Exploring the Potential Barrier Factors of AI Chatbot Usage Among Teacher Trainees: From the Perspective of Innovation Resistance Theory
Abstract
:1. Introduction
2. Literature Review
2.1. Information and Communication Technology (ICT)
2.2. Artificial Intelligence (AI)
2.3. AI Chatbots
2.4. Innovation Resistance Theory (IRT)
2.5. Theoretical Framework
2.6. Main Hypotheses
2.7. Mediating Hypotheses
3. Research Methodology
4. Data Analysis and Discussion
4.1. Assessment of the Measurement Model
4.2. Assessment of the Structural Model
4.3. Discussion
5. Conclusions, Limitations, and Directions for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llorens, A.; Trullols, E.; Perez-Poch, A.; Petrovic, N. Soft skills development in ICT students: An evaluation of teaching methods by university educators. Cogent Educ. 2025, 12, 2437906. [Google Scholar] [CrossRef]
- United Nations. Digital Economy Report 2024: Shaping an Environmentally Sustainable and Inclusive Digital Future. 2024. Available online: https://unctad.org/system/files/official-document/der2024_en.pdf (accessed on 20 January 2025).
- World Bank. Digital Progress and Trends Report 2023. 2024. Available online: https://openknowledge.worldbank.org/server/api/core/bitstreams/95fe55e9-f110-4ba8-933f-e65572e05395/content (accessed on 20 January 2025).
- AI Index Report. Available online: https://aiindex.stanford.edu/report/ (accessed on 20 January 2025).
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Prentice Hall series in artificial intelligence; Pearson: Boston, MA, USA, 2022. [Google Scholar]
- Statista. Artificial Intelligence—Worldwide. 2024. Available online: https://www.statista.com/outlook/tmo/artificial-intelligence/worldwide (accessed on 20 January 2025).
- OpenAI. Sora is an AI Model that Can Create Realistic and Imaginative Scenes from Text Instructions. 2024. Available online: https://openai.com/index/sora/ (accessed on 20 January 2025).
- PwC. Global Artificial Intelligence Study: Sizing the Prize. 2023. Available online: https://www.pwc.com/gx/en/issues/analytics/assets/pwc-ai-analysis-sizing-the-prize-report.pdf (accessed on 20 January 2025).
- AlAfnan, M.A.; Dishari, S.; Jovic, M.; Lomidze, K. ChatGPT as an Educational Tool: Opportunities, Challenges, and Recommendations for Communication, Business Writing, and Composition Courses. J. Artif. Intell. Technol. 2023, 3, 60–68. [Google Scholar] [CrossRef]
- Al-Sharafi, M.A.; Al-Emran, M.; Iranmanesh, M.; Al-Qaysi, N.; Iahad, N.A.; Arpaci, I. Understanding the impact of knowledge management factors on the sustainable use of AI-based chatbots for educational purposes using a hybrid SEM-ANN approach. Interact. Learn. Environ. 2023, 31, 7491–7510. Available online: https://www.tandfonline.com/doi/abs/10.1080/10494820.2022.2075014 (accessed on 28 June 2024). [CrossRef]
- Fontao, C.B. ChatGPT’s role in the education system: Insights from the future secondary teachers. Int. J. Inf. Educ. Technol. 2024, 14, 1035–1043. [Google Scholar] [CrossRef]
- Ghazali, S.A. Exploring the potential of ChatGPT as a substitute teacher: A case study. Int. J. Inf. Educ. Technol. 2024, 14, 271–278. [Google Scholar] [CrossRef]
- Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Choi, S.; Jang, Y.; Kim, H. Influence of pedagogical beliefs and perceived trust on teachers’ acceptance of educational artificial intelligence tools. Int. J. Hum.–Comput. Interact. 2023, 39, 910–922. [Google Scholar] [CrossRef]
- Jiao, J.; Chen, L.; Wu, W. Educational Issues Triggered by ChatGPT: Possible Impacts and Counter Measures. Chin. J. ICT Educ. 2023, 3, 19–32. Available online: https://qikan.cqvip.com/Qikan/Article/Detail?id=7109383640&from=Qikan_Search_Index (accessed on 20 January 2025).
- Ma, J.; Wang, P.; Li, B.; Wang, T.; Pang, X.S.; Wang, D. Exploring user adoption of ChatGPT: A technology acceptance model perspective. Int. J. Hum.–Comput. Interact. 2025, 41, 1431–1445. [Google Scholar] [CrossRef]
- Ram, S.; Sheth, J.N. Consumer Resistance to Innovations: The Marketing Problem and its solutions. J. Consum. Mark. 1989, 6, 5–14. [Google Scholar] [CrossRef]
- Rajest, S.S.; Regin, R.; Ajitha, Y.; Paramasivan, P.; Christabel, G.J.A.; Shynu, T. The Analysis of How Artificial Intelligence Has an Effect on Teachers and the Education System. EAI Endorsed Trans. E-Learn. 2023, 9, 7–8. [Google Scholar] [CrossRef]
- UNESCO. Ministry of Education’s First Batch of ‘Artificial Intelligence + Higher Education’ Application Scenarios Typical Case Reference. Available online: https://aiedchair.bnu.edu.cn/%E6%95%99%E8%82%B2%E9%83%A8%E9%A6%96%E6%89%B9%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E9%AB%98%E7%AD%89%E6%95%99%E8%82%B2%E5%BA%94%E7%94%A8%E5%9C%BA%E6%99%AF%E5%85%B8%E5%9E%8B%E6%A1%88/ (accessed on 20 January 2025).
- Brynjolfsson, E.; Hitt, L.M. Beyond computation: Information technology, organizational transformation and business performance. J. Econ. Perspect. 2000, 14, 23–48. Available online: http://search.ebscohost.com/login.aspx?direct=trueu0026db=buhu0026AN=3836822u0026site=ehost-live (accessed on 17 March 2025). [CrossRef]
- Grainger, R.; Tolhurst, D. Organisational Factors Affecting Teachers’ Use and Perception of Information & Communications Technology; Australian Computer Society, Inc.: Sydney, Australia, 2005; Available online: http://www.semanticscholar.org/paper/c078dcb24eb383f6581d76b2d1ca2759f5fe3917 (accessed on 17 March 2025).
- Buabeng-Andoh, C. Factors influencing teachers’ adoption and integration of information and communication technology into teaching: A review of the literature. Int. J. Educ. Dev. Using Inf. 2012, 8, 733–738. [Google Scholar] [CrossRef]
- Esiyok, E.; Gokcearslan, S.; Kucukergin, K.G. Acceptance of educational use of AI chatbots in the context of self-directed learning with technology and ICT self-efficacy of undergraduate students. Int. J. Hum.–Comput. Interact. 2025, 41, 641–650. [Google Scholar] [CrossRef]
- Joudeh, J.M.M. Exploring the impact of technology attributes on usefulness and acceptance of technology: A study on e-university learning systems. Int. J. Inf. Educ. Technol. 2025, 15, 408–418. [Google Scholar] [CrossRef]
- Barra, C.; Grimaldi, M.; Muazzam, A.; Troisi, O.; Visvizi, A. Digital divide, gender gap, and entrepreneurial orientation: How to foster technology adoption among pakistani higher education students. Socio-Econ. Plan. Sci. 2024, 93, 101904. [Google Scholar] [CrossRef]
- Mou, Y.; Meng, X. Alexa, it is creeping over me—Exploring the impact of privacy concerns on consumer resistance to intelligent voice assistants. Asia Pac. J. Mark. Logist. 2023, 36, 261–292. [Google Scholar] [CrossRef]
- Benderskaya, E.N.; Zhukova, S.V. Multidisciplinary trends in modern artificial intelligence: Turing’s way. In Artificial Intelligence, Evolutionary Computing and Metaheuristics: In the Footsteps of Alan Turing; Yang, X.-S., Ed.; Springer: Berlin/Heidelberg, German, 2013; pp. 319–343. [Google Scholar] [CrossRef]
- Fetzer, J.H. (Ed.) What is artificial intelligence? In Artificial Intelligence: Its Scope and Limits; Springer: Dordrecht, The Netherlands, 1990; pp. 3–27. [Google Scholar] [CrossRef]
- Fakhar, H. Artificial intelligence from teachers’ perspectives and understanding: Moroccan study. Int. J. Inf. Educ. Technol. 2024, 14, 856–864. [Google Scholar] [CrossRef]
- Bawaneh, A.K. AI shaping the future of education: Science and math teachers’ satisfaction level and motivating factors towards integrating artificial intelligence in teaching and learning. Int. J. Inf. Educ. Technol. 2025, 15, 496–509. [Google Scholar] [CrossRef]
- Xu, X. Game-based adaptive learning in probability education. Int. J. Inf. Educ. Technol. 2025, 15, 1–7. [Google Scholar] [CrossRef]
- Pincus, M.S.; Pincus, K.; Golden, J.B. Artificial intelligence systems. In The CD ROM Handbook; McGraw-Hill, Inc.: New York, NY, USA, 1988; Volume 12, pp. 329–340. [Google Scholar]
- Shawar, B.A.; Atwell, E.S. Using corpora in machine-learning chatbot systems. Int. J. Corpus Linguist. 2005, 10, 489–516. [Google Scholar] [CrossRef]
- Slater, S.; Burden, D. Emotionally responsive robotic avatars as characters in virtual worlds. In Proceedings of the Conference in Games & Virtual Worlds for Serious Applications, Coventry, UK, 23–24 March 2009. [Google Scholar] [CrossRef]
- Kingchang, T.; Chatwattana, P.; Wannapiroon, P. Artificial intelligence chatbot platform: AI chatbot platform for educational recommendations in higher education. Int. J. Inf. Educ. Technol. 2024, 14, 34–41. [Google Scholar] [CrossRef]
- Benjamín, M.-Q. Evaluation of the impact of ChatGPT on the development of research skills in secondary education students: An experimental approach. Int. J. Inf. Educ. Technol. 2025, 15, 59–69. [Google Scholar] [CrossRef]
- Ugli, A.M.B. Understanding uzbekistan university EFL teachers’ perceptions of ChatGPT: From benefits to ethical challenges. Int. J. Inf. Educ. Technol. 2025, 15, 246–254. [Google Scholar] [CrossRef]
- Polisetty, A.; Sowmya, G.; Pahari, S. Streaming towards innovation: Understanding consumer adoption of OTT services through IRT and TAM. Cogent Bus. Manag. 2023, 10, 2283917. [Google Scholar] [CrossRef]
- Kumar, A.; Shankar, A.; Tiwari, A.K.; Hong, H.-J. Understanding dark side of online community engagement: An innovation resistance theory perspective. Inf. Syst. e-Bus. Manag. 2023, 1–27. [Google Scholar] [CrossRef]
- Chawla, U.; Verma, B.; Mittal, A. Resistance to O2O technology platform adoption among small retailers: The influence of visibility and discoverability. Technol. Soc. 2024, 76, 102482. [Google Scholar] [CrossRef]
- Kwarteng, M.A.; Ntsiful, A.; Osakwe, C.N.; Jibril, A.B.; Chovancova, M. Cultural influences on future transportation technology usage: The role of personal innovativeness, technology anxiety and desire. Int. J. Consum. Stud. 2023, 47, 629–651. [Google Scholar] [CrossRef]
- Meuter, M.L.; Ostrom, A.L.; Bitner, M.J.; Roundtree, R. The influence of technology anxiety on consumer use and experiences with self-service technologies. J. Bus. Res. 2003, 56, 899–906. [Google Scholar] [CrossRef]
- Chen, C.-C.; Chang, C.-H.; Hsiao, K.-L. Exploring the factors of using mobile ticketing applications: Perspectives from innovation resistance theory. J. Retail. Consum. Serv. 2022, 67, 102974. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Lin, W.-Y.; Chang, Y.-S.; Chang, P.-C.; Lee, M.-Y. Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLoS ONE 2020, 15, e0227270. [Google Scholar] [CrossRef] [PubMed]
- Hofstede, G.; Hofstede, G.J.; Minkov, M. Cultures and Organizations: Software of the Mind: Intercultural Cooperation and Its Importance for Survival, 3rd ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Friedkin, N.E. A Structural Theory of Social Influence; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar] [CrossRef]
- Vadakkemulanjanal Joseph, G.; Thomas, M.A. The mediation effect of technology anxiety and barriers on technology exposure to teachers’ technology adoption. In Proceedings of the 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 11–12 August 2022; pp. 1737–1741. [Google Scholar] [CrossRef]
- Leong, L.-Y.; Hew, T.-S.; Ooi, K.-B.; Wei, J. Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach. Int. J. Inf. Manag. 2020, 51, 102047. [Google Scholar] [CrossRef]
- Hew, J.-J.; Leong, L.-Y.; Tan, G.W.-H.; Ooi, K.-B.; Lee, V.-H. The age of mobile social commerce: An Artificial Neural Network analysis on its resistances. Technol. Forecast. Soc. Change 2019, 144, 311–324. [Google Scholar] [CrossRef]
- Sadiq, M.; Adil, M.; Paul, J. An innovation resistance theory perspective on purchase of eco-friendly cosmetics. J. Retail. Consum. Serv. 2021, 59, 102369. [Google Scholar] [CrossRef]
- Laukkanen, T. How Uncertainty Avoidance Affects Innovation Resistance in Mobile Banking: The Moderating Role of Age and Gender. In Proceedings of the 2015 48th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 3601–3610. [Google Scholar] [CrossRef]
- Adair, W.L.; Xiong, T.X. How Chinese and caucasian canadians conceptualize creativity: The mediating role of uncertainty avoidance. J. Cross-Cult. Psychol. 2018, 49, 223–238. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, N.; Kanojia, H.; Joshi, R. What resists millennials to adopt hotel booking apps? An empirical analysis based on extended innovation resistance theory. Foresight 2024, 26, 98–113. [Google Scholar] [CrossRef]
- Mahmud, H.; Islam, A.K.M.N.; Mitra, R.K. What drives managers towards algorithm aversion and how to overcome it? Mitigating the impact of innovation resistance through technology readiness. Technol. Forecast. Soc. Change 2023, 193, 122641. [Google Scholar] [CrossRef]
- Cham, T.-H.; Cheah, J.-H.; Cheng, B.-L.; Lim, X.-J. I Am too old for this! Barriers contributing to the non-adoption of mobile payment. Int. J. Bank Mark. 2022, 40, 1017–1050. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, P.; Niu, Y.; Yuan, G. Research on unmanned smart hotels resistance from the perspective of innovation resistance theory. Sage OPEN 2024, 14, 21582440241281570. [Google Scholar] [CrossRef]
- Nie, Q.; Ma, L.; Li, Z. Why are people reluctant to use metaverse products? Investigating barriers based on innovation resistance theory. Online Inf. Rev. 2025, ahead-of-print. [Google Scholar] [CrossRef]
- Talwar, M.; Corazza, L.; Bodhi, R.; Malibari, A. Why do consumers resist digital innovations? An innovation resistance theory perspective. Int. J. Emerg. Mark. 2024, 19, 4327–4342. [Google Scholar] [CrossRef]
- Bellhouse, D.R. Systematic sampling methods. In Encyclopedia of Biostatistics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Emerson, R.W. Convenience Sampling, Random Sampling, and Snowball Sampling: How Does Sampling Affect the Validity of Research? J. Vis. Impair. Blind. 2015, 109, 164–168. [Google Scholar] [CrossRef]
- Etikan, I. Comparison of Convenience Sampling and Purposive Sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1. [Google Scholar] [CrossRef]
- Gliner, J.A.; Morgan, G.A. Measurement reliability. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 486–488. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, T.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; SAGE Publications: Los Angeles, CA, USA, 2022. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Hair, J.F. (Ed.) A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE: Los Angeles, CA, USA, 2014. [Google Scholar]
- Sarstedt, M.; Mooi, E. A Concise Guide to Market Research: The Process, Data, and Methods Using IBM SPSS Statistics; Springer Texts in Business and Economics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Pearson/Allyn & Bacon: Boston, MA, USA, 2007. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J. Partial least squares path modeling. In Advanced Methods for Modeling Markets; Leeflang, P.S.H., Wieringa, J.E., Bijmolt, T.H.A., Pauwels, K.H., Eds.; International Series in Quantitative Marketing; Springer International Publishing: Cham, Switzerland, 2017; pp. 361–381. [Google Scholar] [CrossRef]
- Pollini, A.; Giacobone, G.A.; Zannoni, M.; Pucci, D.; Vignali, V.; Falegnami, A.; Tomassi, A.; Romano, E. Human-machine interaction design in adaptive automation. Procedia Comput. Sci. 2025, 253, 1034–1044. [Google Scholar] [CrossRef]
UB | VB | RB | TB | IB | TA | UA | SIB | RTAC | |
---|---|---|---|---|---|---|---|---|---|
Cronbach’s Alpha | 0.809 | 0.746 | 0.707 | 0.877 | 0.753 | 0.874 | 0.697 | 0.929 | 0.803 |
Variables | Skewness | Kurtosis |
---|---|---|
UB | 0.061 | −0.379 |
VB | −0.129 | −0.653 |
RB | −0.223 | −0.570 |
TB | −0.005 | −0.531 |
IB | 0.067 | −0.781 |
TA | −0.088 | −0.793 |
UA | −0.204 | −0.011 |
SIB | −0.046 | −0.680 |
RTAC | −0.040 | −0.542 |
Constructs | Items | Outer Loadings | CR | AVE |
---|---|---|---|---|
UB | UB1 | 0.787 | 0.912 | 0.731 |
UB2 | 0.893 | |||
UB3 | 0.876 | |||
UB4 | 0.845 | |||
UB5 | 0.870 | |||
VB | VB1 | 0.836 | 0.828 | 0.735 |
VB2 | 0.867 | |||
VB3 | 0.869 | |||
RB | RB1 | 0.824 | 0.854 | 0.627 |
RB2 | 0.852 | |||
RB3 | 0.800 | |||
RB4 | 0.751 | |||
RB5 | 0.726 | |||
TB | TB1 | 0.845 | 0.869 | 0.718 |
TB2 | 0.858 | |||
TB3 | 0.854 | |||
TB4 | 0.833 | |||
IB | IB1 | 0.877 | 0.899 | 0.762 |
IB2 | 0.888 | |||
IB3 | 0.859 | |||
IB4 | 0.867 | |||
TA | TA1 | 0.876 | 0.915 | 0.746 |
TA2 | 0.850 | |||
TA3 | 0.855 | |||
TA4 | 0.870 | |||
TA5 | 0.867 | |||
UA | UA1 | 0.808 | 0.784 | 0.575 |
UA2 | 0.748 | |||
UA3 | 0.758 | |||
UA4 | 0.715 | |||
SIB | SIB1 | 0.861 | 0.923 | 0.762 |
SIB2 | 0.889 | |||
SIB3 | 0.877 | |||
SIB4 | 0.883 | |||
SIB5 | 0.853 | |||
RTAC | RTAC3 | 0.891 | 0.909 | 0.785 |
RTAC4 | 0.852 | |||
RTAC5 | 0.921 | |||
RTAC6 | 0.880 |
Hypotheses | Relationships | β | T | P | Results |
---|---|---|---|---|---|
H1 | TA → RTAC | 0.473 | 4.182 | 0.000 | Supported |
H2 | UA→ RTAC | 0.202 | 2.775 | 0.006 | Supported |
H3 | SIB → RTAC | 0.243 | 2.295 | 0.022 | Supported |
H4 | UB → TA → RTAC | 0.139 | 2.584 | 0.010 | Supported |
UB → RTAC | 0.139 | 2.584 | 0.010 | ||
H5 | IB → TA → RTAC | 0.25 | 3.518 | 0.000 | Supported |
IB → RTAC | 0.25 | 3.518 | 0.000 | ||
H6 | VB → UA → RTAC | 0.079 | 2.251 | 0.024 | Supported |
VB → RTAC | 0.079 | 2.251 | 0.024 | ||
H7 | RB → UA → RTAC | 0.062 | 2.07 | 0.038 | Supported |
RB → RTAC | 0.062 | 2.07 | 0.038 | ||
H8 | TB → SIB → RTAC | 0.167 | 2.216 | 0.027 | Supported |
TB → RTAC | 0.167 | 2.216 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Awang, H.; Mansor, N.S. Exploring the Potential Barrier Factors of AI Chatbot Usage Among Teacher Trainees: From the Perspective of Innovation Resistance Theory. Sustainability 2025, 17, 4081. https://doi.org/10.3390/su17094081
Liu Y, Awang H, Mansor NS. Exploring the Potential Barrier Factors of AI Chatbot Usage Among Teacher Trainees: From the Perspective of Innovation Resistance Theory. Sustainability. 2025; 17(9):4081. https://doi.org/10.3390/su17094081
Chicago/Turabian StyleLiu, Yonggang, Hapini Awang, and Nur Suhaili Mansor. 2025. "Exploring the Potential Barrier Factors of AI Chatbot Usage Among Teacher Trainees: From the Perspective of Innovation Resistance Theory" Sustainability 17, no. 9: 4081. https://doi.org/10.3390/su17094081
APA StyleLiu, Y., Awang, H., & Mansor, N. S. (2025). Exploring the Potential Barrier Factors of AI Chatbot Usage Among Teacher Trainees: From the Perspective of Innovation Resistance Theory. Sustainability, 17(9), 4081. https://doi.org/10.3390/su17094081