Coupling and Coordinated Development Analysis of Digital Economy, Economic Resilience, and Ecological Protection
Abstract
:1. Introduction
2. Mechanism Analysis, Indicator Construction, and Research Methodology
2.1. Mechanism Analysis
2.1.1. Dual Empowerment Mechanism Driven by the Digital Economy System
2.1.2. Adaptive Adjustment Mechanism of the Economic Resilience System
2.1.3. Constraint—Incentive Dual Track Mechanism of Ecological Protection System
2.2. Indicator Construction and Data Sources
2.2.1. Indicator Construction
2.2.2. Data Sources
2.3. Research Methodology
2.3.1. Entropy Value Method
2.3.2. Coupled Coordination Degree Model
2.3.3. Spatial Autocorrelation Model
2.3.4. Hot Spot Analysis
2.3.5. Barrier Degree Model
3. Empirical Analysis
3.1. Analysis of the Level of Integrated Evaluations
3.2. Coupling Relationship Test
3.2.1. Stationarity Test
3.2.2. Granger Causality Test
3.3. Spatial and Temporal Evolution of the Coupling Coordination Degree
3.4. Spatial Correlation Analysis
3.5. Hot Spot Analysis
3.6. Barrier Factor Analysis
4. Discussion
4.1. Comparison with Previous Studies
4.2. Theoretical and Practical Implications
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
5.3. Limitations and Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.Q.; Zhou, K.L.; Yang, S.L. Regional heterogeneity of China’s energy efficiency in “new normal”: A meta-frontier Super-SBM analysis. Energy Policy 2019, 134, 110941. [Google Scholar] [CrossRef]
- Sun, G.L.; Fang, J.M.; Li, J.N.; Wang, X.L. Research on the impact of the integration of digital economy and real economy on enterprise green innovation. Technol. Forecast. Soc. Change 2024, 200, 123097. [Google Scholar] [CrossRef]
- Xu, Q.; Zhong, M.R.; Dong, Y. Digital economy and risk response: How the digital economy affects urban resilience. Cities 2024, 155, 105397. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhao, T.Y.; Zhu, Y.X.; Li, H.S. Evaluating the Coupling Coordinated Development between Regional Ecological Protection and High-Quality Development: A Case Study of Guizhou, China. Land 2022, 11, 1775. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, F.X. How Does the Digital Economy Drive High-Quality Regional Development? New Evidence from China. Eval. Rev. 2024, 48, 893–917. [Google Scholar] [CrossRef]
- Ma, S.L.; Huang, J.L. Analysis of the spatio-temporal coupling coordination mechanism supporting economic resilience and high-quality economic development in the urban agglomeration in the middle reaches of the Yangtze River. PLoS ONE 2023, 18, e0281643. [Google Scholar] [CrossRef]
- Ding, C.H.; Liu, C.; Zheng, C.Y.; Li, F. Digital Economy, Technological Innovation and High-Quality Economic Development: Based on Spatial Effect and Mediation Effect. Sustainability 2022, 14, 216. [Google Scholar] [CrossRef]
- Lu, R.C.; Yang, Z.H. Analysis on the structure and economic resilience capacity of China’s regional economic network. Appl. Econ. 2024, 56, 3920–3938. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, Z.B.; Xu, Z.Y.; Liu, S.W. The impact of digital finance on regional economic resilience. Pac.-Basin Financ. J. 2024, 85, 102353. [Google Scholar] [CrossRef]
- Zhang, S.J.; Yu, W.Y.; Chen, T. Comprehensive Evaluation Model of Environmental Quality in Ecological Reserve. Discret. Dyn. Nat. Soc. 2021, 2021, 4994353. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Mao, R.J.; Jiang, J.J. Coupling and Coordination Degree between Urbanization and Ecological Environment in Guizhou, China. Discret. Dyn. Nat. Soc. 2021, 2021, 8436938. [Google Scholar] [CrossRef]
- Dong, Q.Y.; Zhong, K.Y.; Liao, Y.J.; Xiong, R.L.; Wang, F.B.; Pang, M. Coupling coordination degree of environment, energy, and economic growth in resource-based provinces of China. Resour. Policy 2023, 81, 103308. [Google Scholar] [CrossRef]
- Luo, D.; Liang, L.W.; Wang, Z.B.; Chen, L.K.; Zhang, F.M. Exploration of coupling effects in the Economy-Society-Environment system in urban areas: Case study of the Yangtze River Delta Urban Agglomeration. Ecol. Indic. 2021, 128, 107858. [Google Scholar] [CrossRef]
- Cai, Z.C.; Zhang, Z.; Zhao, F.; Guo, X.H.; Zhao, J.B.; Xu, Y.Y.; Liu, X.P. Assessment of eco-environmental quality changes and spatial heterogeneity in the Yellow River Delta based on the remote sensing ecological index and geo-detector model. Ecol. Inform. 2023, 77, 102203. [Google Scholar] [CrossRef]
- Qu, B.; Jiang, E.H.; Li, J.Q.; Liu, Y.; Liu, C. Coupling coordination relationship of water resources, eco-environment and socio-economy in the water-receiving area of the Lower Yellow River. Ecol. Indic. 2024, 160, 111766. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhang, S.L.; Gao, C.; Tang, X.P. Coupling coordination and driving mechanisms of water resources carrying capacity under the dynamic interaction of the water-social-economic-ecological environment system. Sci. Total Environ. 2024, 920, 171011. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, C.G.; Wang, G.N. The impact of green innovation resilience on energy efficiency: A perspective based on the development of the digital economy. J. Environ. Manag. 2024, 355, 120424. [Google Scholar] [CrossRef]
- Suo, X.K.; Zhang, L.T.; Guo, R.; Lin, H.; Yu, M.C.; Du, X.H. The inverted U-shaped association between digital economy and corporate total factor productivity: A knowledge-based perspective. Technol. Forecast. Soc. Change 2024, 203, 123364. [Google Scholar] [CrossRef]
- Du, Y.A.; Wang, Q.X.; Zhou, J.P. How does digital inclusive finance affect economic resilience: Evidence from 285 cities in China. Int. Rev. Financ. Anal. 2023, 88, 102709. [Google Scholar] [CrossRef]
- Song, M.L.; Zheng, C.B.; Wang, J.Q. The role of digital economy in China’s sustainable development in a post-pandemic environment. J. Enterp. Inf. Manag. 2022, 35, 58–77. [Google Scholar] [CrossRef]
- Chen, Y.F.; Xu, J. Digital transformation and firm cost stickiness: Evidence from China. Financ. Res. Lett. 2023, 52, 103510. [Google Scholar] [CrossRef]
- Lyu, Y.W.; Wang, W.Q.; Wu, Y.; Zhang, J.N. How does digital economy affect green total factor productivity? Evidence from China. Sci. Total Environ. 2023, 857, 159428. [Google Scholar] [CrossRef]
- Folke, C.; Biggs, R.; Norström, A.V.; Reyers, B.; Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 2016, 21, 41. [Google Scholar] [CrossRef]
- Huang, D.Y.; Huang, C.Y. The Impact of Digital Economy Development on Improving the Ecological Environment-An Empirical Analysis Based on Data from 30 Provinces in China from 2012 to 2021. Sustainability 2024, 16, 7176. [Google Scholar] [CrossRef]
- Xiong, Q.; Li, J.T. Study on the coordinated development of urban resilience and ecological environment protection. Fresenius Environ. Bull. 2021, 30, 11809–11815. [Google Scholar]
- Koseoglu, A.; Yucel, A.G.; Ulucak, R. Green innovation and ecological footprint relationship for a sustainable development: Evidence from top 20 green innovator countries. Sustain. Dev. 2022, 30, 976–988. [Google Scholar] [CrossRef]
- Li, J.S.; Sun, W.; Li, M.Y.; Meng, L.L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Lee, M. Improved tests for the equality of normal coefficients of variation. Comput. Stat. 2014, 29, 215–232. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A Modified CRITIC Method to Estimate the Objective Weights of Decision Criteria. Symmetry 2021, 13, 973. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Tian, D.Z.; Yan, F. Effectiveness of Entropy Weight Method in Decision-Making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Wu, B.H.; Quan, Q.; Yang, S.M.; Dong, Y.X. A social-ecological coupling model for evaluating the human-water relationship in basins within the Budyko framework. J. Hydrol. 2023, 619, 129361. [Google Scholar] [CrossRef]
- Yin, X.L.; Xu, Z.R. An empirical analysis of the coupling and coordinative development of China’s green finance and economic growth. Resour. Policy 2022, 75, 102476. [Google Scholar] [CrossRef]
- Dong, F.G.; Xia, M.J.; Li, W.Y. Evaluation and analysis of regional economic-technology-renewable energy coupling coordinated development: A case study of China. J. Renew. Sustain. Energy 2023, 15, 035902. [Google Scholar] [CrossRef]
- Pan, Y.; Weng, G.M.; Li, C.H.; Li, J.P. Coupling Coordination and Influencing Factors among Tourism Carbon Emission, Tourism Economic and Tourism Innovation. Int. J. Environ. Res. Public Health 2021, 18, 1601. [Google Scholar] [CrossRef]
- Chang, Q.L.; Sha, Y.Y.; Chen, Y. The Coupling Coordination and Influencing Factors of Urbanization and Ecological Resilience in the Yangtze River Delta Urban Agglomeration, China. Land 2024, 13, 111. [Google Scholar] [CrossRef]
- Chen, Y.G. An analytical process of spatial autocorrelation functions based on Moran’s index. PLoS ONE 2021, 16, e0249589. [Google Scholar] [CrossRef]
- Wang, Y.F.; Lv, W.Y.; Wang, M.J.; Chen, X.; Li, Y. Application of improved Moran?s I in the evaluation of urban spatial development. Spat. Stat. 2023, 54, 100736. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Testing for local spatial autocorrelation in the presence of global autocorrelation. J. Reg. Sci. 2001, 41, 411–432. [Google Scholar] [CrossRef]
- Huang, C.K.; Lin, F.Y.; Chu, D.P.; Wang, L.L.; Liao, J.W.; Wu, J.Q. Coupling Relationship and Interactive Response between Intensive Land Use and Tourism Industry Development in China’s Major Tourist Cities. Land 2021, 10, 697. [Google Scholar] [CrossRef]
- Gao, D.D. Study on the coupling coordination and barrier factors between agroecological security and rural green development in China. Sci. Rep. 2024, 14, 29767. [Google Scholar] [CrossRef] [PubMed]
- Che, S.F.; Zhang, X.; Shu, W.J. Evaluation of internal coupling and coordination degree and diagnosis of obstacle factors for high-quality regional economic development: Evidence from Chongqing’s “One District, Two Groups”. PLoS ONE 2024, 19, e0312820. [Google Scholar] [CrossRef] [PubMed]
System Level | Guideline Layer (Weights) | Indicator Layer | Indicator Attribute | Weights |
---|---|---|---|---|
Digital economy | Internet development X1 (0.9115) | Internet users per 100 population X11 | Positive | 0.1162 |
Cell phone subscribers per 100 population X12 | Positive | 0.0776 | ||
Gross telecommunication services per capita X13 | Positive | 0.4134 | ||
Information transmission, software, and information technology services as a percentage of X14 | Positive | 0.3042 | ||
financial development X2 (0.0886) | Digital Financial Inclusion Index X21 | Positive | 0.0886 | |
Economic resilience | Resistance and Resilience Y1 (0.1785) | GDPY11 per capita | Positive | 0.0670 |
Urban registered unemployment rate Y12 | Negative | 0.0346 | ||
Foreign trade dependence Y13 | Negative | 0.0102 | ||
Urban disposable income Y14 | Positive | 0.0667 | ||
Adaption and Regulation Y2 (0.3785) | Total retail sales of consumer goods Y21 | Positive | 0.1035 | |
Total investment in fixed assets of the whole society Y22 | Positive | 0.0920 | ||
General budget expenditures of local finances Y23 | Positive | 0.0607 | ||
Balance of deposits in financial institutions Y24 | Positive | 0.1223 | ||
Innovation and Transformation Y3 (0.4430) | Urbanization rate Y31 | Positive | 0.0372 | |
Advanced industrial structure Y32 | Positive | 0.1006 | ||
Financial education expenditure Y33 | Positive | 0.0720 | ||
Patent authorizations for inventions Y34 | Positive | 0.2332 | ||
Ecological protection | Ecological stress Z1 (0.1006) | Industrial wastewater discharge per unit of GDP Z11 | Negative | 0.0362 |
Industrial sulfur dioxide emissions per unit of GDP Z12 | Negative | 0.0424 | ||
Industrial soot emissions per unit of GDP Z13 | Negative | 0.0220 | ||
Ecological status Z2 (0.4904) | Urban population density Z21 | Negative | 0.1819 | |
Parkland per capita Z22 | Positive | 0.2093 | ||
Green coverage in built-up areas Z23 | Positive | 0.0992 | ||
Ecological and environmental governance Z3 (0.4090) | Centralized sewage treatment rate Z31 | Positive | 0.0782 | |
Non-hazardous domestic waste disposal rate Z32 | Positive | 0.0662 | ||
Comprehensive utilization rate of industrial solid waste Z33 | Positive | 0.2646 |
Degree of Coupling Coordination D | Coupling Coordination Level | Degree of Coupling Coordination D | Coupling Coordination Level |
---|---|---|---|
0~0.09 | extreme disorder | 0.50~0.59 | narrow coordination |
0.10~0.19 | severe disorder | 0.60~0.69 | primary coordination |
0.20~0.29 | moderate disorder | 0.70~0.79 | moderate coordination |
0.30~0.39 | mild disorder | 0.80~0.89 | good coordination |
0.40~0.49 | borderline disorder | 0.90~1 | quality coordination |
Province | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Mean Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.409 | 0.442 | 0.473 | 0.511 | 0.529 | 0.542 | 0.563 | 0.629 | 0.695 | 0.703 | 0.612 | 0.555 |
Tianjin | 0.287 | 0.291 | 0.301 | 0.303 | 0.317 | 0.326 | 0.368 | 0.378 | 0.414 | 0.470 | 0.386 | 0.349 |
hebei | 0.229 | 0.231 | 0.256 | 0.273 | 0.296 | 0.298 | 0.314 | 0.363 | 0.413 | 0.445 | 0.385 | 0.318 |
Shanxi | 0.215 | 0.246 | 0.251 | 0.253 | 0.258 | 0.255 | 0.254 | 0.288 | 0.327 | 0.357 | 0.285 | 0.272 |
Inner Mongolia | 0.258 | 0.264 | 0.294 | 0.322 | 0.316 | 0.311 | 0.333 | 0.368 | 0.394 | 0.423 | 0.347 | 0.330 |
Liaoning | 0.228 | 0.254 | 0.267 | 0.264 | 0.278 | 0.291 | 0.316 | 0.339 | 0.372 | 0.404 | 0.361 | 0.307 |
Jilin | 0.200 | 0.216 | 0.251 | 0.258 | 0.257 | 0.277 | 0.266 | 0.322 | 0.355 | 0.391 | 0.332 | 0.284 |
Heilongjiang | 0.162 | 0.192 | 0.199 | 0.213 | 0.215 | 0.220 | 0.230 | 0.266 | 0.299 | 0.323 | 0.268 | 0.235 |
Shanghai | 0.276 | 0.316 | 0.351 | 0.367 | 0.390 | 0.391 | 0.417 | 0.469 | 0.523 | 0.573 | 0.514 | 0.417 |
Jiangsu | 0.356 | 0.381 | 0.413 | 0.425 | 0.459 | 0.462 | 0.496 | 0.554 | 0.599 | 0.648 | 0.597 | 0.490 |
Zhejiang | 0.342 | 0.370 | 0.394 | 0.404 | 0.442 | 0.443 | 0.471 | 0.528 | 0.575 | 0.638 | 0.560 | 0.470 |
Anhui | 0.252 | 0.270 | 0.293 | 0.311 | 0.337 | 0.343 | 0.377 | 0.424 | 0.461 | 0.485 | 0.444 | 0.363 |
Fujian | 0.266 | 0.308 | 0.330 | 0.340 | 0.351 | 0.345 | 0.367 | 0.410 | 0.466 | 0.479 | 0.437 | 0.373 |
Jiangxi | 0.204 | 0.218 | 0.234 | 0.240 | 0.253 | 0.233 | 0.268 | 0.316 | 0.369 | 0.391 | 0.360 | 0.281 |
Shandong | 0.349 | 0.374 | 0.403 | 0.417 | 0.434 | 0.435 | 0.447 | 0.482 | 0.515 | 0.541 | 0.516 | 0.447 |
Henan | 0.200 | 0.223 | 0.246 | 0.263 | 0.282 | 0.295 | 0.331 | 0.377 | 0.401 | 0.456 | 0.414 | 0.317 |
Hubei | 0.242 | 0.257 | 0.274 | 0.300 | 0.314 | 0.309 | 0.327 | 0.367 | 0.425 | 0.450 | 0.412 | 0.334 |
Hunan | 0.203 | 0.223 | 0.235 | 0.252 | 0.276 | 0.298 | 0.323 | 0.376 | 0.416 | 0.446 | 0.383 | 0.312 |
Guangdong | 0.351 | 0.380 | 0.408 | 0.427 | 0.472 | 0.477 | 0.519 | 0.587 | 0.634 | 0.678 | 0.614 | 0.504 |
Guangxi | 0.208 | 0.243 | 0.257 | 0.255 | 0.270 | 0.276 | 0.295 | 0.344 | 0.382 | 0.417 | 0.337 | 0.299 |
Hainan | 0.219 | 0.253 | 0.273 | 0.271 | 0.291 | 0.296 | 0.297 | 0.329 | 0.386 | 0.440 | 0.368 | 0.311 |
Chongqing | 0.302 | 0.324 | 0.340 | 0.343 | 0.361 | 0.357 | 0.365 | 0.411 | 0.458 | 0.495 | 0.427 | 0.380 |
Sichuan | 0.204 | 0.220 | 0.238 | 0.252 | 0.299 | 0.296 | 0.322 | 0.370 | 0.406 | 0.450 | 0.389 | 0.313 |
Guizhou | 0.151 | 0.198 | 0.211 | 0.247 | 0.270 | 0.286 | 0.307 | 0.358 | 0.414 | 0.479 | 0.370 | 0.299 |
Yunnan | 0.171 | 0.188 | 0.228 | 0.228 | 0.238 | 0.255 | 0.274 | 0.318 | 0.369 | 0.421 | 0.333 | 0.275 |
Shaanxi | 0.198 | 0.224 | 0.243 | 0.260 | 0.296 | 0.311 | 0.286 | 0.324 | 0.360 | 0.416 | 0.334 | 0.296 |
Gansu | 0.118 | 0.140 | 0.180 | 0.197 | 0.210 | 0.233 | 0.264 | 0.310 | 0.354 | 0.397 | 0.310 | 0.247 |
Qinghai | 0.172 | 0.184 | 0.187 | 0.208 | 0.205 | 0.216 | 0.257 | 0.320 | 0.379 | 0.400 | 0.298 | 0.257 |
Ningxia | 0.235 | 0.253 | 0.294 | 0.310 | 0.297 | 0.298 | 0.321 | 0.377 | 0.402 | 0.445 | 0.340 | 0.325 |
Xinjiang | 0.168 | 0.186 | 0.202 | 0.219 | 0.257 | 0.257 | 0.277 | 0.317 | 0.364 | 0.404 | 0.327 | 0.271 |
National average | 0.239 | 0.239 | 0.239 | 0.239 | 0.239 | 0.239 | 0.239 | 0.239 | 0.239 | 0.239 | 0.239 |
Variable | t-Statistic | p-Value | Critical Value (1%) | Critical Value (5%) | Critical Value (10%) |
---|---|---|---|---|---|
dige | −2.019 | 0.022 | −2.480 | −2.380 | −2.330 |
res | −2.384 | 0.014 | −2.480 | −2.380 | −2.330 |
eco | −3.615 | 0.000 | −2.480 | −2.380 | −2.330 |
Null Hypothesis | F-Value | p-Value |
---|---|---|
dige does not Granger-cause res | 7.159 | 0.000 |
dige does not Granger-cause eco | 7.651 | 0.000 |
res does not Granger-cause dige | 4.279 | 0.000 |
res does not Granger-cause eco | 3.085 | 0.028 |
eco does not Granger-cause dige | 5.979 | 0.000 |
eco does not Granger-cause res | 6.762 | 0.000 |
Degree of Coupling Coordination | 2011 | 2015 | 2021 |
---|---|---|---|
Moderate disorder [0.20, 0.30) | Jiangxi, Henan, Guizhou, Yunnan, Gansu, Qinghai (6) | ||
Mild disorder [0.30, 0.40) | Hebei, Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, Hubei, Hunan, Guangxi, Hainan, Chongqing, Sichuan, Shaanxi, Ningxia, Xinjiang (15) | Qinghai (1) | |
Borderline disorder [0.40, 0.50) | Tianjin, Liaoning, Shanghai, Jiangsu, Fujian, Shandong (6) | Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hunan, Guangxi, Hainan, Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Xinjiang (18) | Qinghai (1) |
Narrow coordination [0.50, 0.60) | Zhejiang, Guangdong (2) | Tianjin, Fujian, Shandong, Hubei, Chongqing, Sichuan (6) | Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Jiangxi, Hunan, Guangxi, Hainan, Guizhou, Yunnan, Shanxi, Gansu, Ningxia, Xinjiang (17) |
Primary coordination [0.60, 0.70) | Beijing (1) | Shanghai, Jiangsu, Zhejiang, Guangdong (4) | Anhui, Fujian, Shandong, Henan, Hubei, Chongqing, Sichuan (7) |
Moderate coordination [0.70, 0.80) | Beijing (1) | Beijing, Shanghai, Jiangsu, Zhejiang, Guangdong (5) |
Year | Moran’s I | Z-Value | Year | Moran’s I | Z-Value |
---|---|---|---|---|---|
2011 | 0.296 *** | 2.730 | 2017 | 0.288 *** | 2.667 |
2012 | 0.304 *** | 2.806 | 2018 | 0.269 *** | 2.506 |
2013 | 0.291 *** | 2.690 | 2019 | 0.302 *** | 2.775 |
2014 | 0.270 *** | 2.531 | 2020 | 0.333 *** | 3.012 |
2015 | 0.278 *** | 2.582 | 2021 | 0.400 *** | 3.539 |
2016 | 0.275 *** | 2.560 |
Provinces | Digital Economy Subsystem | Economic Resilience Subsystem | Environmental Protection Subsystem | ||||||
---|---|---|---|---|---|---|---|---|---|
2011 | 2015 | 2021 | 2011 | 2015 | 2021 | 2011 | 2015 | 2021 | |
Beijing | X13/X14/X21 | X13/X14/X11 | X13/X11/X12 | Y34/Y24/Y21 | Y34/Y22/Y21 | Y34/Y22/Y21 | Z22/Z33/Z31 | Z22/Z33/Z21 | Z33/Z22/Z21 |
Tianjin | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y21 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z22/Z23/Z21 | Z22/Z21/Z23 | Z22/Z21/Z23 |
Hebei | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z33/Z22/Z21 | Z33/Z22/Z21 | Z33/Z22/Z21 |
Shanxi | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y21 | Y34/Y24/Y32 | Z33/Z22/Z21 | Z33/Z22/Z21 | Z33/Z22/Z21 |
Inner Mongolia | X13/X14/X11 | X13/X14/X11 | X13/X14/X11 | Y34/Y24/Y32 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z33/Z22/Z23 | Z33/Z23/Z21 | Z33/Z21/Z23 |
Liaoning | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z33/Z22/Z23 | Z33/Z22/Z23 | Z33/Z22/Z21 |
Jilin | X13/X14/X11 | X13/X14/X11 | X13/X14/X11 | Y34/Y24/Y32 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z22/Z33/Z23 | Z33/Z22/Z21 | Z23/Z22/Z21 |
Heilongjiang | X13/X14/X11 | X13/X14/X11 | X13/X14/X11 | Y34/Y24/Y32 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z21/Z22/Z33 | Z21/Z33/Z22 | Z33/Z21/Z22 |
Shanghai | X13/X14/X21 | X13/X14/X11 | X13/X14/X11 | Y34/Y24/Y21 | Y34/Y22/Y24 | Y34/Y22/Y21 | Z22/Z21/Z23 | Z22/Z21/Z23 | Z22/Z21/Z23 |
Jiangsu | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y32/Y24 | Y32/Y34/Y24 | Z22/Z31/Z21 | Z22/Z21/Z31 | Z22/Z21/Z23 |
Zhejiang | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y32/Y24 | Y34/Y32/Y24 | Z22/Z23/Z21 | Z22/Z21/Z23 | Z22/Z21/Z23 |
Anhui | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y32/Y24 | Y34/Y32/Y24 | Y34/Y32/Y24 | Z22/Z33/Z21 | Z22/Z21/Z23 | Z22/Z21/Z23 |
Fujian | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z22/Z33/Z21 | Z22/Z33/Z21 | Z21/Z22/Z33 |
Jiangxi | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z33/Z21/Z22 | Z33/Z21/Z22 | Z33/Z21/Z22 |
Shandong | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y32/Y24 | Z22/Z23/Z33 | Z22/Z23/Z33 | Z33/Z22/Z21 |
Henan | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z22/Z21/Z33 | Z22/Z21/Z33 | Z21/Z22/Z33 |
Hubei | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z22/Z33/Z23 | Z22/Z33/Z21 | Z33/Z22/Z21 |
Hunan | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z22/Z33/Z21 | Z22/Z33/Z21 | Z21/Z22/Z33 |
Guangdong | X13/X14/X11 | X13/X14/X11 | X13/X14/X11 | Y34/Y32/Y24 | Y34/Y32/Y24 | Y32/Y11/Y14 | Z22/Z21/Z33 | Z21/Z22/Z23 | Z21/Z33/Z22 |
Guangxi | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y21 | Z33/Z22/Z31 | Z22/Z33/Z23 | Z33/Z22/Z21 |
Hainan Island | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y21 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z33/Z22/Z21 | Z33/Z22/Z23 | Z22/Z33/Z21 |
Chongqing | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z33/Z22/Z23 | Z22/Z33/Z23 | Z22/Z33/Z21 |
Sichuan | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y32/Y24 | Z33/Z22/Z21 | Z33/Z22/Z23 | Z33/Z22/Z21 |
Guizhou | X13/X14/X11 | X13/X14/X11 | X13/X14/X11 | Y34/Y24/Y21 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z22/Z33/Z21 | Z33/Z22/Z23 | Z33/Z22/Z21 |
Yunnan | X13/X14/X11 | X13/X14/X11 | X13/X14/X11 | Y34/Y24/Y21 | Y34/Y24/Y21 | Y34/Y24/Y32 | Z33/Z22/Z21 | Z33/Z22/Z21 | Z33/Z22/Z21 |
Shaanxi | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y32 | Y34/Y24/Y32 | Y34/Y24/Y32 | Z21/Z33/Z22 | Z22/Z33/Z21 | Z33/Z21/Z22 |
Gansu | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y21 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z22/Z33/Z21 | Z33/Z22/Z21 | Z33/Z21/Z22 |
Qinghai | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y21 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z22/Z33/Z23 | Z33/Z22/Z23 | Z33/Z22/Z21 |
Ningxia | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y21 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z33/Z22/Z23 | Z33/Z23/Z22 | Z33/Z21/Z23 |
Xinjiang | X13/X14/X11 | X13/X14/X11 | X13/X14/X12 | Y34/Y24/Y21 | Y34/Y24/Y21 | Y34/Y24/Y21 | Z22/Z23/Z21 | Z33/Z22/Z21 | Z33/Z21/Z22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Li, M. Coupling and Coordinated Development Analysis of Digital Economy, Economic Resilience, and Ecological Protection. Sustainability 2025, 17, 4122. https://doi.org/10.3390/su17094122
Fan D, Li M. Coupling and Coordinated Development Analysis of Digital Economy, Economic Resilience, and Ecological Protection. Sustainability. 2025; 17(9):4122. https://doi.org/10.3390/su17094122
Chicago/Turabian StyleFan, Danxue, and Meiyue Li. 2025. "Coupling and Coordinated Development Analysis of Digital Economy, Economic Resilience, and Ecological Protection" Sustainability 17, no. 9: 4122. https://doi.org/10.3390/su17094122
APA StyleFan, D., & Li, M. (2025). Coupling and Coordinated Development Analysis of Digital Economy, Economic Resilience, and Ecological Protection. Sustainability, 17(9), 4122. https://doi.org/10.3390/su17094122