3474 *** | 0.3484 *** |
| (0.0040) | (0.0062) | (0.0169) | (0.0170) | (0.0171) | (0.0214) | |
| N | 2790 | 2790 | 2790 | 2790 | 279 | 2790 |
| R2 | 0.4340 | 0.4340 | 0.4360 | 0.4363 | 0.4477 | 0.4477 |
| id | Yes | Yes | Yes | Yes | Yes | Yes |
| year | Yes | Yes | Yes | Yes | Yes | Yes |
| Threshold | F-Value | p-Value | Number of Bootstrap Replications | Critical Value | Estimator | 95% Confidence Interval | ||
|---|---|---|---|---|---|---|---|---|
| 1% | 5% | 10% | ||||||
| Single Threshold | 86.13 | 0.0000 | 300 | 27.7041 | 18.5844 | 14.0425 | 75.3430 | [71.3442, 79.2900] |
| Double Threshold | 34.49 | 0.0067 | 300 | 25.9657 | 20.7636 | 16.7399 | 3.4282 | [2.6745, 3.7321] |
| Triple Threshold | 16.61 | 0.0967 | 300 | 26.4768 | 16.7399 | 16.4893 | 5.2750 | [4.5883, 5.4515] |
| Variable | (1) | (2) |
|---|---|---|
| GTFE | GTFE | |
| AI | 0.0002 ** | |
| (0.0001) | ||
| AI (q ≤ 3.4282) | −0.0062 *** | |
| (0.0019) | ||
| AI (3.4382 < q ≤ 5.2750) | 0.0020 *** | |
| (0.0001) | ||
| AI (q ≥ 5.2750) | 0.0016 *** | |
| (0.0001) | ||
| _cons | 0.3484 *** | 0.2931 *** |
| (0.0214) | (0.0026) | |
| N | 2790 | 2790 |
| R2 | 0.4477 | 0.4036 |
| Model | R2 | RMSE | Number of Features | Training Sample Size | Testing Sample Size |
|---|---|---|---|---|---|
| RF | 0.313 | 0.127 | 6 | 2232 | 558 |
| GBDT | 0.504 | 0.108 | 6 | 2232 | 558 |
| Variable | (1) Truncation of Tail | (2) Excluding Municipalities Directly Under the Central Government |
|---|---|---|
| GTFE_w | GTFE | |
| AI_w | 0.0003 *** | 0.0003 ** |
| (0.0001) | (0.0001) | |
| Fin_w | 0.0015 | −0.0008 |
| (0.0022) | (0.0023) | |
| Urban_w | −0.0695 ** | −0.1073 *** |
| (0.0304) | (0.0335) | |
| Open_w | 0.0387 ** | 0.0819 *** |
| (0.0187) | (0.0201) | |
| FDI_w | −0.0003 *** | −0.0004 *** |
| (0.0001) | (0.0000) | |
| Ind_w | −0.0002 | 0.0001 |
| (0.0002) | (0.0004) | |
| _cons | 0.3282 *** | 0.3458 *** |
| (0.0174) | (0.0211) | |
| N | 2790 | 2750 |
| R2 | 0.6377 | 0.4496 |
| id | Yes | Yes |
| year | Yes | Yes |
| Variable | (1) | (2) | (3) |
|---|---|---|---|
| GTFE | GTFE2 | GTFE2 | |
| AI2 | 0.0010 * | 0.0013 *** | |
| (0.0005) | (0.0004) | ||
| Fin | −0.0010 | 0.0020 | 0.0021 |
| (0.0023) | (0.0019) | (0.0019) | |
| Urban | −0.0990 *** | −0.1104 *** | −0.1108 *** |
| (0.0335) | (0.0273) | (0.0273) | |
| Open | 0.0522 *** | 0.0370 ** | 0.0366 ** |
| (0.0194) | (0.0158) | (0.0159) | |
| FDI | −0.0003 *** | −0.0003 *** | −0.0003 *** |
| (0.0000) | (0.0000) | (0.0000) | |
| Ind | −0.0001 | 0.0002 | 0.0001 |
| (0.0004) | (0.0003) | (0.0003) | |
| AI | 0.0003 *** | ||
| (0.0001) | |||
| _cons | 0.3501 *** | 0.3180 *** | 0.3193 *** |
| (0.0214) | (0.0174) | (0.0175) | |
| N | 2790 | 2790 | 2790 |
| R2 | 0.4473 | 0.4197 | 0.4191 |
| id | Yes | Yes | Yes |
| year | Yes | Yes | Yes |
| Variable | (1) Lowcar_Policy | (2) Air_Policy | (3) Both |
|---|---|---|---|
| GTFE | GTFE | GTFE | |
| AI | 0.0003 ** | 0.0002 ** | 0.0003 ** |
| (0.0001) | (0.0001) | (0.0001) | |
| Lowcar_policy | 0.0376 *** | 0.0386 *** | |
| (0.0098) | (0.0099) | ||
| Air_policy | 0.0042 | 0.0035 | |
| (0.0048) | (0.0060) | ||
| Fin | −0.0080 * | −0.0009 | −0.0079 * |
| (0.0046) | (0.0023) | (0.0046) | |
| Urban | −0.1055 *** | −0.1005 *** | −0.1060 *** |
| (0.0374) | (0.0335) | (0.0374) | |
| Open | 0.0919 *** | 0.0517 *** | 0.0910 *** |
| (0.0235) | (0.0195) | (0.0235) | |
| FDI | −0.0004 *** | −0.0003 *** | −0.0004 *** |
| (0.0001) | (0.0000) | (0.0001) | |
| Ind | 0.0009 | −0.0000 | 0.0008 |
| (0.0005) | (0.0004) | (0.0006) | |
| _cons | 0.3124 *** | 0.3499 *** | 0.3140 *** |
| (0.0252) | (0.0215) | (0.0254) | |
| N | 2790 | 2790 | 2790 |
| R2 | 0.4062 | 0.4478 | 0.4063 |
| id | Yes | Yes | Yes |
| year | Yes | Yes | Yes |
| Variable | (1) AIPA | (2) AE | (3) Phone |
|---|---|---|---|
| GTFE | GTFE | GTFE | |
| AI | 0.004 *** | 0.004 *** | 0.004 *** |
| (0.000) | (0.000) | (0.000) | |
| Fin | −0.018 *** | −0.019 *** | −0.031 *** |
| (0.005) | (0.004) | (0.007) | |
| Urban | 0.072 *** | 0.072 *** | 0.072 *** |
| (0.024) | (0.024) | (0.024) | |
| Open | 0.002 | 0.004 | 0.031 * |
| (0.014) | (0.014) | (0.016) | |
| FDI | 0.000 *** | 0.000 *** | 0.000 |
| (0.000) | (0.000) | (0.000) | |
| Ind | −0.000 | 0.000 | 0.005 *** |
| (0.001) | (0.001) | (0.001) | |
| Identification test | 249.597 [0.0000] | 361.242 [0.0000] | 45.501 [0.0000] |
| Weak instrument test | 407.774 {16.38} | 814.634 {16.38} | 47.480 {16.38} |
| N | 2790 | 2790 | 2790 |
| R2 | 0.8253 | 0.8344 | 0.8406 |
| Variable | (1) Difference GMM | (2) Lagged by One Period | (3) Lagged by Two Periods |
|---|---|---|---|
| GTFE | GTFE | GTFE | |
| L.AI | 0.0004 *** | ||
| (0.0001) | |||
| L2.AI | 0.0005 *** | ||
| (0.0002) | |||
| L.GTFE | 0.5406 | ||
| (0.4078) | |||
| AI | 0.0002 * | ||
| (0.0001) | |||
| Fin | −0.0029 | −0.0021 | −0.0021 |
| (0.0019) | (0.0024) | (0.0024) | |
| Urban | −0.0293 | −0.0614 * | 0.0154 |
| (0.0231) | (0.0366) | (0.0406) | |
| Open | 0.0163 | 0.0305 | 0.0384 |
| (0.0349) | (0.0225) | (0.0253) | |
| FDI | −0.0000 | −0.0003 *** | −0.0003 *** |
| (0.0001) | (0.0000) | (0.0001) | |
| Ind | −0.0003 | −0.0001 | −0.0001 |
| (0.0004) | (0.0004) | (0.0004) | |
| _cons | 0.3429 *** | 0.3087 *** | |
| (0.0232) | (0.0257) | ||
| N | 223 | 2511 | 2232 |
| AR(1) | 0.099 | - | - |
| AR(2) | 0.507 | - | - |
| Sargan | 0.390 | - | - |
| Hansen | 0.638 | - | - |
| R2 | - | 0.4524 | 0.4528 |
| id | Yes | Yes | Yes |
| year | Yes | Yes | Yes |
| Variable | (1) |
|---|---|
| PC_GTFE | |
| AI | 0.0010 ** |
| (0.0004) | |
| PC_control | −0.1053 *** |
| (0.0178) | |
| _cons | −0.0671 *** |
| (0.0185) | |
| N | 2770 |
| R2 | 0.0722 |
| id | Yes |
| year | Yes |
| Variable | (1) East | (2) Central | (3) West | (4) Northeast |
|---|---|---|---|---|
| GTFE | GTFE | GTFE | GTFE | |
| AI | −0.0004 * | −0.0004 * | 0.0002 | −0.0000 |
| (0.0002) | (0.0002) | (0.0002) | (0.0003) | |
| Fin | −0.0180 ** | 0.0093 * | 0.0035 | −0.0046 * |
| (0.0090) | (0.0054) | (0.0045) | (0.0026) | |
| Urban | −0.0635 | 0.0732 | −0.1954 ** | −0.1566 |
| (0.0714) | (0.0489) | (0.0790) | (0.1197) | |
| Open | 0.0461 | 0.0861 | 0.0453 | 0.0945 |
| (0.0354) | (0.0687) | (0.0311) | (0.0935) | |
| FDI | −0.0002 *** | −0.0009 * | 0.0003 | 0.0002 |
| (0.0001) | (0.0005) | (0.0004) | (0.0002) | |
| Ind | 0.0007 | 0.0031 *** | −0.0011 ** | 0.0006 |
| (0.0014) | (0.0007) | (0.0005) | (0.0008) | |
| _cons | 0.4167 *** | 0.1379 *** | 0.3388 *** | 0.3061 *** |
| (0.0657) | (0.0381) | (0.0369) | (0.0685) | |
| N | 860 | 790 | 820 | 320 |
| R2 | 0.4538 | 0.5492 | 0.4060 | 0.5880 |
| id | Yes | Yes | Yes | Yes |
| year | Yes | Yes | Yes | Yes |
| Variable | (1) Super Large | (2) Extra Large | (3) Large | (4) Medium and Small |
|---|---|---|---|---|
| GTFE | GTFE | GTFE | GTFE | |
| AI | 0.0044 ** | 0.0014 | 0.0001 | 0.0003 *** |
| (0.0019) | (0.0010) | (0.0002) | (0.0001) | |
| Fin | −0.0449 | −0.0449 * | −0.0171 ** | 0.0018 |
| (0.0362) | (0.0243) | (0.0068) | (0.0022) | |
| Urban | 0.2324 | 0.0846 | 0.1888 ** | −0.0198 |
| (0.1502) | (0.2294) | (0.0894) | (0.0463) | |
| Open | −0.5111 *** | 0.3476 *** | 0.0830 ** | 0.0334 |
| (0.1290) | (0.0844) | (0.0396) | (0.0263) | |
| FDI | 0.0004 *** | −0.0001 | −0.0005 *** | −0.0001 |
| (0.0001) | (0.0001) | (0.0001) | (0.0001) | |
| Ind | 0.0041 | 0.0004 | −0.0010 | 0.0003 |
| (0.0071) | (0.0045) | (0.0010) | (0.0004) | |
| _cons | 0.1101 | 0.2931 | 0.2909 *** | 0.2618 *** |
| (0.4740) | (0.1885) | (0.0618) | (0.0246) | |
| N | 70 | 140 | 790 | 1770 |
| R2 | 0.7821 | 0.5344 | 0.4620 | 0.4707 |
| id | Yes | Yes | Yes | Yes |
| year | Yes | Yes | Yes | Yes |
| Variable | (1) Center | (2) Periphery |
|---|---|---|
| GTFE | GTFE | |
| AI | 0.0007 | 0.0002 ** |
| (0.0006) | (0.0001) | |
| Fin | −0.0118 | −0.0002 |
| (0.0106) | (0.0022) | |
| Urban | −0.1081 | 0.0131 |
| (0.0929) | (0.0401) | |
| Open | −0.1547 ** | 0.0984 *** |
| (0.0717) | (0.0193) | |
| FDI | −0.0001 * | −0.0004 *** |
| (0.0001) | (0.0001) | |
| Ind | 0.0011 | −0.0001 |
| (0.0023) | (0.0004) | |
| _cons | 0.4635 *** | 0.2864 *** |
| (0.1281) | (0.0221) | |
| N | 350 | 2420 |
| R2 | 0.3859 | 0.4864 |
| id | Yes | Yes |
| year | Yes | Yes |
| Variable | (1) Transportation Hub | (2) Non-Transportation Hub |
|---|---|---|
| GTFE | GTFE | |
| AI | −0.0001 | 0.0004 *** |
| (0.0001) | (0.0001) | |
| Fin | −0.0021 | 0.0004 |
| (0.0018) | (0.0042) | |
| Urban | −0.0017 | −0.0882 ** |
| (0.0618) | (0.0410) | |
| Open | 0.1021 *** | 0.0469 * |
| (0.0330) | (0.0240) | |
| FDI | −0.0013 *** | −0.0002 *** |
| (0.0001) | (0.0000) | |
| Ind | −0.0000 | 0.0003 |
| (0.0004) | (0.0006) | |
| _cons | 0.2906 *** | 0.3406 *** |
| (0.0318) | (0.0306) | |
| N | 920 | 1870 |
| R2 | 0.6579 | 0.4142 |
| id | Yes | Yes |
| year | Yes | Yes |
| Variable | (1) Old Industrial Base | (2) Non-Old Industrial Base |
|---|---|---|
| GTFE | GTFE | |
| AI | −0.0001 | 0.0004 *** |
| (0.0001) | (0.0001) | |
| Fin | −0.0021 | 0.0004 |
| (0.0018) | (0.0042) | |
| Urban | −0.0017 | −0.0882 ** |
| (0.0618) | (0.0410) | |
| Open | 0.1021 *** | 0.0469 * |
| (0.0330) | (0.0240) | |
| FDI | −0.0013 *** | −0.0002 *** |
| (0.0001) | (0.0000) | |
| Ind | −0.0000 | 0.0003 |
| (0.0004) | (0.0006) | |
| _cons | 0.2906 *** | 0.3406 *** |
| (0.0318) | (0.0306) | |
| N | 920 | 1870 |
| R2 | 0.6579 | 0.4142 |
| id | Yes | Yes |
| year | Yes | Yes |
| Variable | (1) | (2) | (3) | (4) | (5) | (6) |
|---|---|---|---|---|---|---|
| GF | GTFE | GF | GTFE | NPF | GTFE | |
| AI | 0.0002 *** | 0.0013 *** | 0.0002 *** | 0.0013 *** | 0.0001 *** | 0.0010 *** |
| (0.0000) | (0.0001) | (0.0000) | (0.0001) | (0.0000) | (0.0001) | |
| Fin | 0.0021 *** | 0.0009 | −0.0001 | 0.0009 | ||
| (0.0008) | (0.0024) | (0.0003) | (0.0023) | |||
| Urban | −0.0231 ** | −0.1121 *** | −0.0229 * | −0.1120 *** | −0.0535 *** | −0.0198 |
| (0.0117) | (0.0349) | (0.0117) | (0.0349) | (0.0043) | (0.0351) | |
| Open | 0.0052 | 0.0630 *** | 0.0060 | 0.0632 *** | −0.0262 *** | 0.1012 *** |
| (0.0068) | (0.0197) | (0.0068) | (0.0197) | (0.0025) | (0.0195) | |
| FDI | −0.0000 * | −0.0002 *** | −0.0000 * | −0.0002 *** | −0.0001 *** | −0.0001 *** |
| (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | |
| Ind | −0.0005 *** | 0.0021 *** | −0.0005 *** | 0.0022 *** | −0.0001 | 0.0019 *** |
| (0.0001) | (0.0003) | (0.0001) | (0.0003) | (0.0001) | (0.0003) | |
| GF | 0.2201 *** | 0.2222 *** | ||||
| (0.0553) | (0.0550) | |||||
| NPF | 1.7245 *** | |||||
| (0.1464) | ||||||
| _cons | 0.3226 *** | 0.1945 *** | 0.3248 *** | 0.1944 *** | 0.0720 *** | 0.1548 *** |
| (0.0075) | (0.0247) | (0.0075) | (0.0247) | (0.0027) | (0.0211) | |
| N | 2790 | 2790 | 2790 | 2790 | 2790 | 2790 |
| R2 | 0.6155 | 0.3964 | 0.6144 | 0.3964 | 0.7100 | 0.4245 |
| id | Yes | Yes | Yes | Yes | Yes | Yes |
| year | Yes | Yes | Yes | Yes | Yes | Yes |
| Variable | (1) | (2) |
|---|---|---|
| Interaction | GTFE | |
| AI | 0.0000 *** | 0.0011 *** |
| (0.0000) | (0.0001) | |
| Fin | 0.0004 ** | −0.0001 |
| (0.0002) | (0.0023) | |
| Urban | −0.0341 *** | −0.0118 |
| (0.0026) | (0.0352) | |
| Open | −0.0178 *** | 0.1077 *** |
| (0.0015) | (0.0196) | |
| FDI | −0.0001 *** | −0.0001 ** |
| (0.0000) | (0.0000) | |
| Ind | −0.0001 *** | 0.0023 *** |
| (0.0000) | (0.0003) | |
| Interaction | 2.9754 *** | |
| (0.2496) | ||
| _cons | 0.0394 *** | 0.1543 *** |
| (0.0017) | (0.0211) | |
| N | 2790 | 2790 |
| R2 | 0.6438 | 0.4252 |
| id | Yes | Yes |
| year | Yes | Yes |
| Year | AI | GTFE | ||
|---|---|---|---|---|
| Moran’I | p-Value | Moran’I | p-Value | |
| 2012 | 0.283 | 0.000 | 0.118 | 0.001 |
| 2013 | 0.283 | 0.000 | 0.100 | 0.004 |
| 2014 | 0.283 | 0.000 | 0.075 | 0.003 |
| 2015 | 0.283 | 0.000 | 0.090 | 0.010 |
| 2016 | 0.283 | 0.000 | 0.090 | 0.011 |
| 2017 | 0.283 | 0.000 | 0.106 | 0.003 |
| 2018 | 0.283 | 0.000 | 0.058 | 0.098 |
| 2019 | 0.283 | 0.000 | 0.109 | 0.003 |
| 2020 | 0.283 | 0.000 | 0.142 | 0.000 |
| 2021 | 0.283 | 0.000 | 0.082 | 0.023 |
| Variable | (1) SDM | (2) SEM | (3) SAR | (4) Wx |
|---|---|---|---|---|
| GTFE | GTFE | GTFE | ||
| AI | 0.0003 ** | 0.0002 | 0.0002 | 0.0017 *** |
| (0.0001) | (0.0001) | (0.0001) | (0.0002) | |
| Fin | −0.0188 *** | −0.0264 *** | −0.0257 *** | −0.0167 *** |
| (0.0030) | (0.0028) | (0.0028) | (0.0050) | |
| Urban | 0.1098 *** | 0.1121 *** | 0.1038 *** | −0.0483 |
| (0.0171) | (0.0160) | (0.0156) | (0.0309) | |
| Open | −0.0056 | 0.0304 *** | 0.0293 *** | 0.1011 *** |
| (0.0128) | (0.0111) | (0.0107) | (0.0235) | |
| FDI | 0.0000 * | 0.0000 *** | 0.0000 *** | −0.0000 ** |
| (0.0000) | (0.0000) | (0.0000) | (0.0000) | |
| Ind | 0.0008 ** | 0.0013 *** | 0.0012 *** | 0.0007 |
| (0.0004) | (0.0004) | (0.0004) | (0.0005) | |
| 0.0759 *** | 0.1376 *** | |||
| (0.0292) | (0.0273) | |||
| 0.0982 *** | ||||
| (0.0294) | ||||
| 0.0159 *** | 0.0167 *** | 0.0165 *** | ||
| (0.0004) | (0.0004) | (0.0004) | ||
| N | 2790 | 2790 | 2790 | |
| R2 | 0.2197 | 0.0683 | 0.0719 | |
| year | Yes | Yes | Yes | |
| ll | 1813.9205 | 1750.1755 | 1754.4513 | |
| aic | −3599.8409 | −3484.3510 | −3492.9025 | |
| bic | −3516.7678 | −3436.8806 | −3445.4322 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dai, X.; Qiao, C.; Wang, J. A Study on the Impact of Artificial Intelligence on Urban Green Total Factor Efficiency from the Perspective of Spatial Spillover and Threshold Effects. Sustainability 2026, 18, 519. https://doi.org/10.3390/su18010519
Dai X, Qiao C, Wang J. A Study on the Impact of Artificial Intelligence on Urban Green Total Factor Efficiency from the Perspective of Spatial Spillover and Threshold Effects. Sustainability. 2026; 18(1):519. https://doi.org/10.3390/su18010519
Chicago/Turabian StyleDai, Xujing, Cuixia Qiao, and Ji Wang. 2026. "A Study on the Impact of Artificial Intelligence on Urban Green Total Factor Efficiency from the Perspective of Spatial Spillover and Threshold Effects" Sustainability 18, no. 1: 519. https://doi.org/10.3390/su18010519
APA StyleDai, X., Qiao, C., & Wang, J. (2026). A Study on the Impact of Artificial Intelligence on Urban Green Total Factor Efficiency from the Perspective of Spatial Spillover and Threshold Effects. Sustainability, 18(1), 519. https://doi.org/10.3390/su18010519
