How Can E-Bikes Accelerate X-Minute City Transitions? User Preferences, Adoption Patterns, and Associated Factors in the Global South
Abstract
1. Introduction and Background
1.1. The X-Minute City Concept: Origins and Adaptations
1.2. E-Bikes Within X-Minute City: Factors, Methods, Equity, and Gaps in the Global South
2. Research Design
2.1. Population, Sample, and Sampling Limitations [62]
Limitations of the Sampling Approach
2.2. Data Collection Method
2.3. Data Analysis Method
3. Analysis and Results
3.1. E-Bike Users’ Perspective
3.2. E-Bikes in the Context of X-Minute City
4. Findings and Discussion
4.1. Characteristics of E-Bike Users Associated with X-Minute City Implementation
4.2. Characteristics of E-Bike Users Facing Challenges in X-Minute City Implementation
4.3. Factors Associated with E-Bike Usage in the Context of the X-Minute City Concept
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| N | Spearman’s Rho | p | Effect Size (Fisher’s z) | SE Effect Size | ||
|---|---|---|---|---|---|---|
| Age | Education | 71 | 0.172 | 0.152 | 0.174 | 0.122 |
| Age | Occupation | 71 | −0.233 | 0.051 | −0.237 | 0.123 |
| Age | Income | 71 | 0.275 | 0.020 | 0.283 | 0.123 |
| Age | Healthy lifestyle | 71 | −0.076 | 0.527 | −0.077 | 0.121 |
| Age | E-bike popularity | 71 | 0.211 | 0.077 | 0.215 | 0.122 |
| Age | vehicle ownerships | 71 | 0.135 | 0.261 | 0.136 | 0.122 |
| Age | traffic condition | 71 | −0.084 | 0.487 | −0.084 | 0.121 |
| Age | Parking problem | 71 | −0.085 | 0.483 | −0.085 | 0.121 |
| Age | Public-transport hub | 71 | −0.036 | 0.769 | −0.036 | 0.121 |
| Age | Cycling duration | 71 | 0.016 | 0.896 | 0.016 | 0.121 |
| Age | Cycling distance | 71 | 0.122 | 0.310 | 0.123 | 0.122 |
| Age | E-bike usage frequency | 71 | 0.098 | 0.417 | 0.098 | 0.121 |
| Education | Occupation | 71 | 0.143 | 0.233 | 0.144 | 0.122 |
| Education | Income | 71 | 0.374 | 0.001 | 0.393 | 0.124 |
| Education | Healthy lifestyle | 71 | 0.121 | 0.314 | 0.122 | 0.122 |
| Education | E-bike popularity | 71 | 0.039 | 0.745 | 0.039 | 0.121 |
| Education | vehicle ownerships | 71 | 0.107 | 0.373 | 0.108 | 0.121 |
| Education | traffic condition | 71 | −0.297 | 0.012 | −0.306 | 0.123 |
| Education | Parking problem | 71 | −0.242 | 0.042 | −0.247 | 0.123 |
| Education | Public-transport hub | 71 | −0.168 | 0.161 | −0.170 | 0.122 |
| Education | Cycling duration | 71 | −0.214 | 0.073 | −0.217 | 0.122 |
| Education | Cycling distance | 71 | −0.201 | 0.093 | −0.204 | 0.122 |
| Education | E-bike usage frequency | 71 | −0.092 | 0.445 | −0.092 | 0.121 |
| Occupation | Income | 71 | 0.145 | 0.228 | 0.146 | 0.122 |
| Occupation | Healthy lifestyle | 71 | 0.180 | 0.134 | 0.182 | 0.122 |
| Occupation | E-bike popularity | 71 | −0.195 | 0.104 | −0.197 | 0.122 |
| Occupation | vehicle ownerships | 71 | −0.005 | 0.968 | −0.005 | 0.120 |
| Occupation | traffic condition | 71 | −0.028 | 0.815 | −0.028 | 0.121 |
| Occupation | Parking problem | 71 | 0.092 | 0.446 | 0.092 | 0.121 |
| Occupation | Public-transport hub | 71 | −0.235 | 0.048 | −0.240 | 0.123 |
| Occupation | Cycling duration | 71 | −0.072 | 0.553 | −0.072 | 0.121 |
| Occupation | Cycling distance | 71 | −0.172 | 0.151 | −0.174 | 0.122 |
| Occupation | E-bike usage frequency | 71 | −0.294 | 0.013 | −0.303 | 0.123 |
| Income | Healthy lifestyle | 71 | 0.156 | 0.194 | 0.157 | 0.122 |
| Income | E-bike popularity | 71 | −0.126 | 0.293 | −0.127 | 0.122 |
| Income | vehicle ownerships | 71 | 0.040 | 0.744 | 0.040 | 0.121 |
| Income | traffic condition | 71 | −0.121 | 0.317 | −0.121 | 0.122 |
| Income | Parking problem | 71 | −0.202 | 0.092 | −0.205 | 0.122 |
| Income | Public-transport hub | 71 | −0.043 | 0.721 | −0.043 | 0.121 |
| Income | Cycling duration | 71 | −0.132 | 0.273 | −0.133 | 0.122 |
| Income | Cycling distance | 71 | −0.166 | 0.166 | −0.168 | 0.122 |
| Income | E-bike usage frequency | 71 | −0.192 | 0.108 | −0.195 | 0.122 |
| Healthy lifestyle | E-bike popularity | 71 | −0.137 | 0.256 | −0.137 | 0.122 |
| Healthy lifestyle | vehicle ownerships | 71 | 0.014 | 0.907 | 0.014 | 0.121 |
| Healthy lifestyle | traffic condition | 71 | −0.060 | 0.621 | −0.060 | 0.121 |
| Healthy lifestyle | Parking problem | 71 | −0.055 | 0.650 | −0.055 | 0.121 |
| Healthy lifestyle | Public-transport hub | 71 | −0.203 | 0.089 | −0.206 | 0.122 |
| Healthy lifestyle | Cycling duration | 71 | −0.089 | 0.461 | −0.089 | 0.121 |
| Healthy lifestyle | Cycling distance | 71 | −0.084 | 0.484 | −0.085 | 0.121 |
| Healthy lifestyle | E-bike usage frequency | 71 | −0.197 | 0.100 | −0.199 | 0.122 |
| E-bike popularity | vehicle ownerships | 71 | −0.025 | 0.837 | −0.025 | 0.121 |
| E-bike popularity | traffic condition | 71 | −0.081 | 0.500 | −0.082 | 0.121 |
| E-bike popularity | Parking problem | 71 | 0.038 | 0.751 | 0.038 | 0.121 |
| E-bike popularity | Public-transport hub | 71 | 0.271 | 0.022 | 0.278 | 0.123 |
| E-bike popularity | Cycling duration | 71 | 0.188 | 0.117 | 0.190 | 0.122 |
| E-bike popularity | Cycling distance | 71 | 0.199 | 0.096 | 0.202 | 0.122 |
| E-bike popularity | E-bike usage frequency | 71 | −0.025 | 0.836 | −0.025 | 0.121 |
| vehicle ownerships | traffic condition | 71 | 0.057 | 0.635 | 0.057 | 0.121 |
| vehicle ownerships | Parking problem | 71 | 0.018 | 0.881 | 0.018 | 0.121 |
| vehicle ownerships | Public-transport hub | 71 | 0.187 | 0.118 | 0.190 | 0.122 |
| vehicle ownerships | Cycling duration | 71 | 0.022 | 0.858 | 0.022 | 0.121 |
| vehicle ownerships | Cycling distance | 71 | 0.051 | 0.673 | 0.051 | 0.121 |
| vehicle ownerships | E-bike usage frequency | 71 | −0.222 | 0.063 | −0.226 | 0.122 |
| traffic condition | Parking problem | 71 | 0.031 | 0.796 | 0.031 | 0.121 |
| traffic condition | Public-transport hub | 71 | 0.143 | 0.236 | 0.144 | 0.122 |
| traffic condition | Cycling duration | 71 | 0.148 | 0.219 | 0.149 | 0.122 |
| traffic condition | Cycling distance | 71 | 0.203 | 0.090 | 0.205 | 0.122 |
| traffic condition | E-bike usage frequency | 71 | −0.180 | 0.134 | −0.182 | 0.122 |
| Parking problem | Public-transport hub | 71 | 0.048 | 0.690 | 0.048 | 0.121 |
| Parking problem | Cycling duration | 71 | 0.197 | 0.099 | 0.200 | 0.122 |
| Parking problem | Cycling distance | 71 | 0.204 | 0.089 | 0.206 | 0.122 |
| Parking problem | E-bike usage frequency | 71 | 0.097 | 0.419 | 0.098 | 0.121 |
| Public-transport hub | Cycling duration | 71 | −0.037 | 0.758 | −0.037 | 0.121 |
| Public-transport hub | Cycling distance | 71 | 0.041 | 0.735 | 0.041 | 0.121 |
| Public-transport hub | E-bike usage frequency | 71 | 0.063 | 0.601 | 0.063 | 0.121 |
| Cycling duration | Cycling distance | 71 | 0.653 | <0.001 | 0.781 | 0.127 |
| Cycling duration | E-bike usage frequency | 71 | 0.185 | 0.122 | 0.188 | 0.122 |
| Cycling distance | E-bike usage frequency | 71 | 0.264 | 0.026 | 0.270 | 0.123 |
| N | Spearman’s Rho | p | Effect Size (Fisher’s z) | SE Effect Size | ||
|---|---|---|---|---|---|---|
| Work trip | Commercial trip | 71 | 0.313 ** | 0.008 | 0.323 | 0.123 |
| Work trip | Recreational trip | 71 | 0.240 * | 0.044 | 0.244 | 0.123 |
| Work trip | School trip | 71 | 0.245 * | 0.040 | 0.250 | 0.123 |
| Work trip | Service trip | 71 | 0.494 *** | <0.001 | 0.542 | 0.125 |
| Work trip | Transportation cost | 71 | 0.131 | 0.276 | 0.132 | 0.122 |
| Work trip | Vehicle price and taxes | 71 | 0.256 * | 0.031 | 0.261 | 0.123 |
| Work trip | Density (Mixed-use) | 71 | 0.300 * | 0.011 | 0.310 | 0.123 |
| Work trip | Urban design | 71 | 0.159 | 0.186 | 0.160 | 0.122 |
| Work trip | Signage | 71 | 0.105 | 0.382 | 0.106 | 0.121 |
| Work trip | Public crowd | 71 | 0.011 | 0.929 | 0.011 | 0.120 |
| Work trip | E-bike park | 71 | 0.138 | 0.252 | 0.139 | 0.122 |
| Work trip | Bike lane | 71 | 0.231 | 0.052 | 0.236 | 0.123 |
| Work trip | Public transit system | 71 | 0.360 ** | 0.002 | 0.377 | 0.124 |
| Work trip | E-bike usage frequency | 71 | 0.320 ** | 0.007 | 0.331 | 0.123 |
| Commercial trip | Recreational trip | 71 | 0.101 | 0.402 | 0.101 | 0.121 |
| Commercial trip | School trip | 71 | 0.398 *** | <0.001 | 0.421 | 0.124 |
| Commercial trip | Service trip | 71 | 0.281 * | 0.018 | 0.289 | 0.123 |
| Commercial trip | Transportation cost | 71 | 0.077 | 0.523 | 0.077 | 0.121 |
| Commercial trip | Vehicle price and taxes | 71 | 0.077 | 0.521 | 0.078 | 0.121 |
| Commercial trip | Density (Mixed-use) | 71 | 0.212 | 0.076 | 0.215 | 0.122 |
| Commercial trip | Urban design | 71 | 0.222 | 0.063 | 0.225 | 0.122 |
| Commercial trip | Signage | 71 | −0.052 | 0.666 | −0.052 | 0.121 |
| Commercial trip | Public crowd | 71 | −0.127 | 0.293 | −0.127 | 0.122 |
| Commercial trip | E-bike park | 71 | 0.160 | 0.182 | 0.162 | 0.122 |
| Commercial trip | Bike lane | 71 | −0.211 | 0.077 | −0.215 | 0.122 |
| Commercial trip | Public transit system | 71 | −0.060 | 0.620 | −0.060 | 0.121 |
| Commercial trip | E-bike usage frequency | 71 | 0.177 | 0.140 | 0.179 | 0.122 |
| Recreational trip | School trip | 71 | 0.124 | 0.304 | 0.124 | 0.122 |
| Recreational trip | Service trip | 71 | 0.214 | 0.073 | 0.218 | 0.122 |
| Recreational trip | Transportation cost | 71 | 0.046 | 0.702 | 0.046 | 0.121 |
| Recreational trip | Vehicle price and taxes | 71 | 0.118 | 0.326 | 0.119 | 0.121 |
| Recreational trip | Density (Mixed-use) | 71 | 0.212 | 0.075 | 0.216 | 0.122 |
| Recreational trip | Urban design | 71 | 0.075 | 0.534 | 0.075 | 0.121 |
| Recreational trip | Signage | 71 | 0.081 | 0.500 | 0.081 | 0.121 |
| Recreational trip | Public crowd | 71 | 0.197 | 0.099 | 0.200 | 0.122 |
| Recreational trip | E-bike park | 71 | 0.198 | 0.097 | 0.201 | 0.122 |
| Recreational trip | Bike lane | 71 | 0.281 * | 0.018 | 0.289 | 0.123 |
| Recreational trip | Public transit system | 71 | 0.396 *** | <0.001 | 0.419 | 0.124 |
| Recreational trip | E-bike usage frequency | 71 | 0.143 | 0.234 | 0.144 | 0.122 |
| School trip | Service trip | 71 | 0.342 ** | 0.003 | 0.357 | 0.124 |
| School trip | Transportation cost | 71 | 0.240 * | 0.044 | 0.245 | 0.123 |
| School trip | Vehicle price and taxes | 71 | 0.178 | 0.138 | 0.180 | 0.122 |
| School trip | Density (Mixed-use) | 71 | 0.225 | 0.059 | 0.229 | 0.123 |
| School trip | Urban design | 71 | 0.124 | 0.305 | 0.124 | 0.122 |
| School trip | Signage | 71 | 8.532 × 10−4 | 0.994 | 8.532 × 10−4 | 0.120 |
| School trip | Public crowd | 71 | 0.149 | 0.214 | 0.150 | 0.122 |
| School trip | E-bike park | 71 | 0.235 * | 0.048 | 0.240 | 0.123 |
| School trip | Bike lane | 71 | 0.124 | 0.302 | 0.125 | 0.122 |
| School trip | Public transit system | 71 | 0.233 | 0.051 | 0.237 | 0.123 |
| School trip | E-bike usage frequency | 71 | 0.282 * | 0.017 | 0.290 | 0.123 |
| Service trip | Transportation cost | 71 | 0.099 | 0.411 | 0.099 | 0.121 |
| Service trip | Vehicle price and taxes | 71 | 0.046 | 0.704 | 0.046 | 0.121 |
| Service trip | Density (Mixed-use) | 71 | 0.143 | 0.235 | 0.144 | 0.122 |
| Service trip | Urban design | 71 | 0.224 | 0.060 | 0.228 | 0.123 |
| Service trip | Signage | 71 | 0.075 | 0.533 | 0.075 | 0.121 |
| Service trip | Public crowd | 71 | 0.016 | 0.898 | 0.016 | 0.121 |
| Service trip | E-bike park | 71 | 0.181 | 0.130 | 0.183 | 0.122 |
| Service trip | Bike lane | 71 | 0.234 * | 0.049 | 0.239 | 0.123 |
| Service trip | Public transit system | 71 | 0.260 * | 0.029 | 0.266 | 0.123 |
| Service trip | E-bike usage frequency | 71 | 0.115 | 0.342 | 0.115 | 0.121 |
| Transportation cost | Vehicle price and taxes | 71 | 0.713 *** | <0.001 | 0.894 | 0.128 |
| Transportation cost | Density (Mixed-use) | 71 | 0.303 * | 0.010 | 0.313 | 0.123 |
| Transportation cost | Urban design | 71 | 0.106 | 0.377 | 0.107 | 0.121 |
| Transportation cost | Signage | 71 | −0.115 | 0.338 | −0.116 | 0.121 |
| Transportation cost | Public crowd | 71 | 0.083 | 0.493 | 0.083 | 0.121 |
| Transportation cost | E-bike park | 71 | −0.215 | 0.071 | −0.219 | 0.122 |
| Transportation cost | Bike lane | 71 | 0.107 | 0.373 | 0.108 | 0.121 |
| Transportation cost | Public transit system | 71 | 0.104 | 0.389 | 0.104 | 0.121 |
| Transportation cost | E-bike usage frequency | 71 | −0.081 | 0.502 | −0.081 | 0.121 |
| Vehicle price and taxes | Density (Mixed-use) | 71 | 0.248 * | 0.037 | 0.253 | 0.123 |
| Vehicle price and taxes | Urban design | 71 | 0.076 | 0.527 | 0.076 | 0.121 |
| Vehicle price and taxes | Signage | 71 | −0.008 | 0.950 | −0.008 | 0.120 |
| Vehicle price and taxes | Public crowd | 71 | 0.130 | 0.281 | 0.131 | 0.122 |
| Vehicle price and taxes | E-bike park | 71 | −0.023 | 0.852 | −0.023 | 0.121 |
| Vehicle price and taxes | Bike lane | 71 | 0.231 | 0.052 | 0.235 | 0.123 |
| Vehicle price and taxes | Public transit system | 71 | 0.213 | 0.075 | 0.216 | 0.122 |
| Vehicle price and taxes | E-bike usage frequency | 71 | 0.040 | 0.738 | 0.040 | 0.121 |
| Density (Mixed-use) | Urban design | 71 | 0.178 | 0.138 | 0.180 | 0.122 |
| Density (Mixed-use) | Signage | 71 | −0.095 | 0.431 | −0.095 | 0.121 |
| Density (Mixed-use) | Public crowd | 71 | 0.169 | 0.158 | 0.171 | 0.122 |
| Density (Mixed-use) | E-bike park | 71 | 0.098 | 0.417 | 0.098 | 0.121 |
| Density (Mixed-use) | Bike lane | 71 | −0.052 | 0.666 | −0.052 | 0.121 |
| Density (Mixed-use) | Public transit system | 71 | 0.197 | 0.100 | 0.199 | 0.122 |
| Density (Mixed-use) | E-bike usage frequency | 71 | 0.062 | 0.610 | 0.062 | 0.121 |
| Urban design | Signage | 71 | 0.163 | 0.173 | 0.165 | 0.122 |
| Urban design | Public crowd | 71 | 0.376 ** | 0.001 | 0.396 | 0.124 |
| Urban design | E-bike park | 71 | 0.391 *** | <0.001 | 0.413 | 0.124 |
| Urban design | Bike lane | 71 | −0.133 | 0.270 | −0.133 | 0.122 |
| Urban design | Public transit system | 71 | −0.026 | 0.827 | −0.026 | 0.121 |
| Urban design | E-bike usage frequency | 71 | 0.211 | 0.078 | 0.214 | 0.122 |
| Signage | Public crowd | 71 | 0.229 | 0.055 | 0.233 | 0.123 |
| Signage | E-bike park | 71 | 0.070 | 0.564 | 0.070 | 0.121 |
| Signage | Bike lane | 71 | 0.268 * | 0.024 | 0.275 | 0.123 |
| Signage | Public transit system | 71 | 0.070 | 0.565 | 0.070 | 0.121 |
| Signage | E-bike usage frequency | 71 | 0.213 | 0.074 | 0.216 | 0.122 |
| Public crowd | E-bike park | 71 | 0.278 * | 0.019 | 0.286 | 0.123 |
| Public crowd | Bike lane | 71 | 0.085 | 0.481 | 0.085 | 0.121 |
| Public crowd | Public transit system | 71 | 0.145 | 0.228 | 0.146 | 0.122 |
| Public crowd | E-bike usage frequency | 71 | 0.224 | 0.061 | 0.228 | 0.123 |
| E-bike park | Bike lane | 71 | 0.243 * | 0.041 | 0.248 | 0.123 |
| E-bike park | Public transit system | 71 | 0.094 | 0.434 | 0.095 | 0.121 |
| E-bike park | E-bike usage frequency | 71 | 0.086 | 0.476 | 0.086 | 0.121 |
| Bike lane | Public transit system | 71 | 0.490 *** | <0.001 | 0.536 | 0.125 |
| Bike lane | E-bike usage frequency | 71 | 0.057 | 0.638 | 0.057 | 0.121 |
| Public transit system | E-bike usage frequency | 71 | 0.173 | 0.148 | 0.175 | 0.122 |
References
- Grushevenko, D.; Kapustin, N. Modelling of Energy Consumption in the Transport Sector. AIP Conf. Proc. 2023, 2552, 080015. [Google Scholar] [CrossRef]
- Gao, J.; Pan, L. A System Dynamic Analysis of Urban Development Paths under Carbon Peaking and Carbon Neutrality Targets: A Case Study of Shanghai. Sustainability 2022, 14, 15045. [Google Scholar] [CrossRef]
- Thaller, A.; Fleiß, E.; Brohmer, H.; Köstenbaumer, D.; Posch, A.; Athenstaedt, U. When Perceived Fairness and Acceptance Go Hand in Hand–Drivers of Regulatory and Economic Policies for Low-Carbon Mobility. PLoS Clim. 2023, 2, e0000157. [Google Scholar] [CrossRef]
- Thompson, H. The Case for Compact, Electric Cities: Lessons from Tianjin, China’s Mobility Transformation. J. Urban Regen. Renew. 2025, 19, 15. [Google Scholar] [CrossRef]
- Fyhri, A.; Heinen, E.; Fearnley, N.; Sundfør, H.B. A Push to Cycling—Exploring the e-Bike’s Role in Overcoming Barriers to Bicycle Use with a Survey and an Intervention Study. Int. J. Sustain. Transp. 2017, 11, 681–695. [Google Scholar] [CrossRef]
- Moser, C.; Blumer, Y.; Hille, S.L. E-Bike Trials’ Potential to Promote Sustained Changes in Car Owners Mobility Habits. Environ. Res. Lett. 2018, 13, 044025. [Google Scholar] [CrossRef]
- Dahl Wikstrøm, R.; Böcker, L. Changing Suburban Daily Mobilities in Response to a Mobility Intervention: A Qualitative Investigation of an E-Bike Trial. Sustainability 2020, 12, 2413. [Google Scholar] [CrossRef]
- Bourne, J.E.; Cooper, A.R.; Kelly, P.; Kinnear, F.J.; England, C.; Leary, S.; Page, A. The Impact of E-Cycling on Travel Behaviour: A Scoping Review. J. Transp. Health 2020, 19, 100910. [Google Scholar] [CrossRef]
- Bigazzi, A.; Wong, K. Electric Bicycle Mode Substitution for Driving, Public Transit, Conventional Cycling, and Walking. Transp. Res. D Transp. Environ. 2020, 85, 102412. [Google Scholar] [CrossRef]
- Adam, R.I.; da Quinhentos, M.L.; Muindi, P.; Osanya, J. Gender Relations along the Maize Value Chain in Mozambique. Outlook Agric. 2020, 49, 133–144. [Google Scholar] [CrossRef]
- Sumbodo, W.; Wahyudi, W.; Setiadi, R.; Kriswanto, K.; Arif, B. Design and Fabrication of Electric Bike with Sliding Frame. J. Appl. Eng. Sci. 2021, 19, 948–953. [Google Scholar] [CrossRef]
- Logan, T.M.; Hobbs, M.H.; Conrow, L.C.; Reid, N.L.; Young, R.A.; Anderson, M.J. The X-Minute City: Measuring the 10, 15, 20-Minute City and an Evaluation of Its Use for Sustainable Urban Design. Cities 2022, 131, 103924. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, K.L.; Narezo-Balzaretti, J.; Gaxiola-Beltrán, A.L.; Ramírez-Moreno, M.A.; Pérez-Henríquez, B.L.; Ramírez-Mendoza, R.A.; Krajzewicz, D.; Lozoya-Santos, J.d.-J. The Importance of Robust Datasets to Assess Urban Accessibility: A Comparable Study in the Distrito Tec, Monterrey, Mexico, and the Stanford District, San Francisco Bay Area, USA. Appl. Sci. 2022, 12, 12267. [Google Scholar] [CrossRef]
- Khavarian-Garmsir, A.R.; Sharifi, A.; Hajian Hossein Abadi, M.; Moradi, Z. From Garden City to 15-Minute City: A Historical Perspective and Critical Assessment. Land 2023, 12, 512. [Google Scholar] [CrossRef]
- Pozoukidou, G.; Angelidou, M. Urban Planning in the 15-Minute City: Revisited under Sustainable and Smart City Developments until 2030. Smart Cities 2022, 5, 1356–1375. [Google Scholar] [CrossRef]
- Fishman, E.; Cherry, C. E-Bikes in the Mainstream: Reviewing a Decade of Research. Transp. Rev. 2016, 36, 72–91. [Google Scholar] [CrossRef]
- Bai, S.; Jiao, J. Dockless E-Scooter Usage Patterns and Urban Built Environments: A Comparison Study of Austin, TX, and Minneapolis, MN. Travel. Behav. Soc. 2020, 20, 264–272. [Google Scholar] [CrossRef]
- Bueno-Suárez, C.; Coq-Huelva, D. Sustaining What Is Unsustainable: A Review of Urban Sprawl and Urban Socio-Environmental Policies in North America and Western Europe. Sustainability 2020, 12, 4445. [Google Scholar] [CrossRef]
- Shukla, N.; Das, A.; Mazumder, T. Assessment of Urban Form Resilience: A Review of Literature in the Context of the Global South. Environ. Dev. Sustain. 2023, 27, 2863–2899. [Google Scholar] [CrossRef]
- Septanti, D.; Ahmed, I.; Setyawan, W.; Sarah, C.; Surya, N.T. Community-Based Risk Analysis: Assessing Multi-Hazard Vulnerabilities in Urban Kampungs in Surabaya, Indonesia. Preprints 2025, 2025110494. [Google Scholar] [CrossRef]
- Yang, C.; Qian, Z. The New Paradigm of Future Cities? Facilitating Dialogues between the 15-Minute City and the 15-Minute Life Circle in China Based on a Bibliometric Analysis. Trans. Plan. Urban Res. 2024, 3, 294–312. [Google Scholar] [CrossRef]
- Allam, Z.; Khavarian-Garmsir, A.R.; Lassaube, U.; Chabaud, D.; Moreno, C. Mapping the Implementation Practices of the 15-Minute City. Smart Cities 2024, 7, 2094–2109. [Google Scholar] [CrossRef]
- Phang, S.-Y.; Wong, Y.C.; Hoskins, S. Should the X-Minute City Include Commutes? An Evaluation Using Commute and Well-Being Data from the Singapore Life Panel®. Int. J. Smart Sustain. Cities 2025. [Google Scholar] [CrossRef]
- Apatenko, T.; Bezliubchenko, O. Priorities and Disadvantages of City Block Development. Munic. Econ. Cities 2024, 1, 35–42. [Google Scholar] [CrossRef]
- Geyer, H. Customary Land Management Systems and Urban Planning in Peri-Urban Informal Settlements. Urban Stud. 2025, 62, 310–327. [Google Scholar] [CrossRef]
- Orozco-Messana, J.; Vegas, F.; Mileto, C.; Cantero, V. Approximation to the Concept of 15mC in the Historic Centre of Valencia (Spain): Demographics, Economy, Housing and Emblematic Establishments. In Proceedings of the HERITAGE2025 International Conference on Earthen & Vernacular Heritage Conservation, Adaptive Reuse & Urban Regeneration, València, Spain, 10 September 2025. [Google Scholar]
- Dovey, K. Informal Urbanism and Complex Adaptive Assemblage. Int. Dev. Plan. Rev. 2012, 34, 349–368. [Google Scholar] [CrossRef]
- Guma, P.K. On Tackling Infrastructure: The Need to Learn from Marginal Cities and Populations in the Global South. J. Br. Acad. 2022, 10, 29–37. [Google Scholar] [CrossRef]
- Phelps, N.A.; Aritenang, A. The Economic Circularity of Informality? Evidence from Patterns of Informal Business Innovation in Bandung. Environ. Urban. 2023, 35, 390–410. [Google Scholar] [CrossRef]
- Utami, A.S.P.R.; Setijanti, P. Spatial Flexibility for Housing in Urban Kampung toward Sustainability. IOP Conf. Ser. Earth Environ. Sci. 2024, 1351, 012019. [Google Scholar] [CrossRef]
- Yuliastuti, N.; Sukmawati, A.M. Creative Urban Kampung Based On Local Culture, A Case Of Kampung Bustaman Semarang. J. Archit. Urban 2020, 44, 128–137. [Google Scholar] [CrossRef]
- Sampieri, A.; Paoli, A. Incorporating Active Commuting into Daily Life: A Narrative Review of e-Bikes’ Impact on Health and Urban Air Quality. Front. Sports Act. Living 2025, 7, 1662076. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-M.; Xu, Z.-H. Analysis of Technology Acceptance and Planned Behavior of Using Shared E-Biked to Support the Sustainable Transportation Development Goal in Smart Cities. Front. Psychol. 2025, 16, 1551522. [Google Scholar] [CrossRef] [PubMed]
- Wulan, R.; Yusuf, N.; Soehodho, S. Feasibility Analysis of Implementing Micromobility E-Bike Sharing in Depok City. Asian J. Eng. Soc. Health 2025, 4, 512–530. [Google Scholar] [CrossRef]
- Rérat, P.; Marincek, D.; Ravalet, E. How Do E-Bikes Compete with the Other Modes of Transport? Investigating Multiple Dimensions of a Modal Shift. Appl. Mobilities 2025, 10, 85–98. [Google Scholar] [CrossRef]
- Edberg, K. E-Biking within a Transitioning Transport System: The Quest for Flexible Mobility. Mobilities 2024, 19, 428–443. [Google Scholar] [CrossRef]
- Arisar, U.; Memon, A.; Soomro, R. Integrating E-Bikes and Non-Motorized Transport for Sustainable Urban Mobility: A Pathway to Achieving SDG 11.2 in Hyderabad, Pakistan. Glob. Manag. Sci. Rev. 2025, 10, 20–26. [Google Scholar] [CrossRef]
- Plazier, P.A.; Weitkamp, G.; Berg, A.E. Van Den Exploring the Adoption of E-Bikes by Different User Groups. Front. Built Environ. 2018, 4, 47. [Google Scholar] [CrossRef]
- Ling, Z.; Cherry, C.; MacArthur, J.; Weinert, J. Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States. Sustainability 2017, 9, 1662. [Google Scholar] [CrossRef]
- Fyhri, A.; Fearnley, N. Effects of E-Bikes on Bicycle Use and Mode Share. Transp. Res. D Transp. Environ. 2015, 36, 45–52. [Google Scholar] [CrossRef]
- Popovich, N.; Gordon, E.; Shao, Z.; Xing, Y.; Wang, Y.; Handy, S. Experiences of Electric Bicycle Users in the Sacramento, California Area. Travel. Behav. Soc. 2014, 1, 37–44. [Google Scholar] [CrossRef]
- Liu, F.; Yasar, A.; Cui, J.; Janssens, D.; Wets, G.; Cools, M. The Development of a New Location-Based Accessibility Measure Based on GPS Data. Sensors 2025, 25, 6274. [Google Scholar] [CrossRef]
- Wu, S.; Chen, B.; An, J.; Nelson, A.; Dai, F.; Lin, C.; Gong, P. Measuring Global Human Accessibility to Essential Daily Necessities and Services. Nat. Commun. 2025, 16, 10709. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sobhani, A.; Ettema, D. To E-Bike or Not to e-Bike? A Study of the Impact of the Built Environment on Commute Mode Choice in Small Chinese City. J. Transp. Land. Use 2021, 14, 479–497. [Google Scholar] [CrossRef]
- Arning, L.; Kaths, H. Just Another Bike? Modelling the Interdependence of Conventional and Electric Bicycle Ownership and the Influence of Topography Using Large-Scale Travel Survey Data from Germany. PLoS ONE 2025, 20, e0322291. [Google Scholar] [CrossRef] [PubMed]
- Way, K.M.; Bourne, J.E.; Armstrong, M.E.G. “I’m Hooked on e-Cycling, I Can Finally Be Active Again”: Perceptions of e-Cycling as a Physical Activity Intervention during Breast Cancer Treatment. Int. J. Environ. Res. Public Health 2023, 20, 5197. [Google Scholar] [CrossRef]
- Abdollahzadeh Kalantari, H.; Yang, W.; Ewing, R. Can E-Scooters Connect First and Last-Mile of Public Rail Transit? Lessons Learned from Intercept User Survey in Utah. Int. J. Sustain. Transp. 2025, 19, 1121–1144. [Google Scholar] [CrossRef]
- Carlos, M.; Robles, B. A Real Time E-Bike Parking and Sharing Management System; S3Innovation: Brussels, Belgium, 2018. [Google Scholar]
- Atkinson, E.; Atkinson, T. Injury Patterns and Safety Implications for Electric Bikes Compared to Mopeds in the United States. Traffic Inj. Prev. 2025, 26, S132–S140. [Google Scholar] [CrossRef]
- Dill, J.; Rose, G. Electric Bikes and Transportation Policy. Transp. Res. Rec. J. Transp. Res. Board. 2012, 2314, 1–6. [Google Scholar] [CrossRef]
- Gupta, S.; Prakhar, P.; Jaiswal, R. Examining motivations behind e-bike adoption in rural tourism through the value-belief-norm framework. Rural Soc. 2025, 34, 138–162. [Google Scholar] [CrossRef]
- Zhang, X.; Lim, E.S.; Chen, M. Promoting Sustainable Urban Mobility: Factors Influencing E-Bike Adoption in Henan Province, China. Sustainability 2024, 16, 10136. [Google Scholar] [CrossRef]
- Marincek, D.; Rérat, P. From Conventional to Electrically-Assisted Cycling. A Biographical Approach to the Adoption of the e-Bike. Int. J. Sustain. Transp. 2021, 15, 768–777. [Google Scholar] [CrossRef]
- Alessio, H.M.; Reiman, T.; Kemper, B.; von Carlowitz, W.; Bailer, A.J.; Timmerman, K.L. Metabolic and Cardiovascular Responses to a Simulated Commute on an E-Bike. Transl. J. Am. Coll. Sports Med. 2021, 6, e000155. [Google Scholar] [CrossRef]
- Johnson, M.; Rose, G. Extending Life on the Bike: Electric Bike Use by Older Australians. J. Transp. Health 2015, 2, 276–283. [Google Scholar] [CrossRef]
- He, Y.; Song, Z.; Liu, Z.; Sze, N.N. Factors Influencing Electric Bike Share Ridership: Analysis of Park City, Utah. Transp. Res. Rec. J. Transp. Res. Board. 2019, 2673, 12–22. [Google Scholar] [CrossRef]
- McClain, E.K.; Walker, K.; Kumar, G.; Bright, A.; Aziz, K.; Banchoff, A.W.; Doueiri, Z.N.; King, A.C.; Mitra, S.K. Partnering with Communities to Understand Social Determinants of Health (SDoH) Impacts on Access to Shared Micromobility. Int. J. Environ. Res. Public Health 2024, 21, 1488. [Google Scholar] [CrossRef]
- Saglio, A.; Robartes, E.; Chen, T.D.; Heydarian, A.; Guo, X.; Angulo, A.V. Examining Socioeconomic and Physiological Factors Affecting Preferences for Cycling Infrastructure Using Virtual Reality Experimentation. Transp. Res. Rec. J. Transp. Res. Board. 2023, 2677, 463–478. [Google Scholar] [CrossRef]
- Behrendt, F.; Cairns, S.; Raffo, D.; Philips, I. Impact of E-Bikes on Cycling in Hilly Areas: Participants’ Experience of Electrically-Assisted Cycling in a UK Study. Sustainability 2021, 13, 8946. [Google Scholar] [CrossRef]
- De Silva, M.M.; Baddewela, S.W.Y.B.P.K.; Sivakumar, T.; Nakayama, T. Promoting Sustainable Mobility by Addressing Inequities in Electric Bike-Sharing Systems. J. South Asian Logist. Transp. 2025, 5, 117–135. [Google Scholar] [CrossRef]
- Rérat, P. The Rise of the E-Bike: Towards an Extension of the Practice of Cycling? Mobilities 2021, 16, 423–439. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, T.; Dong, S.; Mao, X.; Ma, C. Impact of Helmet-Wearing Policy on E-Bike Safety Riding Behavior: A Bivariate Ordered Probit Analysis in Ningbo, China. Int. J. Environ. Res. Public Health 2022, 19, 2830. [Google Scholar] [CrossRef]
- MacArthur, J.; Dill, J.; Person, M. Electric Bikes in North America. Transp. Res. Rec. J. Transp. Res. Board 2014, 2468, 123–130. [Google Scholar] [CrossRef]
- Brüchert, T.; Quentin, P.; Bolte, G. The Relationship between Perceived Built Environment and Cycling or E-Biking for Transport among Older Adults–a Cross-Sectional Study. PLoS ONE 2022, 17, e0267314. [Google Scholar] [CrossRef] [PubMed]
- Jahre, A.B.; Bere, E.; Nordengen, S.; Solbraa, A.; Andersen, L.B.; Riiser, A.; Bjørnarå, H.B. Public Employees in South-Western Norway Using an e-Bike or a Regular Bike for Commuting—A Cross-Sectional Comparison on Sociodemographic Factors, Commuting Frequency and Commuting Distance. Prev. Med. Rep. 2019, 14, 100881. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.J.; Astegiano, P.; Gautama, S.; Ochoa, D.; Tampère, C.; Beckx, C. Unveiling E-Bike Potential for Commuting Trips from GPS Traces. ISPRS Int. J. Geoinf. 2017, 6, 190. [Google Scholar] [CrossRef]
- Plazier, P.A.; Weitkamp, G.; van den Berg, A.E. “Cycling Was Never so Easy!” An Analysis of e-Bike Commuters’ Motives, Travel Behaviour and Experiences Using GPS-Tracking and Interviews. J. Transp. Geogr. 2017, 65, 25–34. [Google Scholar] [CrossRef]
- Gumasing, M.J.J. Exploring Factors Influencing E-Bike Adoption Among Filipino Commuters: An Integrated Diffusion of Innovation and Technology Acceptance Model. World Electr. Veh. J. 2025, 16, 113. [Google Scholar] [CrossRef]
- Sherriff, G.; Lomas, M.J.; Blazejewski, L.; Larrington-Spencer, H. A Micromobility Buffet: E-Scooters in the Context of Multimodal Spaces and Practices in Greater Manchester. Act. Travel Stud. 2023, 3, 5. [Google Scholar] [CrossRef]
- Rattanapitak, W.; Upala, P.; Sirikitsathian, P. Mapping Bangkok’s Informal Transit: Geospatial Insights for Smart Mobility. In Proceedings of the 2024 IEEE International Smart Cities Conference (ISC2), Pattaya City, Thailand, 29 October–1 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Campisi, T.; Skoufas, A.; Kaltsidis, A.; Basbas, S. Gender Equality and E-Scooters: Mind the Gap! A Statistical Analysis of the Sicily Region, Italy. Soc. Sci. 2021, 10, 403. [Google Scholar] [CrossRef]
- de Haas, M.; Kroesen, M.; Chorus, C.; Hoogendoorn-Lanser, S.; Hoogendoorn, S. E-Bike User Groups and Substitution Effects: Evidence from Longitudinal Travel Data in the Netherlands. Transportation 2022, 49, 815–840. [Google Scholar] [CrossRef]
- Moura, F.; Valença, G.; Félix, R.; Vale, D.S. The Impact of Public Bike-Sharing Systems on Mobility Patterns: Generating or Replacing Trips? Int. J. Sustain. Transp. 2023, 17, 1254–1263. [Google Scholar] [CrossRef]
- Cherry, C.R.; Yang, H.; Jones, L.R.; He, M. Dynamics of Electric Bike Ownership and Use in Kunming, China. Transp. Policy 2016, 45, 127–135. [Google Scholar] [CrossRef]
- Fabiansa, A.; Navastara, A.M.; Yusuf, M.; Ramadhan, M.R.; Akbar, R.A. From 15-Minutes City to Proximity Paradigm: Insights from Surabaya Rungkut Development Unit. IOP Conf. Ser. Earth Environ. Sci. 2024, 1353, 012028. [Google Scholar] [CrossRef]
- Allam, Z.; Bibri, S.E.; Chabaud, D.; Moreno, C. The Theoretical, Practical, and Technological Foundations of the 15-Minute City Model: Proximity and Its Environmental, Social and Economic Benefits for Sustainability. Energies 2022, 15, 6042. [Google Scholar] [CrossRef]
- Gupta, A.; Chitgopekar, S.; Kim, A.; Jiang, J.; Wang, M.; Grattoni, C. The Growth of E-Bike Use: A Machine Learning Approach. arXiv 2023, arXiv:2308.02034. [Google Scholar] [CrossRef]
- Martin, R.J. Operationalising the 15-Minute City with New Mobility Services. In Proceedings of the Annual Transport Conference at Aalborg University, Aalborg, Denmark, 22–23 August 2024; Volume 31. [Google Scholar] [CrossRef]
- Kim, H.-J. A Study on the Concept and Application of the 15-Minute City. J. Korea Acad.-Ind. Coop. Soc. 2023, 24, 134–139. [Google Scholar] [CrossRef]
- Milias, V.; Tsigdinos, S.; Tzouras, P.G.; Kepaptsoglou, K. Assessing Equitable Access in X-Minute Cities through Open Spatial Data. Environ. Plan. B Urban Anal. City Sci. 2025. ahead of print. [Google Scholar] [CrossRef]
- Wang, X. Use of Proper Sampling Techniques to Research Studies. Appl. Comput. Eng. 2024, 57, 141–145. [Google Scholar] [CrossRef]
- Ramos-Ruiz, J.E.; Solano-Sanchez, M.A.; Castaño-Prieto, L.; Garcia-Garcia, L. Why Do We Run in a Sporting Event? A Gender Perspective through the Half-Marathon of Cordoba, Spain. Soc. Sci. 2024, 13, 209. [Google Scholar] [CrossRef]
- Mustafa, N.K.; Ibrahim, R.; Awang, Z.; Aizuddin, A.N.; Syed Junid, S.M.A. Validation of a Quantitative Instrument Measuring Critical Success Factors and Acceptance of Casemix System Implementation in the Total Hospital Information System in Malaysia. BMJ Open 2024, 14, e082547. [Google Scholar] [CrossRef]
- Fleishman, J.A.; Mor, V.; Cwi, J.S.; Piette, J.D. Sampling and Accessing People with AIDS. Eval. Health Prof. 1992, 15, 385–404. [Google Scholar] [CrossRef]
- Poli, A.; Kåreholt, I.; Kelfve, S.; Berg, K.; Motel-Klingebiel, A. Nonparticipation in a Digital Health Intervention Study Among Older Adults: Uneven Involvement, Biased Outcomes, and the Effect of Weighting. J. Gerontol. A Biol. Sci. Med. Sci. 2024, 80, glae265. [Google Scholar] [CrossRef] [PubMed]
- Adnan, N.A.; Mahadzir, Z.A.; Hashim, H.; Mohd Yusoff, Z.; Abdul Rasam, A.R.; Mokhtar, E.S. Road Accessibility and Safety Analysis in Gated and Non-Gated Housing Communities. Plan. Malays. 2023, 21, 1318. [Google Scholar] [CrossRef]
- Cao, Q.; Jiang, Z.; Wang, Z.; Wee, L.; Dekker, A.; Zhang, Z.; Zhu, J. Minimum Sample Size Calculation for Radiomics-Based Binary Outcome Prediction Models: Theoretical Framework and Practical Example. Radiother. Oncol. 2025, 212, 111134. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, T.; Wu, C.; Qiao, Y.; Su, W.; Chen, J.; Xie, G.; Dong, S.; Xu, J.; Zhao, J. Predicting the Objective and Subjective Clinical Outcomes of Anterior Cruciate Ligament Reconstruction: A Machine Learning Analysis of 432 Patients: Response. Am. J. Sports Med. 2023, 51, NP17–NP18. [Google Scholar] [CrossRef]
- Kiwanuka, F.; Kopra, J.; Sak-Dankosky, N.; Nanyonga, R.C.; Kvist, T. Polychoric Correlation with Ordinal Data in Nursing Research. Nurs. Res. 2022, 71, 469–476. [Google Scholar] [CrossRef]
- Masyn, K.E.; Henderson, C.E.; Greenbaum, P.E. Exploring the Latent Structures of Psychological Constructs in Social Development Using the Dimensional–Categorical Spectrum. Soc. Dev. 2010, 19, 470–493. [Google Scholar] [CrossRef]
- Zientek, L.R. Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications. Struct. Equ. Model. 2008, 15, 729–734. [Google Scholar] [CrossRef]
- Idawati, D.E. A Case of Urban Mimicry: Citra Raya, The Singapore of Surabaya. J. Archit. Environ. 2015, 14, 19. [Google Scholar] [CrossRef]
- Suprobo, F.P.; Mutfianti, R.D. Environmental Innovation Model with Product and Outcomes Dimension of Green Kampung in Surabaya City. Civ. Eng. Archit. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Calafati, L.; Froud, J.; Haslam, C.; Johal, S.; Williams, K. Place and Mobility in Wales: Challenges and Opportunities for Reducing Car Use in a Car-Dependent, Low-Density Country. Local Econ. J. Local Econ. Policy Unit. 2023, 38, 773–793. [Google Scholar] [CrossRef]
- Shoina, M.; Voukkali, I.; Anagnostopoulos, A.; Papamichael, I.; Stylianou, M.; Zorpas, A.A. The 15-Minute City Concept: The Case Study within a Neighbourhood of Thessaloniki. Waste Manag. Res. J. A Sustain. Circ. Econ. 2024, 42, 694–710. [Google Scholar] [CrossRef] [PubMed]
- Vizmpa, C.; Botzoris, G.; Lemonakis, P.; Galanis, A. Micromobility in Urban Trail Paths: Expanding and Strengthening the Planning of 15-Minute Cities. Land 2023, 12, 2181. [Google Scholar] [CrossRef]
- Ellisa, E. Coping with Crowding in High-Density Kampung Housing of Jakarta. Int. J. Archit. Res. ArchNet-IJAR 2016, 10, 195. [Google Scholar] [CrossRef]
- Bassolas, A.; Grau-Escolano, J.; Vicens, J. Spatiotemporal Variability and Prediction of E-Bike Battery Levels in Bike-Sharing Systems. Sci. Rep. 2025, 15, 7171. [Google Scholar] [CrossRef]
- Povoroznyk, I. Methods of Integrating Transport and Engineering Infrastructure into the Planning Structure of Residential Complexes in Suburban Areas. Curr. Probl. Archit. Urban Plan. 2025, 71, 317–334. [Google Scholar] [CrossRef]
- Braun, L.M.; Barajas, J.M.; Lee, B.; Martin, R. Walking the Last Mile: Barriers and Solutions to Suburban Transit Access. Transp. Res. Rec. J. Transp. Res. Board 2022, 2676, 456–467. [Google Scholar] [CrossRef]
- Lee, A.; Molin, E.; Maat, K.; Sierzchula, W. Electric Bicycle Use and Mode Choice in the Netherlands. Transp. Res. Rec. J. Transp. Res. Board 2015, 2520, 1–7. [Google Scholar] [CrossRef]
- Langford, B.C.; Cherry, C.R.; Bassett, D.R.; Fitzhugh, E.C.; Dhakal, N. Comparing Physical Activity of Pedal-Assist Electric Bikes with Walking and Conventional Bicycles. J. Transp. Health 2017, 6, 463–473. [Google Scholar] [CrossRef]
- Tedjomurti, F.; Suyanto, B. Behavior Trend of Buying Mask as A New Lifestyle for Women in The City of Surabaya During Pandemic. J. Soc. Media 2021, 5, 199. [Google Scholar] [CrossRef]
- Rimkute, A.; Sugiharti, L. The Link Between Occupations, Labor Force Participation of Married Women, and Household Technology in Indonesia. J. Popul. Soc. Stud. 2022, 31, 20–37. [Google Scholar] [CrossRef]
- Graells-Garrido, E.; Serra-Burriel, F.; Rowe, F.; Cucchietti, F.M.; Reyes, P. A City of Cities: Measuring How 15-Minutes Urban Accessibility Shapes Human Mobility in Barcelona. PLoS ONE 2021, 16, e0250080. [Google Scholar] [CrossRef] [PubMed]
- Vale, D.; Lopes, A.S. Accessibility Inequality across Europe: A Comparison of 15-Minute Pedestrian Accessibility in Cities with 100,000 or More Inhabitants. npj Urban Sustain. 2023, 3, 55. [Google Scholar] [CrossRef]
- Liliani, L.; Urbanus, C.B. The Role of Female Leadership and Female Entrepreneurship in Business in Surabaya. J. Econ. Bus. Account. Ventur. 2014, 17, 37. [Google Scholar] [CrossRef]
- Devkota, N.; Ghimire, A.; Bhandari, U.; Parajuli, S.; Poudel, U. Challenges on Taxi Management in Kathmandu Valley. Int. J. Financ. Res. 2021, 2, 154–168. [Google Scholar] [CrossRef]
- Telaumbanua, E.; Harsono, I.; Soegiarto, I. Urbanisation in Indonesia: The Relationship between Income Inequality, Urban Infrastructure, Access to Education, and Population Growth with Social Cohesion, Environmental Resilience, and Housing Quality to Look at Urbanisation in Indonesia. Int. J. Bus. Law Educ. 2024, 5, 603–614. [Google Scholar] [CrossRef]
- Ali, L.; Nawaz, A.; Iqbal, S.; Aamir Basheer, M.; Hameed, J.; Albasher, G.; Shah, S.A.R.; Bai, Y. Dynamics of Transit Oriented Development, Role of Greenhouse Gases and Urban Environment: A Study for Management and Policy. Sustainability 2021, 13, 2536. [Google Scholar] [CrossRef]
- Geniş, Ş. Producing Elite Localities: The Rise of Gated Communities in Istanbul. Urban Stud. 2007, 44, 771–798. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, J.; Wu, Y.; Li, Z. Identifying the Factors Affecting Bike-Sharing Usage and Degree of Satisfaction in Ningbo, China. PLoS ONE 2017, 12, e0185100. [Google Scholar] [CrossRef]
- Almannaa, M.H.; Ashqar, H.I.; Elhenawy, M.; Masoud, M.; Rakotonirainy, A.; Rakha, H. A Comparative Analysis of E-Scooter and e-Bike Usage Patterns: Findings from the City of Austin, TX. Int. J. Sustain. Transp. 2021, 15, 571–579. [Google Scholar] [CrossRef]
- Büchel, B.; Marra, A.D.; Corman, F. COVID-19 as a Window of Opportunity for Cycling: Evidence from the First Wave. Transp. Policy 2022, 116, 144–156. [Google Scholar] [CrossRef]
- Mölenberg, F.J.M.; Panter, J.; Burdorf, A.; van Lenthe, F.J. A Systematic Review of the Effect of Infrastructural Interventions to Promote Cycling: Strengthening Causal Inference from Observational Data. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- Allam, Z.; Nieuwenhuijsen, M.; Chabaud, D.; Moreno, C. The 15-Minute City Offers a New Framework for Sustainability, Liveability, and Health. Lancet Planet Health 2022, 6, e181–e183. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.T.; Costa, F. The Quest for Proximity: A Systematic Review of Computational Approaches towards 15-Minute Cities. Architecture 2023, 3, 393–409. [Google Scholar] [CrossRef]
- Wołek, M. Sustainable Mobility Planning in Poland. Transp. Econ. Logist. 2018, 76, 13–22. [Google Scholar] [CrossRef]
- Xavier Kumar, M.; Muthumani, S. A Study on The Consumer Awareness Towards Electric Bikes. Int. Sci. J. Eng. Manag. 2025, 4, 1–7. [Google Scholar] [CrossRef]
- Sukthankar, S.; Fernandes, R.; Korde, S.; Gaonkar, S.; Kurtikar, D. Understanding Behavioral Intention to Adopt Electric Vehicles Among Motorcycle Taxi Pilots: A PLS-SEM Approach. World Electr. Veh. J. 2025, 16, 309. [Google Scholar] [CrossRef]
- Dizdaroglu, D.; Yigitcanlar, T. A parcel-scale assessment tool to measure sustainability through urban ecosystem components: The MUSIX model. Ecol. Indic. 2014, 41, 115–130. [Google Scholar] [CrossRef]
- Yigitcanlar, T. Rethinking Sustainable Development: Urban Management, Engineering, and Design; IGI Global: Hersey, PA, USA, 2010. [Google Scholar]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; Da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]







| Kaiser–Meyer–Olkin Test | MSA |
|---|---|
| Overall MSA | 0.660 |
| Work trip | 0.779 |
| Commercial trip | 0.633 |
| Recreational trip | 0.760 |
| School trip | 0.722 |
| Service trip | 0.729 |
| Vehicle price & taxes | 0.585 |
| Density (Mixed-use) | 0.723 |
| Urban design | 0.610 |
| Signage | 0.501 |
| Public crowd | 0.559 |
| E-bike park | 0.517 |
| Bike lane | 0.598 |
| Public transit system | 0.750 |
| χ2 | df | p |
|---|---|---|
| 184.451 | 78.000 | <0.001 |
| Factor 1 | Factor 2 | Uniqueness | |
|---|---|---|---|
| Commercial trip | 0.675 | 0.439 | |
| Work trip | 0.575 | 0.607 | |
| Service trip | 0.567 | 0.651 | |
| School trip | 0.504 | 0.727 | |
| Bike lane | 0.618 | 0.570 | |
| Public transit system | 0.593 | 0.514 | |
| Recreational trip | 0.588 | 0.635 | |
| Vehicle price & taxes | 0.877 | ||
| Density (Mixed-use) | 0.812 | ||
| Urban design | 0.884 | ||
| Signage | 0.885 | ||
| Public crowd | 0.841 | ||
| E-bike park | 0.888 | ||
| Factor Reliability (Cronbach’s α) | 0.644 | 0.684 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Harun, I.; Navitas, P.; Hartanto, H.R.; Yigitcanlar, T. How Can E-Bikes Accelerate X-Minute City Transitions? User Preferences, Adoption Patterns, and Associated Factors in the Global South. Sustainability 2026, 18, 358. https://doi.org/10.3390/su18010358
Harun I, Navitas P, Hartanto HR, Yigitcanlar T. How Can E-Bikes Accelerate X-Minute City Transitions? User Preferences, Adoption Patterns, and Associated Factors in the Global South. Sustainability. 2026; 18(1):358. https://doi.org/10.3390/su18010358
Chicago/Turabian StyleHarun, Ilman, Prananda Navitas, Holy Regina Hartanto, and Tan Yigitcanlar. 2026. "How Can E-Bikes Accelerate X-Minute City Transitions? User Preferences, Adoption Patterns, and Associated Factors in the Global South" Sustainability 18, no. 1: 358. https://doi.org/10.3390/su18010358
APA StyleHarun, I., Navitas, P., Hartanto, H. R., & Yigitcanlar, T. (2026). How Can E-Bikes Accelerate X-Minute City Transitions? User Preferences, Adoption Patterns, and Associated Factors in the Global South. Sustainability, 18(1), 358. https://doi.org/10.3390/su18010358

