Green Infrastructure’s Role in Climate Change Adaptation: Summarizing the Existing Research in the Most Benefited Policy Sectors
Abstract
1. Introduction
1.1. General Background
1.2. Conceptual and Theoretical Framework: The Role and Benefits of GI in Climate Change Adaptation and Mitigation
- What is GI’s role and main benefits in climate change adaptation, specifically regarding mitigating urban heat island effects, strengthening ecosystem resilience, and managing flood risk?
- Which strategies and techniques for GI implementation in climate adaptation are proposed in the literature, and how are these studies methodologically structured?
- What are the key trends, challenges, and limitations in GI research, including insights derived from bibliometric and co-citation analyses?
2. Materials and Methods
3. Results
3.1. Bibliometric Analysis
3.1.1. Keyword Co-Occurrence Analysis
3.1.2. Co-Citation Analysis by Source
3.1.3. Bibliographic Coupling Analysis with Documents
3.2. Reviews on Green Infrastructure Application in Climate Change Adaptation
4. Discussion and Conclusions
4.1. Green Infrastructure Contribution to Policy Sectors
4.2. Final Remarks, Limitations, and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. In Planning for Climate Change: A Reader in Green Infrastructure and Sustainable Design for Resilient Cities; Routledge: London, UK, 2018; pp. 195–205. [Google Scholar]
- Sussams, L.W.; Sheate, W.R.; Eales, R.P. Green infrastructure as a climate change adaptation policy intervention: Muddying the waters or clearing a path to a more secure future? J. Environ. Manag. 2015, 147, 184–193. [Google Scholar] [CrossRef]
- Belčáková, I.; Świader, M.; Bartyna-Zielińska, M. The green infrastructure in cities as a tool for climate change adaptation and mitigation: Slovakian and polish experiences. Atmosphere 2019, 10, 552. [Google Scholar] [CrossRef]
- Almaaitah, T.; Appleby, M.; Rosenblat, H.; Drake, J.; Joksimovic, D. The potential of Blue-Green infrastructure as a climate change adaptation strategy: A systematic literature review. Blue-Green Syst. 2021, 3, 223–248. [Google Scholar] [CrossRef]
- Dharmarathne, G.; Waduge, A.O.; Bogahawaththa, M.; Rathnayake, U.; Meddage, D.P.P. Adapting cities to the surge: A comprehensive review of climate-induced urban flooding. Results Eng. 2024, 22, 102123. [Google Scholar] [CrossRef]
- Carter, J.; Labib, S.M.; Mell, I. Understanding and Assessing Climate Change Risk to Green Infrastructure: Experiences from Greater Manchester (UK). Land 2024, 13, 697. [Google Scholar] [CrossRef]
- Mishra, V.; Sadhu, A. Towards the effect of climate change in structural loads of urban infrastructure: A review. Sustain. Cities Soc. 2023, 89, 104352. [Google Scholar] [CrossRef]
- Palin, E.J.; Oslakovic, I.S.; Gavin, K.; Quinn, A. Implications of climate change for railway infrastructure. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e728. [Google Scholar] [CrossRef]
- Wilbanks, T.J.; Zimmerman, R.; Julius, S.; Kirshen, P.; Smith, J.B.; Moss, R.; Solecki, W.; Ruth, M.; Conrad, S.; Fernandez, S.J.; et al. Toward indicators of the performance of US infrastructures under climate change risks. Clim. Chang. 2020, 163, 1795–1813. [Google Scholar] [CrossRef]
- Picketts, I.M.; Andrey, J.; Matthews, L.; Déry, S.J.; Tighe, S. Climate change adaptation strategies for transportation infrastructure in Prince George, Canada. Reg. Environ. Chang. 2016, 16, 1109–1120. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Naumann, S.; Gerardo, A.; Berry, P. Assessment of the Potential of Ecosystem-Based Approaches to Climate Change Adaptation and Mitigation in Europe; Final report to the European Commission, DG Environment, Contract no. 070307/2010/580412/SER/B2; Ecologic institute and Environmental Change Institute, Oxford University Centre for the Environment: Oxford, UK, 2011; pp. 29–40. [Google Scholar]
- Ramyar, R.; Zarghami, E. Green infrastructure contribution for climate change adaptation in urban landscape context. Appl. Ecol. Environ. Res. 2017, 15, 1193–1209. [Google Scholar] [CrossRef]
- Xiao, Z.; Ge, H.; Lacasse, M.A.; Wang, L.; Zmeureanu, R. Nature-Based Solutions for Carbon Neutral Climate Resilient Buildings and Communities: A Review of Technical Evidence, Design Guidelines, and Policies. Buildings 2023, 13, 1389. [Google Scholar] [CrossRef]
- Rodriguez, M.; Fu, G.; Butler, D.; Yuan, Z.; Cook, L. The effect of green infrastructure on resilience performance in combined sewer systems under climate change. J. Environ. Manag. 2024, 353, 120229. [Google Scholar] [CrossRef]
- Reinwald, F.; Weichselbaumer, R.; Schindelegger, A.; Damyanovic, D. From strategy to implementation: Mainstreaming urban green infrastructure in Austria’s spatial planning instruments for climate change adaptation. Urban For. Urban Green. 2024, 94, 128232. [Google Scholar] [CrossRef]
- Jopp, R.; Delacy, T.; Mair, J. Developing a framework for regional destination adaptation to climate change. Curr. Issues Tour. 2010, 13, 591–605. [Google Scholar] [CrossRef]
- Ramyar, R.; Ackerman, A.; Johnston, D.M. Adapting cities for climate change through urban green infrastructure planning. Cities 2021, 117, 103316. [Google Scholar] [CrossRef]
- Sharifi, A. Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review. Sci. Total Environ. 2021, 750, 141642. [Google Scholar] [CrossRef]
- EEA. Green Infrastructure and Territorial Cohesion. In The Concept of Green Infrastructure and Its Integration into Policies Using Monitoring Systems; Technical Report (Number 18); European Environment Agency Copenhagen Denmark: Copenhagen, Denmark, 2011; pp. 1–138. [Google Scholar]
- Stephan, P.; Li, L.; Jack, A.; Aleksandra, K. Multifunctional Green Infrastructure Planning to Promote Ecological Services in the City; Urban Ecology. Patterns, Processes, and Applications; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Štecová, I. Ecosystem services to mitigate climate change in cities. In Terra Spectra STU—Central European Journal of Spatial and Landscape Planning; STU Bratislava, SPECTRA Centre of Excellence: Bratislava, Slovakia, 2016; ISSN 1338-0370. [Google Scholar]
- Pankhurst, H. Green Infrastructure: Mainstreaming the Concept Understanding and Applying the Principles of Green Infrastructure in South Worcestershire. No. February 2010. Available online: https://publications.naturalengland.org.uk/publication/46011 (accessed on 9 July 2024).
- Kabisch, N.; Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- Gonzalez-Duque, J.; Panagopoulos, T. Evaluation of the Urban Green Infrastructure using Landscape Modules, GIS and a Population Survey: Linking environmental with social aspects in studying and managing urban forests. J. Spat. Organ. Dyn. 2013, 1, 82–95. [Google Scholar]
- Ardoin, N.M.; Bowers, A.W.; Gaillard, E. Environmental education outcomes for conservation: A systematic review. Biol. Conserv. 2020, 241, 108224. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Jezzini, Y.; Assaf, G.; Assaad, R.H. Models and Methods for Quantifying the Environmental, Economic, and Social Benefits and Challenges of Green Infrastructure: A Critical Review. Sustainability 2023, 15, 7544. [Google Scholar] [CrossRef]
- Shakya, R.; Ahiablame, L. A synthesis of social and economic benefits linked to green infrastructure. Water 2021, 13, 3651. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Delgado-Capel, M.J.; Egea-Cariñanos, P.; Cariñanos, P. Assessing the Relationship between Land Surface Temperature and Composition Elements of Urban Green Spaces during Heat Waves Episodes in Mediterranean Cities. Forests 2024, 15, 463. [Google Scholar] [CrossRef]
- Tallis, M.J.; Amorim, J.H.; Calfapietra, C.; Freer-Smith, P.; Grimmond, S.; Kotthaus, S.; Sinnett, D.; Smith, N.; Burgess, S. The impacts of green infrastructure on air quality and temperature. In Handbook on Green Infrastructure: Planning, Design and Implementation; Edward Elgar Publishing: Cheltenham, UK, 2015; pp. 30–49. [Google Scholar]
- Le Tertre, A.; Lefranc, A.; Eilstein, D.; Declercq, C.; Medina, S.; Blanchard, M.; Chardon, B.; Fabre, P.; Filleul, L.; Jusot, J.; et al. Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology 2006, 17, 75–79. [Google Scholar] [CrossRef]
- Santamouris, M.; Osmond, P. Increasing green infrastructure in cities: Impact on ambient temperature, air quality and heat-related mortality and morbidity. Buildings 2020, 10, 233. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Sharmin, M.; Tjoelker, M.G.; Pfautsch, S.; Esperon-Rodriguez, M.; Rymer, P.D.; Power, S.A. Tree crown traits and planting context contribute to reducing urban heat. Urban For. Urban Green. 2023, 83, 127913. [Google Scholar] [CrossRef]
- García-Haro, A.; Arellano, B.; Roca, J. Quantifying the influence of design and location on the cool island effect of the urban parks of Barcelona. J. Appl. Remote Sens. 2023, 17, 034512. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Ocampo, C.; Oldham, C. Thermal performance of green façades: Review and analysis of published data. Renew. Sustain. Energy Rev. 2022, 155, 111744. [Google Scholar] [CrossRef]
- Green, D.; O’Donnell, E.; Johnson, M.; Slater, L.; Thorne, C.; Zheng, S.; Stirling, R.; Chan, F.K.S.; Li, L.; Boothroyd, R.J. Green infrastructure: The future of urban flood risk management? Wiley Interdiscip. Rev. Water 2021, 8, e21560. [Google Scholar] [CrossRef]
- Sharma, R.; Malaviya, P. Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdiscip. Rev. Water 2021, 8, e1507. [Google Scholar] [CrossRef]
- Twohig, C.; Casali, Y.; Aydin, N.Y. Can Green Roofs Help with Stormwater Floods? A Geospatial Planning Approach. Urban For. Urban Green. 2022, 76, 127724. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Gitau, M.W.; Engel, B.A.; Flanagan, D.C.; Harbor, J.M. Evaluation of the effectiveness of green infrastructure on hydrology and water quality in a combined sewer overflow community. Sci. Total Environ. 2019, 665, 69–79. [Google Scholar] [CrossRef]
- Nakamura, F. Introduction. In Green Infrastructure and Climate Change Adaptation; Nakamura, F., Ed.; Ecological Research Monographs; Springer: Singapore, 2016. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Liu, Q.; Zhang, M. The role of green infrastructure in the removal of sodium from stormwater runoff. Environ. Sci. Pollut. Res. 2022, 29, 2065–2077. [Google Scholar]
- Velasco, E.; Roth, M. Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geogr. Compass 2010, 4, 1238–1259. [Google Scholar] [CrossRef]
- Ai, K.; Yan, X. Can Green Infrastructure Investment Reduce Urban Carbon Emissions: Empirical Evidence from China. Land 2024, 13, 226. [Google Scholar] [CrossRef]
- Liu, Y.; Han, B.; Jiang, C.Q.; Ouyang, Z. Uncovering the role of urban green infrastructure in carbon neutrality: A novel pathway from the urban green infrastructure and cooling power saving. J. Clean. Prod. 2024, 452, 142193. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef]
- Gies, E. The Health Benefits of Parks How Parks Help Keep Americans and Their Communities Fit and Healthy; The Trust for Public Land: San Francisco, CA, USA, 2006; pp. 1–24. [Google Scholar]
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban green space and its impact on human health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Forns, J.; Plasència, A.; Nieuwenhuijsen, M.J. Mental health benefits of long-term exposure to residential green and blue spaces: A systematic review. Int. J. Environ. Res. Public Health 2015, 12, 4354–4379. [Google Scholar] [CrossRef] [PubMed]
- Sturiale, L.; Scuderi, A. The Role of Green Infrastructures in Urban Planning for Climate Change Adaptation. Climate 2019, 7, 119. [Google Scholar] [CrossRef]
- Iungman, T.; Cirach, M.; Marando, F.; Barboza, E.P.; Khomenko, S.; Masselot, P.; Quijal-Zamorano, M.; Mueller, N.; Gasparrini, A.; Urquiza, J.; et al. Cooling cities through urban green infrastructure: A health impact assessment of European cities. Lancet 2023, 401, 577–589. [Google Scholar] [CrossRef]
- WHO. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. 2009. Available online: https://apps.who.int/iris/handle/10665/44203 (accessed on 22 August 2024).
- WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulphur Dioxide: Global Update, Summary of Risk Assessments. 2005. Available online: https://apps.who.int/iris/handle/10665/69477 (accessed on 22 August 2024).
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.J.; Torpy, F.R. The in situ pilot-scale phytoremediation of airborne VOCs and particulate matter with an active green wall. Air Qual. Atmos. Health 2019, 12, 33–44. [Google Scholar] [CrossRef]
- Pettit, T.; Irga, P.J.; Abdo, P.; Torpy, F.R. Do the plants in functional green walls contribute to their ability to filter particulate matter? Build. Environ. 2017, 125, 299–307. [Google Scholar] [CrossRef]
- Tomson, M.; Kumar, P.; Barwise, Y.; Perez, P.; Forehead, H.; French, K.; Morawska, L.; Watts, J.F. Green infrastructure for air quality improvement in street canyons. Environ. Int. 2021, 146, 106288. [Google Scholar] [CrossRef]
- Janetos, A.C. Why is climate adaptation so important? What are the needs for additional research? Clim. Chang. 2020, 161, 171–176. [Google Scholar] [CrossRef]
- Hunter, A.M.; Williams, N.S.G.; Rayner, J.P.; Aye, L.; Hes, D.; Livesley, S.J. Quantifying the thermal performance of green façades: A critical review. Ecol. Eng. 2014, 63, 102–113. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air Soil Pollut. 2014, 225, 2055. [Google Scholar] [CrossRef]
- Pitman, S.D.; Daniels, C.B.; Ely, M.E. Green infrastructure as life support: Urban nature and climate change. Trans. R. Soc. South Aust. 2015, 139, 97–112. [Google Scholar] [CrossRef]
- Koc, C.B.; Osmond, P.; Peters, A. Towards a comprehensive green infrastructure typology: A systematic review of approaches, methods and typologies. Urban Ecosyst. 2017, 20, 15–35. [Google Scholar] [CrossRef]
- Chatzimentor, A.; Apostolopoulou, E.; Mazaris, A.D. A review of green infrastructure research in Europe: Challenges and opportunities. Landsc. Urban Plan. 2020, 198, 103775. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com/statistics/263762/total-population-of-the-united-states (accessed on 16 September 2024).
- Choi, C.; Berry, P.; Smith, A. The climate benefits, co-benefits, and trade-offs of green infrastructure: A systematic literature review. J. Environ. Manag. 2021, 291, 112583. [Google Scholar] [CrossRef]
- Aghaloo, K.; Sharifi, A.; Habibzadeh, N.; Ali, T.; Chiu, Y.R. How nature-based solutions can enhance urban resilience to flooding and climate change and provide other co-benefits: A systematic review and taxonomy. Urban For. Urban Green. 2024, 95, 128320. [Google Scholar] [CrossRef]
- Carlson, P.J.; Burris, M.; Black, K.; Rose, E.R. Comparison of radius-estimating techniques for horizontal curves. Transp. Res. Rec. 2005, 1918, 76–83. [Google Scholar] [CrossRef]
- Bureau of Transportation Statistics. Available online: https://www.bts.gov/content/number-us-aircraft-vehicles-vessels-and-other-conveyances (accessed on 20 September 2024).
- Pauleit, S.; Ambrose-Oji, B.; Andersson, E.; Anton, B.; Buijs, A.; Haase, D.; Elands, B.; Hansen, R.; Kowarik, I.; Kronenberg, J.; et al. Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban For. Urban Green. 2019, 40, 4–16. [Google Scholar] [CrossRef]
- Shade, C.; Kremer, P.; Rockwell, J.S.; Henderson, K.G. The effects of urban development and current green infrastructure policy on future climate change resilience. Ecol. Soc. 2020, 25, 37. [Google Scholar] [CrossRef]
- Koch, K.; Ysebaert, T.; Denys, S.; Samson, R. Urban heat stress mitigation potential of green walls: A review. Urban For. Urban Green. 2020, 55, 126843. [Google Scholar] [CrossRef]
- Afionis, S.; Mkwambisi, D.D.; Dallimer, M. Lack of Cross-Sector and Cross-Level Policy Coherence and Consistency Limits Urban Green Infrastructure Implementation in Malawi. Front. Environ. Sci. 2020, 8, 558619. [Google Scholar] [CrossRef]
- Laurenz, J.; Belausteguigoitia, J.; De La Fuente, A.; Roehr, D. Green urban (RE) generation: A research and practice methodology to better implement green urban infrastructure solutions. Land 2021, 10, 1376. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The spatial and temporal characteristics of urban heat island intensity: Implications for east africa’s urban development. Climate 2021, 9, 51. [Google Scholar] [CrossRef]
- Shao, H.; Kim, G. A Comprehensive Review of Different Types of Green Infrastructure to Mitigate Urban Heat Islands: Progress, Functions, and Benefits. Land 2022, 11, 1792. [Google Scholar] [CrossRef]
- Abdulateef, M.F.; Al-Alwan, H.A.S. The effectiveness of urban green infrastructure in reducing surface urban heat island. Ain Shams Eng. J. 2022, 13, 101526. [Google Scholar] [CrossRef]
- Cascone, S.; Leuzzo, A. Thermal Comfort in the Built Environment: A Digital Workflow for the Comparison of Different Green Infrastructure Strategies. Atmosphere 2023, 14, 685. [Google Scholar] [CrossRef]
- Zhou, Z.; Galway, N.; Megarry, W. Exploring socio-ecological inequalities in heat by multiple and composite greenness metrics: A case study in Belfast, UK. Urban For. Urban Green. 2023, 90, 128150. [Google Scholar] [CrossRef]
- Park, B.J.; Lee, D.K.; Yun, S.H.; Kim, E.S.; Lee, J.H.; Kim, S.H. Assessing the impact of green infrastructure on thermal comfort in relation to humidity: A case study in Korea. Urban For. Urban Green. 2024, 95, 128305. [Google Scholar] [CrossRef]
- Zha, F.; Lu, L.; Wang, R.; Zhang, S.; Cao, S.; Baqa, M.F.; Li, Q.; Chen, F. Understanding fine-scale heat health risks and the role of green infrastructure based on remote sensing and socioeconomic data in the megacity of Beijing, China. Ecol. Indic. 2024, 160, 111847. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.; Liu, W.; Yan, T.; Yu, D.; Zhang, L. Urban Green Space Planning and Design Based on Big Data Analysis and BDA-UGSPD Model. Teh. Vjesn. 2024, 31, 543–550. [Google Scholar] [CrossRef]
- Delgado-Capel, M.; Cariñanos, P. Towards a standard framework to identify green infrastructure key elements in dense mediterranean cities. Forests 2020, 11, 1246. [Google Scholar] [CrossRef]
- Larsen, L. Urban climate and adaptation strategies. Front. Ecol. Environ. 2015, 13, 486–492. [Google Scholar] [CrossRef]
- Zölch, T.; Maderspacher, J.; Wamsler, C.; Pauleit, S. Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban For. Urban Green. 2016, 20, 305–316. [Google Scholar] [CrossRef]
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban For. Urban Green. 2018, 29, 212–222. [Google Scholar] [CrossRef]
- Zimmerman, R.; Brenner, R.; Abella, J.L. Green infrastructure financing as an imperative to achieve green goals. Climate 2019, 7, 39. [Google Scholar] [CrossRef]
- Makido, Y.; Hellman, D.; Shandas, V. Nature-based designs to mitigate urban heat: The efficacy of green infrastructure treatments in Portland, Oregon. Atmosphere 2019, 10, 282. [Google Scholar] [CrossRef]
- MacIvor, J.S.; Margolis, L.; Perotto, M.; Drake, J.A.P. Air temperature cooling by extensive green roofs in Toronto Canada. Ecol. Eng. 2016, 95, 36–42. [Google Scholar] [CrossRef]
- Brudermann, T.; Sangkakool, T. Green roofs in temperate climate cities in Europe—An analysis of key decision factors. Urban For. Urban Green. 2017, 21, 224–234. [Google Scholar] [CrossRef]
- Bąk, J.; Królikowska, J. Current status and possibilities of implementing green walls for adaptation to climate change of urban areas on the example of Krakow. Rocz. Ochr. Sr. 2019, 21, 1263–1278. [Google Scholar]
- Knaus, M.; Haase, D. Green roof effects on daytime heat in a prefabricated residential neighbourhood in Berlin, Germany. Urban For. Urban Green. 2020, 53, 126738. [Google Scholar] [CrossRef]
- Untereiner, E.; Toboso-Chavero, S.; Fariñas, A.V.; Madrid-Lopez, C.; Villalba, G.; Durany, X.G. Predicting willingness to pay and implement different rooftop strategies to characterize social perception of climate change mitigation and adaptation. Environ. Res. Commun. 2024, 6, 015004. [Google Scholar] [CrossRef]
- Monsalves-Gavilán, P.; Pincheira-Ulbrich, J.; Rojo Mendoza, F. Climate change and its effects on urban spaces in Chile: A summary of research carried out in the period 2000–2012. Atmosfera 2013, 26, 547–566. [Google Scholar] [CrossRef]
- Gedikli, B. Approaches to climate change in spatial planning and design: International and Turkish Experiences. Metu J. Fac. Archit. 2018, 35, 89–109. [Google Scholar] [CrossRef]
- Bouzouidja, R.; Leconte, F.; Kiss, M.; Pierret, M.; Pruvot, C.; Détriché, S.; Louvel, B.; Bertout, J.; Aketouane, Z.; Wu, T.V.; et al. Experimental comparative study between conventional and green parking lots: Analysis of subsurface thermal behavior under warm and dry summer conditions. Atmosphere 2021, 12, 994. [Google Scholar] [CrossRef]
- Lopes, H.S.; Remoaldo, P.C.; Ribeiro, V.; Martín-Vide, J. Pathways for adapting tourism to climate change in an urban destination—Evidences based on thermal conditions for the Porto Metropolitan Area (Portugal). J. Environ. Manag. 2022, 315, 115161. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Dallimer, M. The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa. Climate 2022, 10, 164. [Google Scholar] [CrossRef]
- Dano, U.L.; Abubakar, I.R.; AlShihri, F.S.; Ahmed, S.M.S.; Alrawaf, T.I.; Alshammari, M.S. A multi-criteria assessment of climate change impacts on urban sustainability in Dammam Metropolitan Area, Saudi Arabia. Ain Shams Eng. J. 2023, 14, 102062. [Google Scholar] [CrossRef]
- Schneider, A.E.; Neuhuber, T.; Zawadzki, W. Understanding citizens’ willingness to contribute to urban greening programs. Urban For. Urban Green. 2024, 95, 128293. [Google Scholar] [CrossRef]
- Alfie-Cohen, M.; Garcia-Becerra, F.Y. A multi-stakeholder participatory methodology to facilitate socio-ecological climate change vulnerability–adaptation–resilience strategies: Application of the Q Method. Mitig. Adapt. Strateg. Glob. Chang. 2022, 27, 14. [Google Scholar] [CrossRef]
- Lehmler, S.; Förster, M.; Frick, A. Modelling Green Volume Using Sentinel-1, -2, PALSAR-2 Satellite Data and Machine Learning for Urban and Semi-Urban Areas in Germany. Environ. Manag. 2023, 72, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Liu, Y.F. Co-benefits of preserving urban farmland as climate change adaptation strategy: An emergy approach. Ecol. Indic. 2023, 154, 110722. [Google Scholar] [CrossRef]
- Lara-Valencia, F.; Garcia, M.; Norman, L.M.; Anides Morales, A.; Castellanos-Rubio, E.E. Integrating Urban Planning and Water Management Through Green Infrastructure in the United States-Mexico Border. Front. Water 2022, 4, 782922. [Google Scholar] [CrossRef]
- Parker, J.; Simpson, G.D. A Theoretical Framework for Bolstering Human-Nature Connections and Urban Resilience via Green Infrastructure. Land 2020, 9, 252. [Google Scholar] [CrossRef]
- Herreros-Cantis, P.; McPhearson, T. Mapping supply of and demand for ecosystem services to assess environmental justice in New York City. Ecol. Appl. 2021, 31, e02390. [Google Scholar] [CrossRef]
- Cavan, G.; Lindley, S.; Jalayer, F.; Yeshitela, K.; Pauleit, S.; Renner, F.; Gill, S.; Capuano, P.; Nebebe, A.; Woldegerima, T.; et al. Urban morphological determinants of temperature regulating ecosystem services in two African cities. Ecol. Indic. 2014, 42, 43–57. [Google Scholar] [CrossRef]
- Doussard, C.; Delabarre, M. Perceptions of urban green infrastructures for climate change adaptation in Lausanne, Switzerland: Unveiling the role of biodiversity and planting composition. Clim. Chang. 2023, 176, 132. [Google Scholar] [CrossRef]
- Hanna, E.; Felipe-Lucia, M.R.; Comín, F.A. Scenario Analysis of Green Infrastructure to Adapt Medium-Size Cities to Climate Change: The Case of Zaragoza, Spain. Land 2024, 13, 280. [Google Scholar] [CrossRef]
- Wamsler, C.; Niven, L.; Beery, T.H.; Bramryd, T.; Ekelund, N.; Jönsson, K.I.; Osmani, A.; Palo, T.; Stålhammar, S. Operationalizing ecosystem-based adaptation: Harnessing ecosystem services to buffer communities against climate change. Ecol. Soc. 2016, 21, 31. [Google Scholar] [CrossRef]
- Wamsler, C. Mainstreaming ecosystem-based adaptation: Transformation toward sustainability in urban governance and planning. Ecol. Soc. 2015, 20, 30. [Google Scholar] [CrossRef]
- Reynolds, H.L.; Brandt, L.; Fischer, B.C.; Hardiman, B.S.; Moxley, D.J.; Sandweiss, E.; Speer, J.H.; Fei, S. Implications of climate change for managing urban green infrastructure: An Indiana, U.S. case study. Clim. Chang. 2020, 163, 1967–1984. [Google Scholar] [CrossRef]
- Ou, X.; Lyu, Y.; Liu, Y.; Zheng, X.; Li, F. Integrated multi-hazard risk to social-ecological systems with green infrastructure prioritization: A case study of the Yangtze River Delta, China. Ecol. Indic. 2022, 136, 108639. [Google Scholar] [CrossRef]
- Brom, P.; Engemann, K.; Breed, C.; Pasgaard, M.; Onaolapo, T.; Svenning, J.C. A Decision Support Tool for Green Infrastructure Planning in the Face of Rapid Urbanization. Land 2023, 12, 415. [Google Scholar] [CrossRef]
- Losada-Iglesias, R.; García, A.M.; Díaz-Varela, E.; Miranda, D. Proposed spatial decision support system for delineating ecological corridors in green infrastructure planning constrained by lack of data: A case study in Galicia, Spain. Landsc. Ecol. Eng. 2024, 20, 331–347. [Google Scholar] [CrossRef]
- Paxton, A.B.; Riley, T.N.; Steenrod, C.L.; Smith, C.S.; Zhang, Y.S.; Gittman, R.K.; Silliman, B.R.; Buckel, C.A.; Viehman, T.S.; Puckett, B.J.; et al. What evidence exists on the performance of nature-based solutions interventions for coastal protection in biogenic, shallow ecosystems? A systematic map protocol. Environ. Evid. 2023, 12, 11. [Google Scholar] [CrossRef]
- Marino, R.; Kuller, M.; Zurita, B.; Carrasco, L.; Gosciniak, P.; Kustosik, K.; Riveros, A. Assessment of public space potential for climate change adaptation in three Colombian cities: Nature-based solutions and urban design guidelines. Water Pract. Technol. 2024, 19, 1696–1709. [Google Scholar] [CrossRef]
- Wendling, L.A.; Huovila, A.; zu Castell-Rüdenhausen, M.; Hukkalainen, M.; Airaksinen, M. Benchmarking nature-based solution and smart city assessment schemes against the sustainable development goal indicator framework. Front. Environ. Sci. 2018, 6, 69. [Google Scholar] [CrossRef]
- Baravikova, A. The uptake of new concepts in urban greening: Insights from Poland. Urban For. Urban Green. 2020, 56, 126798. [Google Scholar] [CrossRef]
- Smith, A.C.; Tasnim, T.; Irfanullah, H.M.; Turner, B.; Chausson, A.; Seddon, N. Nature-based Solutions in Bangladesh: Evidence of Effectiveness for Addressing Climate Change and Other Sustainable Development Goals. Front. Environ. Sci. 2021, 9, 737659. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. Nature-based resilience: A multi-type evaluation of productive green infrastructure in agricultural settings in ontario, canada. Atmosphere 2021, 12, 1183. [Google Scholar] [CrossRef]
- Donati, G.F.A.; Bolliger, J.; Psomas, A.; Maurer, M.; Bach, P.M. Reconciling cities with nature: Identifying local Blue-Green Infrastructure interventions for regional biodiversity enhancement. J. Environ. Manag. 2022, 316, 115254. [Google Scholar] [CrossRef]
- Singhvi, A.; Luijendijk, A.P.; van Oudenhoven, A.P.E. The grey—Green spectrum: A review of coastal protection interventions. J. Environ. Manag. 2022, 311, 114824. [Google Scholar] [CrossRef]
- Moreno, C.S.; Roman-Cuesta, R.M.; Canty, S.W.J.; Herrera, J.; Teutli, C.; Muñiz-Castillo, A.I.; McField, M.; Soto, M.; do Amaral, C.; Paton, S.; et al. Stakeholders’ Perceptions of Nature-Based Solutions for Hurricane Risk Reduction Policies in the Mexican Caribbean. Land 2022, 11, 1701. [Google Scholar] [CrossRef]
- Beltrán, M.A.Q.; Sotomayor, D.A. Nature-Based Solutions: A Bibliometric Analysis of Past, Present and Future Trends. Ecol. Apl. 2023, 22, 237–255. [Google Scholar] [CrossRef]
- Cariñanos, P.; Ruiz-Peñuela, S.; Valle, A.M.; de la Guardia, C.D. Assessing pollination disservices of urban street-trees: The case of London-plane tree (Platanus x hispanica Mill. ex Münchh). Sci. Total Environ. 2020, 737, 139722. [Google Scholar] [CrossRef] [PubMed]
- Sari, D.; Karaşah, B. Future Adaptability of Urban Trees due to the Effects of Climate Change: The Case of Artvin, Turkey. J. Environ. Sci. Manag. 2020, 23, 60–70. [Google Scholar] [CrossRef]
- Portoghesi, L.; Tomao, A.; Bollati, S.; Mattioli, W.; Angelini, A.; Agrimi, M. Planning coastal Mediterranean stone pine (Pinus pinea L.) reforestations as a green infrastructure: Combining GIS techniques and statistical analysis to identify management options. Ann. For. Res. 2022, 65, 31–46. [Google Scholar] [CrossRef]
- Thompson, A.W.; Marzec, R.; Burniske, G. Climate BufferNet: A Gaming Simulation Linking Biodiversity Conservation and Climate Change Adaptation with Agricultural Landscape Planning. Landsc. J. 2022, 41, 45–60. [Google Scholar] [CrossRef]
- Duarte, S.B.; Mancebo, Y.R.; La Mora, A.L.V.D.; García, A.G. Perception of Ecosystem Services and Adaptation to Climate Change: Mirador Sur Park in Santo Domingo. Forests 2022, 13, 587. [Google Scholar] [CrossRef]
- Di Marino, M.; Cucca, R.; Thaler, T.; Bügelmayer-Blaschek, M. Interlinking the silos: How to stimulate a new debate on more greenery in cities. Urban For. Urban Green. 2023, 87, 128065. [Google Scholar] [CrossRef]
- Vasenev, V.I.; Varentsov, M.I.; Sarzhanov, D.A.; Makhinya, K.I.; Gosse, D.D.; Petrov, D.G.; Dolgikh, A.V. Influence of Meso- and Microclimatic Conditions on the CO2 Emission from Soils of the Urban Green Infrastructure of the Moscow Metropolis. Eurasian Soil Sci. 2023, 56, 1257–1269. [Google Scholar] [CrossRef]
- Leppänen, P.K.; Kinnunen, A.; Hautamäki, R.; Järvi, L.; Havu, M.; Junnila, S.; Tahvonen, O. Impact of changing urban typologies on residential vegetation and its climate-effects—A case study from Helsinki, Finland. Urban For. Urban Green. 2024, 96, 128343. [Google Scholar] [CrossRef]
- Sousa-Silva, R.; Feurer, M.; Morhart, C.; Sheppard, J.P.; Albrecht, S.; Anys, M.; Beyer, F.; Blumenstein, K.; Reinecke, S.; Seifert, T.; et al. Seeing the Trees Without the Forest: What and How can Agroforestry and Urban Forestry Learn from Each Other? Curr. For. Rep. 2024, 10, 239–254. [Google Scholar] [CrossRef]
- Zhang, B.; MacKenzie, A. Trade-offs and synergies in urban green infrastructure: A systematic review. Urban For. Urban Green. 2024, 94, 128262. [Google Scholar] [CrossRef]
- Adegun, O.B. Climatic disasters within a flood-prone coastal slum in Lagos: Coping capacities and adaptation prospects. Int. J. Disaster Resil. Built Environ. 2023, 14, 212–228. [Google Scholar] [CrossRef]
- Fratini, C.F.; Elle, M.; Jensen, M.B.; Mikkelsen, P.S. A conceptual framework for addressing complexity and unfolding transition dynamics when developing sustainable adaptation strategies in urban water management. Water Sci. Technol. 2012, 66, 2393–2401. [Google Scholar] [CrossRef]
- Omitaomu, O.A.; Kotikot, S.M.; Parish, E.S. Planning green infrastructure placement based on projected precipitation data. J. Environ. Manag. 2021, 279, 111718. [Google Scholar] [CrossRef]
- Staccione, A.; Broccoli, D.; Mazzoli, P.; Bagli, S.; Mysiak, J. Natural water retention ponds for water management in agriculture: A potential scenario in Northern Italy. J. Environ. Manag. 2021, 292, 112849. [Google Scholar] [CrossRef] [PubMed]
- Lara, Á.; Del Moral, L. Nature-Based Solutions to Hydro-Climatic Risks: Barriers and Triggers for Their Implementation in Seville (Spain). Land 2022, 11, 868. [Google Scholar] [CrossRef]
- Marino, D.; Palmieri, M.; Marucci, A.; Soraci, M.; Barone, A.; Pili, S. Linking Flood Risk Mitigation and Food Security: An Analysis of Land-Use Change in the Metropolitan Area of Rome. Land 2023, 12, 366. [Google Scholar] [CrossRef]
- Rowe, A.A.; Rector, P.; Bakacs, M. Survey Results of Green Infrastructure Implementation in New Jersey. J. Sustain. Water Built Environ. 2016, 2, 04016001. [Google Scholar] [CrossRef]
- Dong, X.; Guo, H.; Zeng, S. Enhancing future resilience in urban drainage system: Green versus grey infrastructure. Water Res. 2017, 124, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Wong-Parodi, G.; Klima, K. Preparing for local adaptation: A study of community understanding and support. Clim. Chang. 2017, 145, 413–429. [Google Scholar] [CrossRef]
- Maragno, D.; Gaglio, M.; Robbi, M.; Appiotti, F.; Fano, E.A.; Gissi, E. Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows. Ecol. Modell. 2018, 386, 1–10. [Google Scholar] [CrossRef]
- Muerdter, C.P.; Wong, C.K.; Lefevre, G.H. Emerging investigator series: The role of vegetation in bioretention for stormwater treatment in the built environment: Pollutant removal, hydrologic function, and ancillary benefits. Environ. Sci. Water Res. Technol. 2018, 4, 592–612. [Google Scholar] [CrossRef]
- Meyer, M.A.; Hendricks, M.; Newman, G.D.; Masterson, J.H.; Cooper, J.T.; Sansom, G.; Gharaibeh, N.; Horney, J.; Berke, P.; van Zandt, S.; et al. Participatory action research: Tools for disaster resilience education. Int. J. Disaster Resil. Built Environ. 2018, 9, 402–419. [Google Scholar] [CrossRef]
- Kim, S.K.; Joosse, P.; Bennett, M.M.; van Gevelt, T. Impacts of green infrastructure on flood risk perceptions in Hong Kong. Clim. Chang. 2020, 162, 2277–2299. [Google Scholar] [CrossRef]
- Yamanaka, S.; Ishiyama, N.; Senzaki, M.; Morimoto, J.; Kitazawa, M.; Fuke, N.; Nakamura, F. Role of flood-control basins as summer habitat for wetland species—A multiple-taxon approach. Ecol. Eng. 2020, 142, 105617. [Google Scholar] [CrossRef]
- Brudler, S.; Arnbjerg-Nielsen, K.; Hauschild, M.Z.; Rygaard, M. Life cycle assessment of stormwater management in the context of climate change adaptation. Water Res. 2016, 106, 394–404. [Google Scholar] [CrossRef]
- Zahmatkesh, Z.; Burian, S.J.; Karamouz, M.; Tavakol-Davani, H.; Goharian, E. Low-Impact Development Practices to Mitigate Climate Change Effects on Urban Stormwater Runoff: Case Study of New York City. J. Irrig. Drain. Eng. 2015, 141, 04014043. [Google Scholar] [CrossRef]
- Moore, T.L.; Gulliver, J.S.; Stack, L.; Simpson, M.H. Stormwater management and climate change: Vulnerability and capacity for adaptation in urban and suburban contexts. Clim. Chang. 2016, 138, 491–504. [Google Scholar] [CrossRef]
- Li, L.; Collins, A.M.; Cheshmehzangi, A.; Chan, F.K.S. Identifying enablers and barriers to the implementation of the Green Infrastructure for urban flood management: A comparative analysis of the UK and China. Urban For. Urban Green. 2020, 54, 126770. [Google Scholar] [CrossRef]
- Khan, M.P.; Hubacek, K.; Brubaker, K.L.; Sun, L.; Moglen, G.E. Stormwater Management Adaptation Pathways under Climate Change and Urbanization. J. Sustain. Water Built Environ. 2022, 8, 04022009. [Google Scholar] [CrossRef]
- Fitobór, K.; Ulańczyk, R.; Kołecka, K.; Ramm, K.; Włodarek, I.; Zima, P.; Kalinowska, D.; Wielgat, P.; Mikulska, M.; Antończyk, D.; et al. Extreme weather layer method for implementation of nature-based solutions for climate adaptation: Case study Słupsk. Sci. Total Environ. 2022, 842, 156751. [Google Scholar] [CrossRef]
- Muwafu, S.P.; Rölfer, L.; Scheffran, J.; Costa, M.M. A framework for assessing social structure in community governance of sustainable urban drainage systems: Insights from a literature review. Mitig. Adapt. Strateg. Glob. Chang. 2024, 29, 42. [Google Scholar] [CrossRef]
- Hamel, P.; Tan, L. Blue–Green Infrastructure for Flood and Water Quality Management in Southeast Asia: Evidence and Knowledge Gaps. Environ. Manag. 2022, 69, 699–718. [Google Scholar] [CrossRef]
- Flores, C.C.; Müller, A.P.R.; Dolman, N.; Özerol, G. Assessing the leapfrogging potential to water sensitive: The Dutch case of Zwolle. J. Water Clim. Chang. 2023, 14, 1638–1655. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. {VOSviewer} Manual; Univeristeit Leiden: Leiden, The Netherlands, 2023; Available online: http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf (accessed on 19 August 2024).
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Župič, I.; Cater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Green, T.L.; Kronenberg, J.; Andersson, E.; Elmqvist, T.; Gómez-Baggethun, E. Insurance Value of Green Infrastructure in and Around Cities. Ecosystems 2016, 19, 1051–1063. [Google Scholar] [CrossRef]
- Ahn, K.; Rakha, H.; Trani, A.; Van Aerde, M. Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. J. Transp. Eng. 2002, 128, 182–190. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Timespan | 2012–2024 |
Sources | 43 |
Documents | 111 |
Article | 96 |
Review article | 15 |
Authors | 448 |
Author Keywords | 362 |
Index Keywords | 963 |
References | 7480 |
Rank | Journal | Number of Articles |
---|---|---|
1. | Urban Forestry and Urban Greening | 16 |
2. | Land | 10 |
3. | Journal of Environmental Management | 9 |
4. | Ecological Indicators | 5 |
5. | Atmosphere | 5 |
6. | Climatic Change | 5 |
7. | Ecology and Society | 3 |
8. | Frontiers in Environmental Science | 3 |
9. | Ecological Engineering | 3 |
10. | Climate | 3 |
11. | Science of the Total Environment | 3 |
12. | Forests | 3 |
13. | Environmental Management | 2 |
14. | Ain Shams Engineering Journal | 2 |
15. | Water Research | 2 |
16. | Mitigation and Adaptation Strategies for Global Change | 2 |
17. | Blue-Green Systems | 2 |
18. | International Journal of Disaster Resilience in the Built Environment | 2 |
19. | Journal of Sustainable Water in the Built Environment | 2 |
20. | Ecological Indicators | 2 |
Sector | Strategies and Techniques | Source |
---|---|---|
Mitigating urban heat islands | Constructing different types of green infrastructure to gain sustainable urban development and climate mitigation strategy. | [2,3,6,13,16,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93] |
The implementation of supplemental irrigation to increase roof cooling and vegetation structure to lower green roof temperatures. | [94,95,96,97,98] | |
Improving blue-green infrastructure to assist municipalities and cities in adapting to climate change. | [19,99,100,101,102,103,104,105,106] | |
The creation of other structural and environmental measures to increase adaptation to climate change in different aspects of the socio-economic sector. | [19,99,100,101,102,103,104,105,106] | |
Increasing ecosystem resilience | Improving policies and frameworks for risk reduction strategies, disaster recovery mechanisms, integrating restored and ecologically viable urban green infrastructure to deliver human health benefits by nature while supporting ecological variety, and ecosystem-based adaptation. | [11,88,107,108,109,110,111,112,113,114,115,116,117,118] |
Utilizing decision-making tools and methods such as spatial decision support systems and multi-criteria analysis to assist policymakers, experts, and non-expert planners in managing activities aimed at improving environmental conditions increases the resilience of various species to the climate change impact. | [71,119,120] | |
Identifying measures to sustain or enhance the insurance value of urban ecosystems, including nature-based solutions, ecosystem-based adaptation, grey-green infrastructure, and blue-green infrastructure. | [42,72,121,122,123,124,125,126,127,128,129,130] | |
Planting different tree species, installing green facades, engaging landscape planning, evolving and involving agroforestry and urban forestry in urban development planning to help prevent serious health problems, lowering the soil temperature and CO2 emission from soils, and adjusting to climate change, particularly in places where vulnerable populations live. | [65,131,132,133,134,135,136,137,138,139] | |
In order to guide green infrastructure design and maximize ecosystem services results while minimizing ecosystem disservices, policymakers and planners could combine the biophysical assessment of green infrastructure parametric data with socio-economic data. | [140] | |
Flood risk management | Urban flood prediction, mitigation, and reduction services through green infrastructure regulations, land use and land cover changes, hydrological modeling, the assessment and monitoring processes of the stormwater infrastructure performance, and creating resilience plans. | [5,141,142,143,144,145,146,147,148,149,150,151,152,153,154] |
Implementing multifunctional stormwater management tools consisting of different elements mutually interacting to provide desired safety levels: Stormwater Management Model (SWMM) or Stormwater Management System (SWM), Environmental Protection Agency’s Stormwater Management Model, Sustainable Urban Drainage Systems (SuDS) and Sponge Cities Program (SCP), Curve Number-Based Watershed Model (CWM), Extreme Weather Layer method (EWL), Global Resilience Analysis framework (GRA). | [15,155,156,157,158,159,160,161] | |
Addressing flooding and water quality issues utilizing blue-green infrastructure. | [4,162,163] |
Cluster | Journal | Total Citations |
---|---|---|
Red cluster | Landscape and Urban Planning | 321 |
Sustainability | 143 | |
Ecological Indicators | 81 | |
Environmental Science and Policy | 78 | |
Ecosystem Services | 70 | |
Green cluster | Journal of Environmental Management | 111 |
Journal of Hydrology | 62 | |
Water | 68 | |
Climatic Change | 63 | |
Journal of Cleaner Production | 55 | |
Blue cluster | Urban Forestry and Urban Greening | 214 |
Science of the Total Environment | 135 | |
Building and Environment | 124 | |
Sustainable Cities and Society | 77 | |
Energy and Buildings | 76 |
Rank | Authors | Reference | Publication | Total Citations |
---|---|---|---|---|
1. | Zölch, T. et al. (2016) | [90] | Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale | 272 |
2. | Dong, X. et al. (2017) | [148] | Enhancing future resilience in urban drainage system: Green versus grey infrastructure | 227 |
3. | Sharifi, A. (2021) | [19] | Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review | 212 |
4. | Pauleit, S. et al. (2019) | [75] | Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project | 196 |
5. | Hunter, A.M. et al. (2014) | [65] | Quantifying the thermal performance of green facades: A critical review | 184 |
6. | Zahmatkesh, Z. et al. (2015) | [156] | Low-impact development practices to mitigate climate change effects on urban stormwater runoff: Case study of New York City | 183 |
7. | Muerdter, C.P. et al. (2018) | [151] | Emerging investigator series: the role of vegetation in bioretention for stormwater treatment in the built environment: pollutant removal, hydrologic function, and ancillary benefits | 133 |
8. | Herath, H.M.P.I.K. et al. (2018) | [91] | Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy | 127 |
9. | Wamsler, C. (2015) | [116] | Mainstreaming ecosystem-based adaptation: transformation toward sustainability in urban governance and planning | 107 |
10. | Maragno, D. et al. (2018) | [150] | Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows | 95 |
11. | Choi, C. et al. (2021) | [71] | The climate benefits, co-benefits, and trade-offs of green infrastructure: A systematic literature review | 91 |
12. | Sussams, L.W. et al. (2015) | [2] | Green infrastructure as a climate change adaptation policy intervention: Muddying the waters or clearing a path to a more secure future? | 91 |
13. | Brudermann, T. and Sangkakool, T. (2017) | [95] | Green roofs in temperate climate cities in Europe—An analysis of key decision factors | 89 |
14. | Koch, K. et al. (2020) | [77] | Urban heat stress mitigation potential of green walls: A review | 79 |
15. | Larsen, L. (2015) | [89] | Urban climate and adaptation strategies | 77 |
16. | Moore, T.L. et al. (2016) | [157] | Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts | 71 |
17. | Wamsler, C. et al. (2016) | [115] | Operationalizing ecosystem-based adaptation: harnessing ecosystem services to buffer communities against climate change | 68 |
18. | Meyer, M.A. et al. (2018) | [152] | Participatory action research: tools for disaster resilience education | 68 |
19. | Green, T.L. et al. (2016) | [168] | Insurance value of green infrastructure in and around cities | 67 |
20. | Hamel, P. and Tan, L. (2022) | [169] | Blue-green infrastructure for flood and water quality management in Southeast Asia: Evidence and knowledge gaps | 65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadić, A.; Maljković, B.; Rogulj, K.; Pamuković, J.K. Green Infrastructure’s Role in Climate Change Adaptation: Summarizing the Existing Research in the Most Benefited Policy Sectors. Sustainability 2025, 17, 4178. https://doi.org/10.3390/su17094178
Kadić A, Maljković B, Rogulj K, Pamuković JK. Green Infrastructure’s Role in Climate Change Adaptation: Summarizing the Existing Research in the Most Benefited Policy Sectors. Sustainability. 2025; 17(9):4178. https://doi.org/10.3390/su17094178
Chicago/Turabian StyleKadić, Ana, Biljana Maljković, Katarina Rogulj, and Jelena Kilić Pamuković. 2025. "Green Infrastructure’s Role in Climate Change Adaptation: Summarizing the Existing Research in the Most Benefited Policy Sectors" Sustainability 17, no. 9: 4178. https://doi.org/10.3390/su17094178
APA StyleKadić, A., Maljković, B., Rogulj, K., & Pamuković, J. K. (2025). Green Infrastructure’s Role in Climate Change Adaptation: Summarizing the Existing Research in the Most Benefited Policy Sectors. Sustainability, 17(9), 4178. https://doi.org/10.3390/su17094178