How Does the Spatial Structure of the Furniture Industry Shape Urban Residents’ Health? Evidence from China Labor-Force Dynamics Survey and POI Data
Abstract
1. Introduction
2. Literature Review and Hypothesis
3. Materials and Methods
3.1. Data
3.2. Variable Description
3.2.1. Identification of Industrial Agglomeration
3.2.2. Identification of Residents’ Health Status
3.2.3. Other Variables
3.3. Model Specification
4. Results
4.1. Benchmark Regression Results
4.2. Robustness and Endogeneity Tests
4.3. Heterogeneous Analysis
4.4. Effectiveness Channel Analysis
4.5. Further Analysis: Agglomeration Structure and Policy Adjustment Effects
5. Discussion
5.1. Key Findings
5.2. Study Limitations
5.3. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Bae, J. Urbanization and industrialization impact of CO2 emissions in China. J. Clean. Prod. 2018, 172, 178–186. [Google Scholar] [CrossRef]
- Benassi, F.; De Falco, A. Residential Segregation and Accessibility: Exploring Inequalities in Urban Resources Access Among Social Groups. Land 2025, 14, 429. [Google Scholar] [CrossRef]
- He, Q.; Wang, R.; Ji, H.; Wei, G.; Wang, J.; Liu, J. Theoretical model of environmental justice and environmental inequality in China’s four major economic zones. Sustainability 2019, 11, 5923. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Y.; Zhu, L.; Jiang, P.-P.; He, Y.-M.; Hao, T.-T. Structural Features of China’s Industrial Pollution Inequality: A Spatial-Temporal Distribution Perspective. Front. Environ. Sci. 2022, 10, 846787. [Google Scholar] [CrossRef]
- Guo, X.; Guo, K.; Kong, L. Industrial agglomeration and corporate ESG performance: Empirical evidence from manufacturing and producer services. Sustainability 2023, 15, 12445. [Google Scholar] [CrossRef]
- Qin, C.; Lu, D.; Li, Y. Industrial agglomeration, environmental regulation, and regional environmental performance: Direct and interactive effects. Manag. Decis. Econ. 2024, 45, 5527–5540. [Google Scholar] [CrossRef]
- Wang, L.; Sun, W.; Zhou, K.; Zhang, M.; Bao, P. Spatial analysis of built environment risk for respiratory health and its implication for urban planning: A case study of Shanghai. Int. J. Environ. Res. Public Health 2019, 16, 1455. [Google Scholar] [CrossRef]
- Sun, J.; Lu, C.; Xie, J. The impact of sustained exposure to air pollutant on the mental health: Evidence from China. Sustainability 2022, 14, 6693. [Google Scholar] [CrossRef]
- Ye, Y.; Ye, S.; Yu, H. Can industrial collaborative agglomeration reduce haze pollution? City-level empirical evidence from China. Int. J. Environ. Res. Public Health 2021, 18, 1566. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Niche Fitness Measurement and HealthEvaluation of Furniture Sectoral InnovationEcosystem. Ph.D. Dissertation, Northeast Forestry University, Harbin, China, 2023. [Google Scholar]
- Chen, Z.; Su, L.; Wu, K.; Wang, Z.; Dai, X. Spatial Cluster Identification and Spatial Entropy Decomposition of Furniture Industry Chain in the Pearl River Delta Region. Econ. Geogr. 2024, 44, 131–141. (In Chinese) [Google Scholar]
- Cheng, B.; Tian, Y.; Lu, Y. Current Status, Problems and Countermeasures of Furniture Industry Cluster in China. J. Beijing For. Univ. (Soc.) 2011, 10, 59–62. (In Chinese) [Google Scholar]
- Brakman, S.; Garrentsen, H.; Marrewijk, C. An Introduction to Geographical Economics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Zheng, W. Land supply and industrial agglomeration: Extension of the new economic geography model with land elements incorporated. Land Use Policy 2023, 132, 106757. [Google Scholar] [CrossRef]
- Wang, Y.F.; Bai, Y.; Quan, T.S.; Ran, R.; Hua, L. Influence and effect of industrial agglomeration on urban green total factor productivity—On the regulatory role of innovation agglomeration and institutional distance. Econ. Anal. Policy 2023, 78, 1158–1173. [Google Scholar] [CrossRef]
- Marshall, A. The principles of economics. Political Sci. Q. 1920, 77, 519–524. [Google Scholar]
- Li, Y.H.; Zhang, X.T. Rent-seeking in bank credit and firm R&D innovation: The role of industrial agglomeration. J. Bus. Res. 2023, 159, 113454. [Google Scholar]
- Lu, P.; Li, Z.H.; Wu, H.W. Investigating the effects of industrial transformation and agglomeration on industrial eco-efficiency for green development: Evidence from enterprises in the Yangtze River Economic Belt. J. Clean. Prod. 2024, 479, 143949. [Google Scholar] [CrossRef]
- Yu, C.Z.; Jin, H. Labor agglomeration, industrial structure upgrading and low-carbon economic development. Financ. Res. Lett. 2025, 74, 106703. [Google Scholar] [CrossRef]
- Zheng, L. Job creation or job relocation? Identifying the impact of China’s special economic zones on local employment and industrial agglomeration. China Econ. Rev. 2021, 69, 101651. [Google Scholar] [CrossRef]
- Zhang, L.; He, X.X.; Jia, Z.L. Industrial agglomeration, public services and city size: Evidence from 286 cities in China. Land Use Policy 2023, 131, 106758. [Google Scholar] [CrossRef]
- Zeng, J.Y.; He, Q.Q. Does industrial air pollution drive health care expenditures? Spatial evidence from China. J. Clean. Prod. 2019, 218, 400–408. [Google Scholar] [CrossRef]
- Li, H.; Lu, J.; Li, B. Does pollution-intensive industrial agglomeration increase residents’ health expenditure? Sustain. Cities Soc. 2020, 56, 102092. [Google Scholar] [CrossRef]
- Abu, F.; Gholami, H.; Saman, M.Z.M.; Zakuan, N.; Streimikiene, D. The implementation of lean manufacturing in the furniture industry: A review and analysis on the motives, barriers, challenges, and the applications. J. Clean. Prod. 2019, 234, 660–680. [Google Scholar] [CrossRef]
- Scott, A.J. The changing global geography of low-technology, labor-intensive industry: Clothing, footwear, and furniture. World Dev. 2006, 34, 1517–1536. [Google Scholar] [CrossRef]
- Wulf, F.; Hagedorn, L.; Munier, L.; Balder, J.; Mathi, C.; Stark, R.; Pfriem, A. Towards digitalization of the circular economy in the furniture industry. Sustain. Prod. Consum. 2024, 52, 45–62. [Google Scholar] [CrossRef]
- Tessitore, S.; Testa, F.; Di Iorio, V.; Iraldo, F. Life cycle assessment as an enabler of an environmental sustainability strategy evolution amid institutional pressures: A best practice from the furniture industry. Clean. Environ. Syst. 2025, 16, 100255. [Google Scholar] [CrossRef]
- Teng, W.; Liu, W.W.; Shao, X.; Wu, Q. Emission characteristics, environmental impact assessment and priority control strategies derived from VOCs speciation sourcely through measurement for wooden furniture-manufacturing industry in China. Sci. Total Environ. 2023, 877, 162287. [Google Scholar] [CrossRef]
- Zeng, D.Z.; Zhao, L. Pollution havens and industrial agglomeration. J. Environ. Econ. Manag. 2009, 58, 141–153. [Google Scholar] [CrossRef]
- van Hees, M.; Oskam, I.; Bocken, N. Motives, drivers and barriers to urban upcycling: Insights from furniture upcycling in the Netherlands. J. Clean. Prod. 2025, 486, 144485. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.; Hu, W.; Yang, Y.; Zhang, S.; Yuan, R.; Lv, P.; Zhang, W.; Zhang, Y.; Zhang, Y. Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: A case study through atmospheric measurement and emission inventory. Sci. Total Environ. 2023, 865, 161235. [Google Scholar] [CrossRef] [PubMed]
- Porter, M.E.; Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J. Does industrial agglomeration facilitate environmental performance: New evidence from urban China? J. Environ. Manag. 2019, 248, 109244. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Khan, Z.; Anser, M.K.; Jabeen, G. Do rural-urban migration and industrial agglomeration mitigate the environmental degradation across China’s regional development levels? Sustain. Prod. Consum. 2021, 27, 679–697. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhao, Z.H.; Shi, M.; Liu, J.; Tan, Z. Public environmental concern, government environmental regulation and urban carbon emission reduction—Analyzing the regulating role of green finance and industrial agglomeration. Sci. Total Environ. 2024, 924, 171549. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, J.; Tao, T.; Wang, S.; Pi, K.; Xiong, W. Novel Evaluation Method for Cleaner Production Audit in Industrial Parks: Case of a Park in Central China. Sustainability 2024, 16, 2330. [Google Scholar] [CrossRef]
- Wu, J.; Yu, Z.; Wei, Y.D.; Yang, L. Changing distribution of migrant population and its influencing factors in urban China: Economic transition, public policy, and amenities. Habitat Int. 2019, 94, 102063. [Google Scholar] [CrossRef]
- He, Y.H.; Liu, Y.; Fang, X.N. How urban–rural interactions promote sustainable rural development: Evidence from the Chang–Zhu–Tan urban agglomeration, China. Geogr. Sustain. 2025, 6, 100338. [Google Scholar] [CrossRef]
- Grossman, M. On the concept of health capital and the demand for health. J. Political Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, T.; Wang, N.; Yao, S. Urban sprawl and fiscal stress: Evidence from urbanizing China. Cities 2022, 126, 103699. [Google Scholar] [CrossRef]
- Prieto, Á.M.; Zofío, J.L.; Álvarez, I. Cost economies, urban patterns and population density: The case of public infrastructure for basic utilities. Pap. Reg. Sci. 2015, 94, 795–817. [Google Scholar] [CrossRef]
- Dau, L.; Barros, P.; Cilliers, E.J.; Hemsley, B.; Martin, M.; Lakhanpaul, M.; Smith, M. Urban density and child health and wellbeing: A scoping review of the literature. Health Place 2025, 91, 103393. [Google Scholar] [CrossRef]
- Rocha, B.T.; Melo, P.C.; Afonso, N.; Silva, J.d.A.e. The local impacts of building a large motorway network: Urban growth, suburbanisation, and agglomeration. Econ. Transp. 2023, 34, 100302. [Google Scholar] [CrossRef]
- Jacobs, J. Strategies for Helping Cities. Am. Econ. Rev. 1969, 59, 652–656. [Google Scholar]
- Zhang, W.X.; Wu, Q.; Wang, B.; Huang, J. Multidimensional study of specialized agglomeration and diversified agglomeration on urban land use efficiency. China Popul. Resour. Environ. 2019, 11, 100–110. (In Chinese) [Google Scholar]
- Liu, H.; Duan, X.Y.; Wang, T.Y. Outpatient Cost-sharing and People’s Health from the Value-based Healthcare Perspective. J. Manag. World 2024, 40, 134–148. (In Chinese) [Google Scholar]
- Wen, Y.; Yu, Z.; Xue, J.; Liu, Y. How heterogeneous industrial agglomeration impacts energy efficiency subject to technological innovation: Evidence from the spatial threshold model. Energy Econ. 2024, 136, 107686. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, B.; Wang, J.; Wu, Q.; Wei, Y.D. How does industrial agglomeration affect urban land use efficiency? A spatial analysis of Chinese cities. Land Use Policy 2022, 119, 106178. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, W.; Wang, S.; Lin, X.; Wang, Z.; Luo, Y. Urban information flow networks, service industry agglomeration and their heterogeneous interactive effects: Evidence from the Guangdong-Hong Kong-Macao Greater Bay Area. Cities 2025, 166, 106285. [Google Scholar] [CrossRef]
- Li, F.; Yang, H.; Ayyamperumal, R.; Liu, Y. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. Chemosphere 2022, 308, 136396. [Google Scholar] [CrossRef]
- Hu, B.; Xu, Q. Environmental Regulation Penalties and Corporate Environmental Information Disclosure. Int. Rev. Econ. Finance 2025, 102, 104344. [Google Scholar] [CrossRef]
- Luo, S.; Cai, X.; Qian, Q.; Xia, H. How can market-based environmental regulation drive industrial transformation upgrading? Evidence from China’s carbon emissions trading pilot policies. Int. Rev. Econ. Finance 2025, 102, 104300. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y. Environmental regulation and employment: Evidence from China’s new Environmental Protection Law. Econ. Anal. Policy 2024, 82, 400–416. [Google Scholar] [CrossRef]
- Zhang, M.A. How Does Trade Liberalization Affect People’s Health?—Evidence from China’s Accession into WTO. China Econ. Q. 2021, 21, 819–842. (In Chinese) [Google Scholar]
- Cai, J.; Coyte, P.C.; Zhao, H. Determinants of and socio-economic disparities in self-rated health in China. Int. J. Equity Health 2017, 16, 7. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, Y.; Xia, X. Health inequalities for China’s low-income population: Trends, subgroup differences, and influencing factors, 2010–2022. Front. Public Health 2025, 13, 1569726. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, T. Home-made blues: Residential crowding and mental health in Beijing, China. Urban Stud. 2023, 60, 461–482. [Google Scholar] [CrossRef]
- Yin, J.H.; Xu, S.; Hai, P. Accessibility of Basic Urban Public Services and Employment Location Preferences of the Migrants. Financ. Econ. 2025, 6, 78–93. (In Chinese) [Google Scholar]
- Chen, S.Y.; Chen, D.K. Air Pollution, Government Regulations and High-quality Economic Development. Econ. Res. J. 2018, 53, 20–34. (In Chinese) [Google Scholar]
- Ko, J.; Jeon, B.H.; Kim, J. Associations of changes in the dynapenia and cognitive function in middle-aged and older adults. Public Health 2025, 247, 105879. [Google Scholar] [CrossRef]
- Xing, W.B.; Tian, K.; Shi, G. Drinking Expenditure, Disease Risk and Health Costs. J. World Econ. 2021, 44, 178–202. (In Chinese) [Google Scholar]
- Lee, H.C.; Yang, E.H.; Shin, S.; Moon, S.H.; Song, N.; Ryoo, J.H. Correlation of commute time with the risk of subjective mental health problems: 6th Korean Working Conditions Survey (KWCS). Ann. Occup. Environ. Med. 2023, 35, e9. [Google Scholar] [CrossRef]
- Ehsan, A.; Klaas, H.S.; Bastianen, A.; Spini, D. Social capital and health: A systematic review of systematic reviews. SSM-Popul. Health 2019, 8, 100425. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Zhang, M. Specialized, diversified agglomeration and CO2 emissions—An empirical study based on panel data of Chinese cities. J. Clean. Prod. 2024, 467, 142892. [Google Scholar] [CrossRef]
- Chen, M.; Gong, Y.; Li, Y.; Zhang, H. Population distribution and urbanization on both sides of the Hu Huanyong Line: Answering the Premier’s question. J. Geogr. Sci. 2016, 26, 1593–1610. [Google Scholar] [CrossRef]
- Wu, B.; Xu, Y. Towards sustainable development: Can industrial collaborative agglomeration become an accelerator for green and low-carbon transformation of resource-based cities in China? J. Environ. Manag. 2025, 381, 125199. [Google Scholar] [CrossRef]
- Frenken, K.; Van Oort, F.; Verburg, T. Related variety, unrelated variety and regional economic growth. Reg. Stud. 2007, 41, 685–697. [Google Scholar] [CrossRef]
- Boschma, R. Relatedness as driver of regional diversification: A research agenda. Reg. Stud. 2017, 51, 351–364. [Google Scholar] [CrossRef]
- Liao, L.; Kong, S.; Du, M. The effect of clean heating policy on individual health: Evidence from China. China Econ. Rev. 2025, 89, 102309. [Google Scholar] [CrossRef]
- Wu, H.; Li, C. The impact of economic agglomeration on China’s urban public health. Front. Public Health 2024, 12, 1476339. [Google Scholar] [CrossRef]
- Wang, J.; Luo, X.; Liang, X.; Ning, C. New-type urbanization and regional public health: Mechanisms and effects. Front. Public Health 2025, 13, 1513173. [Google Scholar] [CrossRef]

| Variables | Observations | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|
| Physical_health | 13,217 | 3.5964 | 1.0178 | 1 | 5 |
| Mental_health | 13,217 | 0.8733 | 0.1688 | 0 | 1 |
| Aggregation1 | 13,217 | 0.3789 | 0.0671 | 0.2612 | 0.6714 |
| Aggregation2 | 13,217 | 0.0527 | 0.0100 | 0.0303 | 0.0833 |
| M1 | 13,217 | 14.0334 | 31.5850 | 0.0397 | 202.8660 |
| M2 | 9739 | 31,940.3333 | 35,105.0100 | 500 | 200,000 |
| M3 | 13,217 | 0.2617 | 0.2386 | 0.0307 | 1 |
| female | 13,217 | 0.4723 | 0.4992 | 0 | 1 |
| age | 13,217 | 46.8272 | 14.3729 | 15 | 91 |
| marriage | 13,217 | 0.8174 | 0.3863 | 0 | 1 |
| hukou | 13,217 | 0.9433 | 0.2312 | 0 | 1 |
| health_ins | 13,217 | 0.8929 | 0.3092 | 0 | 1 |
| pension_ins | 13,217 | 0.5614 | 0.4962 | 0 | 1 |
| smoking | 13,217 | 0.2635 | 0.4406 | 0 | 1 |
| drinking | 13,217 | 0.1913 | 0.3934 | 0 | 1 |
| family members | 13,217 | 4.5265 | 2.0892 | 1 | 19 |
| household_inc | 13,217 | 1.6335 | 3.5412 | −3.3333 | 150 |
| med_resources | 13,217 | 0.2643 | 0.1353 | 0.0493 | 0.7625 |
| edu_resources | 13,217 | 165.4727 | 115.2712 | 62.4757 | 736.3219 |
| Env_ regulation | 12,834 | 0.0065 | 0.0022 | 0.0016 | 0.0148 |
| Physical_Health | Mental_Health | |||||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| Agg1 | 0.687 *** | 0.622 *** | 0.656 *** | 0.065 *** | 0.062 *** | 0.060 *** |
| (0.132) | (0.128) | (0.130) | (0.022) | (0.022) | (0.022) | |
| female | 0.152 *** | 0.152 *** | 0.023 *** | 0.023 *** | ||
| (0.021) | (0.021) | (0.004) | (0.004) | |||
| age | −0.022 *** | −0.022 *** | −0.000 *** | −0.000 *** | ||
| (0.001) | (0.001) | (0.000) | (0.000) | |||
| marriage | 0.105 *** | 0.105 *** | 0.011 ** | 0.011 ** | ||
| (0.026) | (0.026) | (0.005) | (0.005) | |||
| hukou | −0.029 | −0.033 | 0.002 | 0.002 | ||
| (0.033) | (0.033) | (0.006) | (0.006) | |||
| health_ins | −0.049 * | −0.049 * | 0.004 | 0.004 | ||
| (0.029) | (0.029) | (0.005) | (0.005) | |||
| pension_ins | 0.010 | 0.009 | 0.005 * | 0.005 * | ||
| (0.018) | (0.018) | (0.003) | (0.003) | |||
| smoking | −0.071 *** | −0.071 *** | −0.005 | −0.005 | ||
| (0.025) | (0.025) | (0.004) | (0.004) | |||
| drinking | 0.017 | 0.016 | −0.003 | −0.003 | ||
| (0.024) | (0.024) | (0.004) | (0.004) | |||
| family members | −0.030 *** | −0.030 *** | −0.002 *** | −0.002 *** | ||
| (0.004) | (0.004) | (0.001) | (0.001) | |||
| household_inc | 0.022 *** | 0.022 *** | 0.003 *** | 0.003 *** | ||
| (0.004) | (0.004) | (0.000) | (0.000) | |||
| med_resources | 0.094 | 0.081 | −0.010 | −0.010 | ||
| (0.067) | (0.068) | (0.012) | (0.012) | |||
| edu_resources | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | ||
| (0.000) | (0.000) | (0.000) | (0.000) | |||
| _cons | 3.336 *** | 4.348 *** | 4.342 *** | 0.849 *** | 0.840 *** | 0.840 *** |
| (0.051) | (0.075) | (0.075) | (0.008) | (0.013) | (0.013) | |
| Province FE | NO | NO | YES | NO | NO | YES |
| F Stats. | 27.140 | 130.656 | 130.571 | 8.703 | 14.020 | 14.004 |
| R2 | 0.002 | 0.107 | 0.108 | 0.001 | 0.014 | 0.014 |
| Obs. | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 |
| Replace the Dependent Variable | Replace Estimation Model | High-Dimensional Fixed Effects | IV1 | IV2 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | |
| Agg1 | 0.121 ** | 0.165 * | 1.081 *** | 1.279 *** | 0.771 *** | 0.752 *** | 0.094 *** | 4.460 ** | 0.674 *** | 6.533 *** | 0.439 ** |
| (0.049) | (0.086) | (0.404) | (0.251) | (0.144) | (0.157) | (0.028) | (2.061) | (0.274) | (1.051) | (0.155) | |
| _cons | 1.071 *** | 1.687 *** | 21.123 *** | - | - | 4.035 *** | 0.783 *** | - | - | - | - |
| (0.027) | (0.052) | (0.227) | - | - | (0.096) | (0.017) | - | - | - | - | |
| Control | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Province FE | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Industry FE | NO | NO | NO | NO | NO | YES | YES | NO | NO | NO | NO |
| F Stats. | 81.020 | 40.968 | 14.004 | - | - | 30.489 | 7.279 | 35.890 | 6.130 | 109.60 | 11.50 |
| K-P F-stat | - | - | - | - | - | - | - | 8.597 | 8.597 | 228.354 | 274.577 |
| R2 | 0.068 | 0.038 | 0.014 | - | - | 0.075 | 0.023 | - | - | - | - |
| Obs. | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 | 13,217 |
| Panel A: Physical_Health | ||||||
|---|---|---|---|---|---|---|
| Urban Agglomeration | Big City | High Aggregation Level | ||||
| (1) Yes | (2) No | (3) Yes | (4) No | (5) Yes | (6) No | |
| Agg1 | 0.419 ** | 1.008 *** | 0.371 * | 0.853 *** | −0.329 | 0.954 ** |
| (0.186) | (0.190) | (0.207) | (0.183) | (0.223) | (0.420) | |
| Control | YES | YES | YES | YES | YES | YES |
| Province FE | YES | YES | YES | YES | YES | YES |
| Obs. | 6278 | 6939 | 4801 | 8416 | 1564 | 11,653 |
| Panel B: Mental_Health | ||||||
| Urban Agglomeration | Big City | High Aggregation Level | ||||
| (7) Yes | (8) No | (9) Yes | (10) No | (11) Yes | (12) No | |
| Agg1 | 0.139 *** | −0.014 | 0.100 *** | 0.016 | −0.100 ** | 0.144 * |
| (0.031) | (0.034) | (0.034) | (0.032) | (0.040) | (0.074) | |
| Control | YES | YES | YES | YES | YES | YES |
| Province FE | YES | YES | YES | YES | YES | YES |
| Obs. | 10,189 | 3028 | 3812 | 9405 | 1564 | 11,653 |
| Panel A: Physical_Health | ||||||
|---|---|---|---|---|---|---|
| Age | Skill Level | Industrial Sector | ||||
| (1) Old | (2) Young | (3) High | (4) Low | (5) Yes | (6) No | |
| Agg1 | 0.762 *** | 0.351 | 0.462 ** | 0.702 *** | 0.876 ** | 0.622 *** |
| (0.155) | (0.229) | (0.224) | (0.158) | (0.349) | (0.141) | |
| Control | YES | YES | YES | YES | YES | YES |
| Province FE | YES | YES | YES | YES | YES | YES |
| Obs. | 10,189 | 3028 | 3812 | 9405 | 1564 | 11,653 |
| Panel B: Mental_Health | ||||||
| Age | Skill Level | Industrial Sector | ||||
| (7) Old | (8) Young | (9) High | (10) Low | (11) Yes | (12) No | |
| Agg1 | 0.089 *** | −0.036 | 0.021 | 0.076 *** | 0.018 | 0.066 *** |
| (0.026) | (0.043) | (0.039) | (0.027) | (0.063) | (0.024) | |
| Control | YES | YES | YES | YES | YES | YES |
| Province FE | YES | YES | YES | YES | YES | YES |
| Obs. | 10,189 | 3028 | 3812 | 9405 | 1564 | 11,653 |
| (1) M1 | (2) Phy_Health | (3) Men_Health | (4) M2 | (5) Phy_Health | (6) Men_Health | (7) M3 | (8) Phy_Health | (9) Men_Health | |
|---|---|---|---|---|---|---|---|---|---|
| Agg1 | −5.628 *** | 0.481 *** | 0.024 | 0.354 ** | 0.721 *** | 0.091 *** | 0.043 ** | 0.502 *** | 0.039 * |
| (0.171) | (0.136) | (0.024) | (0.174) | (0.148) | (0.025) | (0.019) | (0.132) | (0.023) | |
| LnM1 | −0.031 *** | −0.006 *** | |||||||
| (0.008) | (0.001) | ||||||||
| LnM2 | 0.147 *** | 0.018 *** | |||||||
| (0.009) | (0.002) | ||||||||
| M3 | 0.680 *** | 0.075 *** | |||||||
| (0.107) | (0.018) | ||||||||
| BS_1 | 0.169 *** | 0.040 *** | 0.045 * | 0.006 * | 0.038 ** | 0.004 ** | |||
| [0.512] | [0.009] | [0.025] | [0.003] | [0.015] | [0.002] | ||||
| BS_2 | 0.453 *** | 0.022 | 0.631 *** | 0.086 *** | 0.450 *** | 0.036 * | |||
| [0.131] | [0.024] | [0.144] | [0.024] | [0.124] | [0.021] | ||||
| _cons | 4.313 *** | 4.475 *** | 0.868 *** | 11.239 *** | 2.622 *** | 0.613 *** | 0.029 *** | 4.412 *** | 0.850 *** |
| (0.091) | (0.082) | (0.014) | (0.118) | (0.134) | (0.024) | (0.011) | (0.073) | (0.012) | |
| Control | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| Province FE | YES | YES | YES | YES | YES | YES | YES | YES | YES |
| F Stats. | 655.647 | 122.519 | 14.699 | 254.044 | 99.199 | 19.596 | 3562.941 | 125.522 | 12.450 |
| R2 | 0.354 | 0.109 | 0.016 | 0.257 | 0.108 | 0.025 | 0.867 | 0.113 | 0.015 |
| Obs. | 13,028 | 13,028 | 13,028 | 8854 | 8854 | 8854 | 12,051 | 12,051 | 12,051 |
| (1) Phy_Health | (2) Men_Health | (3) Phy_Health | (4) Men_Health | |
|---|---|---|---|---|
| Agg2 | −3.472 *** | −0.257 * | −30.429 *** | −4.532 *** |
| (0.859) | (0.150) | (6.997) | (1.254) | |
| Agg2^2 | 253.733 *** | 40.243 *** | ||
| (65.567) | (11.789) | |||
| _cons | 4.781 *** | 0.877 *** | 5.482 *** | 0.988 *** |
| (0.070) | (0.012) | (0.192) | (0.035) | |
| Control | YES | YES | YES | YES |
| Province FE | YES | YES | YES | YES |
| F Stats. | 130.303 | 13.798 | 121.759 | 13.385 |
| R2 | 0.107 | 0.014 | 0.108 | 0.015 |
| Obs. | 13,217 | 13,217 | 13,217 | 13,217 |
| (1) Phy_Health | (2) Men_Health | (3) Phy_Health | (4) Men_Health | |
|---|---|---|---|---|
| Agg1 | 0.877 *** | 0.060 *** | ||
| (0.136) | (0.023) | |||
| Agg2 | −5.035 *** | −0.281 * | ||
| (0.892) | (0.155) | |||
| Env_regulation | −23.623 *** | −0.290 | −23.129 *** | −0.259 |
| (4.214) | (0.714) | (4.208) | (0.719) | |
| Interact1 | −99.244 | 21.561 * | ||
| (68.462) | (11.805) | |||
| Interact2 | 282.160 | −146.530 ** | ||
| (376.222) | (66.316) | |||
| _cons | 4.578 *** | 0.865 *** | 4.592 *** | 0.865 *** |
| (0.055) | (0.009) | (0.055) | (0.009) | |
| Control | YES | YES | YES | YES |
| Province FE | YES | YES | YES | YES |
| F Stats. | 116.324 | 12.096 | 116.094 | 11.945 |
| R2 | 0.113 | 0.015 | 0.112 | 0.015 |
| Obs. | 13,217 | 13,217 | 13,217 | 13,217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, Z.; Liu, Y.; Dai, X.; Chen, C.; Wang, Z.; Wu, A. How Does the Spatial Structure of the Furniture Industry Shape Urban Residents’ Health? Evidence from China Labor-Force Dynamics Survey and POI Data. Sustainability 2026, 18, 345. https://doi.org/10.3390/su18010345
Chen Z, Liu Y, Dai X, Chen C, Wang Z, Wu A. How Does the Spatial Structure of the Furniture Industry Shape Urban Residents’ Health? Evidence from China Labor-Force Dynamics Survey and POI Data. Sustainability. 2026; 18(1):345. https://doi.org/10.3390/su18010345
Chicago/Turabian StyleChen, Zigui, Yuning Liu, Xiangdong Dai, Chao Chen, Zhenjun Wang, and Andrew Wu. 2026. "How Does the Spatial Structure of the Furniture Industry Shape Urban Residents’ Health? Evidence from China Labor-Force Dynamics Survey and POI Data" Sustainability 18, no. 1: 345. https://doi.org/10.3390/su18010345
APA StyleChen, Z., Liu, Y., Dai, X., Chen, C., Wang, Z., & Wu, A. (2026). How Does the Spatial Structure of the Furniture Industry Shape Urban Residents’ Health? Evidence from China Labor-Force Dynamics Survey and POI Data. Sustainability, 18(1), 345. https://doi.org/10.3390/su18010345
