Identification of Potential Flood-Prone Areas in the Republic of Kosovo Using GIS-Based Multi-Criteria Decision-Making and the Analytical Hierarchy Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Floods in Kosovo
- 2010: Flooding occurred due to heavy rainfall, impacting multiple municipalities, including Prishtina, Kamenice, Viti, Gjakova, Dragash, and Skenderaj.
- 2014: Floods were reported in Kosovo.
- 2016: Heavy rainfall, combined with snowmelt, caused flash floods in many municipalities.
- 2021: January floods reached levels last seen in 1979, affecting the city of Vushtrri and surrounding areas, according to Kosovo 2.0.
- 2023: Floods damaged Skenderaj, Mitrovica, Podujeva, Istog, and Klina.
2.3. Methodological Approach
2.3.1. Source Data
2.3.2. MCDM with AHP Methodology
- Diagonal values: , since each element is equally important to itself.
- Reciprocity: .
- Positivity: .
2.3.3. Application of MCDM with AHP Methodology in ArcGIS Pro and QGIS Software
2.3.4. Determination of Factor Weights
2.3.5. Flood Risk Database
3. Results
3.1. Development of the Pairwise Comparison Matrix
3.2. Data Processing Model
3.3. Zoning Based on the Level of Risk for Each Factor
3.4. Flood Risk Zones Map of Kosovo
- The percentage of the municipal area classified under each flood risk level.
- The corresponding land area (in square kilometers) associated with each risk category.
3.5. Data Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AHP | Analytical Hierarchy Process |
| MCDM | Multi-Criteria Decision-Making |
| GIS | Geographic Information System |
| FRDB | Flood Risk Database |
| TWI | Topographic Wetness Index |
| LC | Land Cover |
| LU | Land Use |
| LCLU | Land Cover and Land Use |
References
- Hagos, Y.G.; Andualem, T.G.; Yibeltal, M.; Mengie, M.A. Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Appl. Water Sci. 2022, 12, 148. [Google Scholar] [CrossRef]
- Ullah, K.; Zhang, J. GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLoS ONE 2020, 15, e0229153. [Google Scholar] [CrossRef]
- Khan, S.I.; Hong, Y.; Wang, J.; Yilmaz, K.K.; Gourley, J.J.; Adler, R.F.; Brakenridge, G.R.; Policelli, F.; Habib, S.; Irwin, D. Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria Basin: Implications for hydrologic prediction in Ungauged Basins. IEEE Trans. Geosci. Remote Sens. 2011, 49, 85–95. [Google Scholar] [CrossRef]
- Oxfam International. Oxfam Briefing Paper. Climate, Poverty, and Justice; Oxfam International: Oxford, UK, 2008. [Google Scholar]
- Ghosh, A.; Kar, S.K. Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Nat. Hazards 2018, 94, 349–368. [Google Scholar] [CrossRef]
- Lai, O. What Are the Main Causes and Effects of Floods Around the World? Climate Change CRISIS—Viability of Life on Earth 2023. Available online: https://earth.org/what-are-the-main-causes-and-effects-of-floods (accessed on 8 August 2025).
- European Union. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 Establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). In OJ L 108; Publications Office of the European Union: Luxembourg, 2007; pp. 1–14. Available online: https://data.europa.eu/eli/dir/2007/2/oj (accessed on 8 August 2025).
- IPCC. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2023: Synthesis Report; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Ogato, G.; Bantider, A.; Abebe, K.; Geneletti, D. Geographic information system (GIS)-Based multi-criteria analysis of flooding hazard and risk in Ambo Town and its watershed, West Shoa Zone, Oromia Regional State, Ethiopia. J. Hydrol. Reg. Stud. 2020, 27, 100659. [Google Scholar] [CrossRef]
- Karymbalis, E.; Andreou, M.; Batzakis, D.-V.; Tsanakas, K.; Karalis, S. Integration of GIS-Based Multi-criteria Decision Analysis and Analytic Hierarchy Process for Flood-Hazard Assessment in the Megalo Rema River Catchment (East Attica, Greece). Sustainability 2021, 13, 10232. [Google Scholar] [CrossRef]
- Chen, Y. Flood hazard zone mapping incorporating geographic information system (GIS) and multi-criteria analysis (MCA) techniques. J. Hydrol. 2022, 612, 128268. [Google Scholar] [CrossRef]
- Negese, A.; Worku, D.; Shitaye, A.; Getnet, H. Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, northwestern Ethiopia. Appl. Water Sci. 2022, 12, 255. [Google Scholar] [CrossRef]
- Mourato, S.; Fernandez, P.; Pereira, L.G.; Moreira, M. Assessing Vulnerability in Flood Prone Areas Using Analytic Hierarchy Process—Group Decision Making and Geographic Information System: A Case Study in Portugal. Appl. Sci. 2023, 13, 4915. [Google Scholar] [CrossRef]
- Baftiu, D.; Qerimagiq, K. Një Dekadë Vërshime Në Kosovë; ArcGIS: Prishtina, Kosovo, 2024; Available online: https://storymaps.arcgis.com/stories/850785b8a4664f3382fa9a88e47ed078 (accessed on 8 August 2025).
- Law on Spatial Planning in the Republic of Kosovo (No. 04/L-174). Available online: https://gzk.rks-gov.net/ActDetail.aspx?ActID=8865&langid=2 (accessed on 30 April 2025).
- Idrizi, B.; Sulejmani, V.; Zimeri, Z. Multi-scale map for three levels of spatial planning data sets for the municipality of Vitia in Kosova. In Proceedings of the 7th International Conference on Cartography and GIS, Szopol, Bulgaria, 18–23 June 2018; Available online: https://www.researchgate.net/profile/Bashkim-Idrizi/publication/326986517_MULTI-SCALE_MAP_FOR_THREE_LEVELS_OF_SPATIAL_PLANNING_DATA_SETS_FOR_THE_MUNICIPALITY_OF_VITIA_IN_KOSOVA/links/5b70be8545851546c9fc5272/MULTI-SCALE-MAP-FOR-THREE-LEVELS-OF-SPATIAL-PLANNING-DATA-SETS-FOR-THE-MUNICIPALITY-OF-VITIA-IN-KOSOVA.pdf?__cf_chl_tk=IMmiHLHA5UAVvjVTa1AyKigSkGPDC91cBBVRNop0mXg-1763002699-1.0.1.1-q0DOSZFpKKm_8YT8owFcJc7xir0q51sU0ZpmnG98aUE (accessed on 8 August 2025).
- Nimani, A. Determination of Flood Risk Zones within the Territory of the Republic of Kosovo. Master’s Thesis, Geodesy Department, University of Prishtina, Prishtina, Kosovo, 2025. [Google Scholar]
- Bhuyan, M.J.; Deka, N.; Saikia, A. Micro-spatial flood risk assessment in Nagaon district, Assam (India) using GIS-Based Multi-Criteria decision analysis (MCDA) and analytical hierarchy process(AHP). Risk Anal. 2023, 44, 817–832. [Google Scholar] [CrossRef]
- Gambini, J.M.; Laymito, J.A. Multiparametric AHP-based flood hazard zonation approach in northwestern Peru at basin scale. In Proceedings of the 38th IAHR World Congress, Panama, Panama, 1–6 September 2019. [Google Scholar]
- Wu, J.; Chen, X.; Lu, J. Assessment of long and short-term flood risk using the multi-criteria analysis model with the AHP-Entropy method in Poyang Lake basin. Int. J. Disaster Risk Reduct. 2022, 75, 102968. [Google Scholar] [CrossRef]
- Pathan, A.I.; Girish Agnihotri, P.; Said, S.; Patel, D. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Environ. Monit. Assess. 2022, 194, 509. [Google Scholar] [CrossRef] [PubMed]
- Copernicus. European Flood Awareness System. Available online: https://emergency.copernicus.eu (accessed on 30 April 2025).
- Idrizi, B. Mosto common state map projections for the Republic of Kosova. In Proceedings of the International Cartographic Association, Santiago, Chile, 15–21 November 2009; Available online: https://icaci.org/files/documents/ICC_proceedings/ICC2009/html/nonref/10_2.pdf (accessed on 8 August 2025).
- Idrizi, B.; Meha, M.; Ismaili, F.; Nikolli, P. Calculation of the national area of the Republic of Kosova. In Proceedings of the FIG Working Week, Rome, Italy, 6–10 May 2012; Available online: http://fig.net/pub/fig2012/ppt/ts02m/TS02M_idrizi_meha_et_al_6050_ppt.pdf (accessed on 30 April 2025).
- Hydrometeorological Institute of Kosovo. Vjetari Hidrometeorologjik. 2022. Available online: https://ihmk-rks.net/?page=1,11 (accessed on 30 April 2025).
- Hoti, A. Raporti i Ministrit Murati Vërteton Që S’janë Paguar Dëmet e Vërshimeve as Në 2022 as Në 2023; Ekonomia Online: Prishtina, Kosovo, 2023; Available online: https://ekonomiaonline.com/hoti-raporti-i-ministrit-murati-verteton-qe-sjane-paguar-demet-e-vershimeve-as-ne-2022-as-ne-2023 (accessed on 8 August 2025).
- ARPL. Raporti i vërshimeve në Kosovë. In Ministry of Enbiroment and Spatial Planning of Kosovo; ARPL: Prishtina, Kosovo, 2023; Available online: https://mmphi.rks-gov.net/MMPHIFolder/DocumentsFiles/2023_9dcc8b4b-324f-4f44-a894-918c29d7558d.pdf?fbclid=IwAR3ExuFM15K4lOl1Kn54niuboWzqHZq1GAmq31P08kMS1Mld8wb-y6DkgjQ (accessed on 12 April 2025).
- EU commission. Directive on Open Data and the Re-Use of Public Sector Information. 2019. Available online: https://digital-strategy.ec.europa.eu/en/policies/legislation-open-data (accessed on 8 August 2025).
- Hoque, M.; Tasfia, S.; Ahmed, N.; Pradhan, B. Assessing spatial flood vulnerability at Kalapara Upazila in Bangladesh using an analytic hierarchy process. Sensors 2019, 19, 1302. [Google Scholar] [CrossRef] [PubMed]
- Idrizi, B.; Bajrami Lubishtani, F.; Zeqiri, E. Assessment and Zoning of Areas by Risk Level of Snow Avalanches in Sharr Mountains. Tech. J. 2024, 18, 7–16. [Google Scholar] [CrossRef]
- de Brito, M.M.; Evers, M. Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef]
- Taoukidou, N.; Karpouzos, D.; Georgiou, P. Flood Hazard Assessment Through AHP, Fuzzy AHP, and Frequency Ratio Methods: A Comparative Analysis. Water 2025, 17, 2155. [Google Scholar] [CrossRef]
- Saaty, W.A. The analytic hierarchy process—What and how it is used. Math Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Aydin, M.C.; Birincioğlu, S.E. Flood risk analysis using gis-based analyti-cal hierarchy process: A case study of Bitlis Province. Appl. Water Sci. 2022, 12, 122. [Google Scholar] [CrossRef]
- Lisjak, J.; Tomic, H.; Roncevic, A.; Cetl, V. Developing a Spatial Analysis-Based Model for Assessing Investment Potential in Local Self-Government Using the Analytic Hierarchy Process. Int. J. Geo-Inf. 2025, 14, 81. [Google Scholar] [CrossRef]
- Szabo, Z.K.; Szádoczki, Z.; Bozóki, S.; Stănciulescu, G.C.; Szabo, D. An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development. Sustainability 2021, 13, 2254. [Google Scholar] [CrossRef]
- Osman, S.A.; Das, J. GIS-based flood risk assessment using multi-criteria decision analysis of Shebelle River Basin in southern Somalia. SN Appl. Sci. 2023, 5, 134. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Pamučar, D.; Gigović, L.; Drobnjak, S.; Tien Bui, D.; Duan, H. A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sens. 2019, 11, 62. [Google Scholar] [CrossRef]
- Allafta, H.; Opp, C. GIS-based multi-criteria analysis for flood prone areas mapping in the trans-boundary Shatt Al-Arab basin, Iraq-Iran. Geomat. Nat. Haz. Risk 2021, 12, 2087–2116. [Google Scholar] [CrossRef]
- Dash, P.; Sar, J. Identification and validation of potential flood hazard area using GIS based multi-criteria analysis and satellite data-derived water index. J. Flood Risk Manag. 2020, 13, e12620. [Google Scholar] [CrossRef]
- Vignesh, K.S.; Anandakumar, I.; Ranjan, R.; Borah, D. Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Model. Earth Syst. Environ. 2021, 7, 767–781. [Google Scholar] [CrossRef]
- Izeiroski, S.; Idrizi, B. Geospatial Analysis of Suitable Locations for Exploatation of Small Hydropower and Solar Energy Potentials: A Case Study of Prespa Lake Region in Macedonia. Uluslararası Doğa Mühendislik Bilim. Derg. 2018, 12, 19–25. Available online: https://www.ijnes.org/index.php/ijnes/article/view/308 (accessed on 8 August 2025).
- Idrizi, B. General conditions of spatial data infrastructure. Int. J. Nat. Eng. Sci. 2018, 12, 57–62. Available online: https://www.ijnes.org/index.php/ijnes/article/view/313 (accessed on 8 August 2025).
- Cabrera, J.S.; Lee, H.S. Flood-prone area assessment using GIS-based multi-criteria analysis: A case study in Davao Oriental, Philippines. Water 2019, 11, 2203. [Google Scholar] [CrossRef]
- Abdulrahman, S.; Bwambale, J. A review on flood risk assessment using multi-criteria decision making technique. World Water Policy 2021, 7, 209–221. [Google Scholar] [CrossRef]
- International Federation’s Disaster Relief Emergency Fund. DREF Operation. 2010. Available online: https://reliefweb.int/report/serbia/kosovo-floods-dref-operation-no-mdrkv003-final-report (accessed on 30 April 2025).
- International Federation’s Disaster Relief Emergency Fund. DREF Operation Final Report. 2011. Available online: https://www.ifrc.org/docs/appeals/10/MDRKV003do.pdf (accessed on 30 April 2025).
- Nguyen, H.N.; Fukuda, H.; Nguyen, M.N. Assessment of the Susceptibility of Urban Flooding Using GIS with an Analytical Hierarchy Process in Hanoi, Vietnam. Sustainability 2024, 16, 3934. [Google Scholar] [CrossRef]
- Tariq, A.; Yan, J.; Ghaffar, B.; Qin, S.; Mousa, B.G.; Sharifi, A.; Huq, M.E.; Aslam, M. Flash Flood Susceptibility Assessment and Zonation by Integrating Analytic Hierarchy Process and Frequency Ratio Model with Diverse Spatial Data. Water 2022, 14, 3069. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR). Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations: Geneva, Switzerland, 2015; Available online: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 8 August 2025).









| Id | Dataset | Resolution/Scale | Format | Data Unit | Data Source |
|---|---|---|---|---|---|
| 1 | Precipitation | 0.5° × 0.5° | Raster | mm | University of East Anglia’s climate data repository (https://www.uea.ac.uk/) |
| 2 | LULC (CORINE Land Cover 2018) | 100 m | Raster | Category | WorldCover database (https://esa-worldcover.org/en) |
| 3 | Drainage density | 30 m | Raster | m | EarthExplorer, provided by the United States Geological Survey (USGS) (https://earthexplorer.usgs.gov) |
| 4 | Relief data (DEM and slope) | 30 m | Raster | m | USGS EarthExplorer (https://earthexplorer.usgs.gov) |
| 5 | TWI | 30 m | Raster | m | USGS EarthExplorer (https://earthexplorer.usgs.gov) |
| 6 | Hydrographic network | 1:100,000 | Vector | m | Food and Agriculture Organization (FAO) of the United Nations (https://data.fao.org) |
| 7 | Soil classification | 1:100,000 | Vector | Category | Food and Agriculture Organization (FAO) of the United Nations (https://data.fao.org) |
| 8 | National borders, settlements, and road networks | 1:50,000 | Vector | m | Global Map of Kosova (https://globalmaps.github.io/national.html) |
| Risk Level * | Rainfall (mm/Year) | Drainage Density (km/km2) | Elevation (m) | Slope (°) | TWI | Distance from Rivers |
|---|---|---|---|---|---|---|
| 1 | 750–855 | 0–0.21 | 2150–2658 | 58–72 | −9.18–−4.48 | >1000 |
| 2 | 856–960 | 0.22–0.43 | 1651–2150 | 43–57 | −4.47–−0.26 | 501–1000 |
| 3 | 961–1065 | 0.44–0.64 | 1151–1650 | 29–43 | −0.25–4.91 | 251–500 |
| 4 | 1066–1170 | 0.65–0.87 | 651–1150 | 15–28 | 4.92–9.61 | 101–250 |
| 5 | >1171 | 0.88–1.07 | 270–650 | <14 | 9.63–14.31 | <100 m |
| Risk level * | Land cover | Risk level * | Soil type | Risk Level * | Land use | |
| 1 | Forests | 4 | Pellic Vertisols | 4 | Agricultural Land | |
| 2 | Sparse Vegetation | 4 | Dystric Cambisols | 5 | Built-Up col | |
| 3 | Grasslands/Meadows | 3 | Rendzinas | |||
| 4 | Degraded Vegetation | 2 | Rankers | |||
| 5 | Water Bodies | |||||
| 5 | Herbaceous Wetlands | |||||
| 5 | Mangrove Forests | |||||
| Factor | El | LULC | DfR | Rf | Sl | DD | TWI | ST |
|---|---|---|---|---|---|---|---|---|
| El | 1 | 1.333 | 1.333 | 1.333 | 1.333 | 1.5 | 2 | 2 |
| Sl | 0.75 | 1 | 1 | 1 | 1 | 1.125 | 1.333 | 1.333 |
| Rf | 0.75 | 1 | 1 | 1 | 1 | 1.125 | 1.333 | 1.333 |
| DfR | 0.75 | 1 | 1 | 1 | 1 | 1.125 | 1.333 | 1.333 |
| LULC | 0.75 | 1 | 1 | 1 | 1 | 1.125 | 1.333 | 1.333 |
| DD | 0.667 | 0.889 | 0.889 | 0.889 | 0.889 | 1 | 1.125 | 1.125 |
| TWI | 0.5 | 0.75 | 0.75 | 0.75 | 0.75 | 1.125 | 1 | 1 |
| ST | 0.5 | 0.75 | 0.75 | 0.75 | 0.75 | 1.125 | 1 | 1 |
| Sum | 5.667 | 7.722 | 7.722 | 7.722 | 7.722 | 9.25 | 10.46 | 10.46 |
| Factor | El | LULC | DfR | Rf | Sl | DD | TWI | ST | Weight (Σ) | Weight (%) |
|---|---|---|---|---|---|---|---|---|---|---|
| El | 0.176 | 0.173 | 0.173 | 0.173 | 0.173 | 0.162 | 0.191 | 0.191 | 0.176 | 17 |
| Sl | 0.132 | 0.129 | 0.129 | 0.129 | 0.129 | 0.122 | 0.127 | 0.127 | 0.128 | 13 |
| Rf | 0.132 | 0.129 | 0.129 | 0.129 | 0.129 | 0.122 | 0.127 | 0.127 | 0.128 | 13 |
| DfR | 0.132 | 0.129 | 0.129 | 0.129 | 0.129 | 0.122 | 0.127 | 0.127 | 0.128 | 13 |
| LULC | 0.132 | 0.129 | 0.129 | 0.129 | 0.129 | 0.122 | 0.127 | 0.127 | 0.128 | 13 |
| DD | 0.118 | 0.115 | 0.115 | 0.115 | 0.115 | 0.108 | 0.108 | 0.108 | 0.113 | 11 |
| TWI | 0.088 | 0.097 | 0.097 | 0.097 | 0.097 | 0.122 | 0.096 | 0.096 | 0.099 | 10 |
| ST | 0.088 | 0.097 | 0.097 | 0.097 | 0.097 | 0.122 | 0.096 | 0.096 | 0.099 | 10 |
| Sum | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 100 |
| Municipality | Flood Risk Level | |||||
|---|---|---|---|---|---|---|
| Expressed in (%) | Expressed as Area (km2) | |||||
| Moderate | High | Very High | Moderate | High | Very High | |
| Deçan | 24.54 | 31.90 | 0.82 | 72.14 | 93.78 | 2.41 |
| Dragash | 19.50 | 0.06 | 0.00 | 84.60 | 0.26 | 0.00 |
| Drenas | 50.15 | 11.58 | 0.01 | 138.23 | 31.92 | 0.03 |
| Ferizaj | 49.86 | 9.34 | 0.00 | 171.82 | 32.19 | 0.00 |
| Fushë Kosovë | 61.31 | 15.44 | 0.02 | 51.55 | 12.98 | 0.02 |
| Gjakovë | 46.04 | 44.44 | 2.83 | 270.08 | 260.70 | 16.60 |
| Gjilan | 24.86 | 1.67 | 0.00 | 97.41 | 6.54 | 0.00 |
| Graçanicë | 77.56 | 9.44 | 0.01 | 94.94 | 11.56 | 0.01 |
| Hani i Elezit | 14.19 | 1.71 | 0.00 | 11.79 | 1.42 | 0.00 |
| Istog | 32.70 | 36.17 | 1.95 | 148.58 | 164.34 | 8.86 |
| Junik | 34.17 | 22.14 | 1.09 | 26.57 | 17.22 | 0.85 |
| Kaçanik | 25.24 | 4.08 | 0.00 | 53.33 | 8.62 | 0.00 |
| Kamenice | 28.93 | 2.71 | 0.00 | 120.53 | 11.29 | 0.00 |
| Klinë | 58.10 | 39.51 | 1.91 | 179.54 | 122.09 | 5.90 |
| Kllokot | 66.92 | 20.37 | 0.00 | 15.65 | 4.76 | 0.00 |
| Leposaviç | 27.83 | 5.66 | 0.14 | 150.02 | 30.51 | 0.75 |
| Lipjan | 45.16 | 6.47 | 0.00 | 152.82 | 21.89 | 0.00 |
| Malishevë | 62.35 | 18.99 | 0.19 | 191.05 | 58.19 | 0.58 |
| Mamushë | 31.93 | 63.41 | 4.58 | 3.49 | 6.94 | 0.50 |
| Mitrovicë | 26.71 | 3.97 | 0.02 | 88.33 | 13.13 | 0.07 |
| Mitrovicë e V. | 66.62 | 28.35 | 0.00 | 3.64 | 1.55 | 0.00 |
| Novobërdë | 12.03 | 0.06 | 0.00 | 24.54 | 0.12 | 0.00 |
| Obiliq | 76.66 | 7.16 | 0.01 | 80.37 | 7.51 | 0.01 |
| Partesh | 65.51 | 5.76 | 0.00 | 18.78 | 1.65 | 0.00 |
| Pejë | 24.98 | 32.50 | 2.43 | 150.52 | 195.84 | 14.64 |
| Podujevë | 30.73 | 11.66 | 0.08 | 194.39 | 73.76 | 0.51 |
| Prishtinë | 21.26 | 2.01 | 0.01 | 111.22 | 10.52 | 0.05 |
| Prizren | 35.73 | 19.31 | 0.40 | 223.98 | 121.05 | 2.51 |
| Rahovec | 51.69 | 36.33 | 1.17 | 142.61 | 100.23 | 3.23 |
| Ranillug | 41.97 | 7.75 | 0.00 | 32.58 | 6.02 | 0.00 |
| Shtërpcë | 13.42 | 1.00 | 0.00 | 33.24 | 2.48 | 0.00 |
| Shtime | 40.19 | 14.61 | 0.08 | 54.02 | 19.64 | 0.11 |
| Skënderaj | 55.19 | 4.95 | 0.06 | 206.61 | 18.53 | 0.22 |
| Suharekë | 45.47 | 10.48 | 0.08 | 164.17 | 37.84 | 0.29 |
| Viti | 43.62 | 5.21 | 0.00 | 127.84 | 15.27 | 0.00 |
| Vushtrri | 49.75 | 8.72 | 0.04 | 171.56 | 30.07 | 0.14 |
| Zubin Potok | 27.08 | 4.51 | 0.10 | 90.55 | 15.08 | 0.33 |
| Zveçan | 42.28 | 6.21 | 0.03 | 52.01 | 7.64 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Idrizi, B.; Nimani, A.; Pashova, L. Identification of Potential Flood-Prone Areas in the Republic of Kosovo Using GIS-Based Multi-Criteria Decision-Making and the Analytical Hierarchy Process. Sustainability 2026, 18, 359. https://doi.org/10.3390/su18010359
Idrizi B, Nimani A, Pashova L. Identification of Potential Flood-Prone Areas in the Republic of Kosovo Using GIS-Based Multi-Criteria Decision-Making and the Analytical Hierarchy Process. Sustainability. 2026; 18(1):359. https://doi.org/10.3390/su18010359
Chicago/Turabian StyleIdrizi, Bashkim, Agon Nimani, and Lyubka Pashova. 2026. "Identification of Potential Flood-Prone Areas in the Republic of Kosovo Using GIS-Based Multi-Criteria Decision-Making and the Analytical Hierarchy Process" Sustainability 18, no. 1: 359. https://doi.org/10.3390/su18010359
APA StyleIdrizi, B., Nimani, A., & Pashova, L. (2026). Identification of Potential Flood-Prone Areas in the Republic of Kosovo Using GIS-Based Multi-Criteria Decision-Making and the Analytical Hierarchy Process. Sustainability, 18(1), 359. https://doi.org/10.3390/su18010359

