Loofah-Derived Adsorbent Column for Sustainable Purification of Oily Fumes: Synergistic Effect of Filtration and Adsorption
Abstract
1. Introduction
2. Material and Methods
2.1. Adsorbents
2.2. Preparation of Loofah-Derived Carbon
2.3. Adsorption of Pollutants from Oily Fumes
2.4. Experimental Methods
2.4.1. Adsorption Curve and Adsorption Capacity Calculations
2.4.2. Wurof Equation Calculations
2.4.3. Adsorption Isotherm Models
3. Results and Discussion
3.1. Saturated Adsorption Capacity for Oily Fumes
3.2. Resistance Changes and Dynamic Evolution of Adsorption Mechanisms of TGSC-1 for Adsorbing Oily Fumes
3.3. Model for TGSC-1 Adsorbing Oily Fumes
3.4. Adsorption Mechanism
3.4.1. Filtering Adsorption
3.4.2. Physical and Chemical Adsorption
3.5. Life Cycle Assessment (LCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Deng, L.; Ma, P.; Wu, Y.; Yang, X.; Xiao, F.; Deng, Q. In vivo respiratory toxicology of cooking oil fumes: Evidence, mechanisms and prevention. J. Hazard. Mater. 2021, 402, 123455. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.A.; Vicente, E.D.; Evtyugina, M.; Vicente, A.M.P.; Sainnokhoi, T.; Kovats, N. Cooking activities in a domestic kitchen: Chemical and toxicological profiling of emissions. Sci. Total Environ. 2021, 772, 145412. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.; Wu, P.; Ko, Y. Identification of Carcinogens in Cooking Oil Fumes. Environ. Res. 1999, 81, 18–22. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Jia, L.; Wang, P.; Han, X. Speciation of VOCs in the cooking fumes from five edible oils and their corresponding health risk assessments. Atmos. Environ. 2019, 211, 6–17. [Google Scholar] [CrossRef]
- Yu, K.; Yang, K.R.; Chen, Y.C.; Gong, J.Y.; Chen, Y.P.; Shih, H.; Lung, S.C. Indoor air pollution from gas cooking in five Taiwanese families. Build. Environ. 2015, 93, 258–266. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, G.; Lang, J.; Wen, W.; Wang, X.; Yao, S. Characterization of volatile organic compounds from different cooking emissions. Atmos. Environ. 2016, 145, 299–307. [Google Scholar] [CrossRef]
- Abdullahi, K.L.; Delgado-Saborit, J.M.; Harrison, R.M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmos. Environ. 2013, 71, 260–294. [Google Scholar] [CrossRef]
- Wong, G.W.K.; Brunekreef, B.; Ellwood, P.; Anderson, H.R.; Asher, M.I.; Crane, J.; Lai, C.K.W. Cooking fuels and prevalence of asthma: A global analysis of phase three of the International Study of Asthma and Allergies in Childhood (ISAAC). Lancet Resp. Med. 2013, 1, 386–394. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Li, Y.; Han, X.; Hu, H.; Yu, C.; Yuan, J.; Yao, P.; Miao, X.; Wei, S.; et al. Associations between daily cooking duration and the prevalence of diabetes and prediabetes in a middle-aged and elderly Chinese population: A cross-sectional study. Indoor Air 2018, 28, 238–246. [Google Scholar] [CrossRef]
- Naseri, M.; Jouzizadeh, M.; Tabesh, M.; Malekipirbazari, M.; Gabdrashova, R.; Nurzhan, S.; Farrokhi, H.; Khanbabaie, R.; Mehri-Dehnavi, H.; Bekezhankyzy, Z.; et al. The impact of frying aerosol on human brain activity. Neurotoxicology 2019, 74, 149–161. [Google Scholar] [CrossRef]
- Wei, F.; Nie, G.; Zhou, B.; Wang, L.; Ma, Y.; Peng, S.; Ou, S.; Qin, J.; Zhang, L.; Li, S.; et al. Association between Chinese cooking oil fumes and sleep quality among a middle-aged Chinese population. Environ. Pollut. 2017, 227, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, Y.; Lin, Q.; Huang, L.; Zhang, Q.; Xu, Y. Adverse effects of subchronic exposure to cooking oil fumes on the gonads and the GPR30-mediated signaling pathway in female rats. Mol. Cell Toxicol. 2020, 16, 13–24. [Google Scholar] [CrossRef]
- Fang, X.; Strodl, E.; Wu, C.; Liu, L.; Yin, X.; Wen, G.; Sun, D.; Xian, D.; Jiang, H.; Jing, J.; et al. Maternal cooking during pregnancy may increase hyperactive behaviors among children aged at around 3 years old. Indoor Air 2020, 30, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, L.; Tao, P.; Zhang, B.; Huan, C.; Zhang, X.; Wang, M. Review of Effluents and Health Effects of Cooking and the Performance of Kitchen Ventilation. Aerosol Air Qual. Res. 2019, 19, 1937–1959. [Google Scholar] [CrossRef]
- Tucki, K.; Bączyk, A.; Klimkiewicz, M.; Mączyńska, J.; Sikora, M. Comparison of parameters and composition of exhaust fumes of engine fuelled by rapeseed oil and its mixtures with diesel and gasoline. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 12109. [Google Scholar] [CrossRef]
- Ho, Y.A.; Wang, S.Y.; Chiang, W.H.; Nguyen, V.H.; Chiu, J.L.; Wu, J. Moderate-temperature catalytic incineration of cooking oil fumes using hydrophobic honeycomb supported Pt/CNT catalyst. J. Hazard. Mater. 2019, 379, 120750. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Duan, L.; Hao, J.; Long, Z. Design of a Compact Dilution Sampler for Stationary Combustion Sources. J. Air Waste Manag. 2011, 61, 1124–1130. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, S.; Wei, W.; Wen, W.; Wang, X.; Yao, S. Chemical Characteristics of Fine Particles Emitted from Different Chinese Cooking Styles. Aerosol Air Qual. Res. 2015, 15, 2357–2366. [Google Scholar] [CrossRef]
- Fadel, M.; Ledoux, F.; Seigneur, M.; Oikonomou, K.; Sciare, J.; Courcot, D.; Afif, C. Chemical profiles of PM2.5 emitted from various anthropogenic sources of the Eastern Mediterranean: Cooking, wood burning, and diesel generators. Environ. Res. 2022, 211, 113032. [Google Scholar] [CrossRef]
- Lu, F.; Shen, B.; Li, S.; Liu, L.; Zhao, P.; Si, M. Exposure characteristics and risk assessment of VOCs from Chinese residential cooking. J. Environ. Manag. 2021, 289, 112535. [Google Scholar] [CrossRef]
- Domingo-Echaburu, S.; Dávalos, L.M.; Orive, G.; Lertxundi, U. Drug pollution & Sustainable Development Goals. Sci. Total Environ. 2021, 800, 149412. [Google Scholar] [PubMed]
- Fonseca, L.M.; Domingues, J.P.; Dima, A.M. Mapping the Sustainable Development Goals Relationships. Sustainability 2020, 12, 3359. [Google Scholar] [CrossRef]
- Naboureh, A.; Li, A.N.; Bian, J.H.; Lei, G.B.; Nan, X.; Zhang, Z.J.; Shami, S.; Lin, X.H. Green space coverage versus air pollution: A cloud-based remote sensing data analysis in Sichuan, Western China. Int. J. Digit. Earth 2024, 17, 2383454. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, Z.; Wang, L.; Jing, S.; Lou, S.; Tao, S.; Liu, J.; Yu, M.; Li, L.; Lin, L.; et al. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Sci. Total Environ. 2018, 621, 1300–1309. [Google Scholar] [CrossRef]
- Chen, C.; Ju, Y.; Su, Y.; Lim, Y.C.; Kao, C.; Chen, C.; Dong, C. Distribution, sources, and behavior of PAHs in estuarine water systems exemplified by Salt River, Taiwan. Mar. Pollut. Bull. 2020, 154, 111029. [Google Scholar] [CrossRef]
- Kariyawasam, T.; Doran, G.S.; Howitt, J.A.; Prenzler, P.D. Polycyclic aromatic hydrocarbon contamination in soils and sediments: Sustainable approaches for extraction and remediation. Chemosphere 2022, 291, 132981. [Google Scholar] [CrossRef]
- Hashem, A.; Aniagor, C.O.; Nasr, M.F.; Abou-Okeil, A. Efficacy of treated sodium alginate and activated carbon fibre for Pb (II) adsorption. Int. J. Biol. Macromol. 2021, 176, 201–216. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Li, W.; Cui, Z.; Wu, J.; Akpinar, I.; Yu, L.; He, G.; Hu, J. Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants. Appl. Surf. Sci. 2021, 550, 149313. [Google Scholar] [CrossRef]
- Li, Z.; Zhai, K.; Wang, G.; Li, Q.; Guo, P. Preparation and Electrocapacitive Properties of Hierarchical Porous Carbons Based on Loofah Sponge. Materials 2016, 9, 912. [Google Scholar] [CrossRef]
- Ghali, L.; Msahli, S.; Zidi, M.; Sakli, F. Effect of pre-treatment of Luffa fibres on the structural properties. Mater. Lett. 2009, 63, 61–63. [Google Scholar] [CrossRef]
- Wang, T.; Su, D.; Li, X.; Wang, X.; He, Z. Adsorption behavior of phenanthrene in soil amended with modified loofah sponge. J. Clean. Prod. 2021, 298, 126845. [Google Scholar] [CrossRef]
- Liu, C.; Yan, C.; Luo, W.; Li, X.; Ge, W.; Zhou, S. Simple preparation and enhanced adsorption properties of loofah fiber adsorbent by ultraviolet radiation graft. Mater. Lett. 2015, 157, 303–306. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, H.; Liao, L.; Zeng, P.; Qin, A.; Wei, J.; Wang, H. Enhanced removal organic compounds and particles from cooking fume using activated sludge scrubber filled loofah: From performance to the mechanism. Environ. Res. 2023, 233, 116445. [Google Scholar] [CrossRef] [PubMed]
- Boynard, C.A.; D’Almeida, J. Morphological characterization and mechanical behavior of sponge gourd (Luffa cylindrica)—Polyester composite materials. Polym.-Plast. Technol. 2000, 39, 489–499. [Google Scholar] [CrossRef]
- Li, F.; Lan, X.; Shi, J.; Wang, L. Loofah sponge as an environment-friendly biocarrier for intimately coupled photocatalysis and biodegradation (ICPB). J. Water Process Eng. 2021, 40, 101965. [Google Scholar] [CrossRef]
- Neme, I.; Gonfa, G.; Masi, C. Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon 2022, 8, e11940. [Google Scholar] [CrossRef]
- Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Li, D.; Gao, T.; Lei, Y.; Wu, B.; Zhao, J.; Wang, Y.; Wei, L. Effects of the ultrasound-assisted H3PO4 impregnation of sawdust on the properties of activated carbons produced from it. New Carbon. Mater. 2018, 33, 409–416. [Google Scholar] [CrossRef]
- Liao, D.; Shi, W.; Gao, J.; Deng, B.; Yu, R. Modified Camellia oleifera Shell Carbon with Enhanced Performance for the Adsorption of Cooking Fumes. Nanomaterials 2021, 11, 1349. [Google Scholar] [CrossRef]
- Wang, F.; Xie, T.; Zhong, W.; Ou, J.; Xue, M.; Li, W. A renewable and biodegradable all-biomass material for the separation of oil from water surface. Surf. Coat. Tech. 2019, 372, 84–92. [Google Scholar] [CrossRef]
- Zeng, L.; Liu, Q.; Lu, M.; Liang, E.; Wang, G.; Xu, W. Modified natural loofah sponge as an effective heavy metal ion adsorbent: Amidoxime functionalized poly(acrylonitrile-g-loofah). Chem. Eng. Res. Des. 2019, 150, 26–32. [Google Scholar] [CrossRef]
- Gor, G.Y.; Thommes, M.; Cychosz, K.A.; Neimark, A.V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 2012, 50, 1583–1590. [Google Scholar] [CrossRef]
- Zietzschmann, F.; Stuetzer, C.; Jekel, M. Granular activated carbon adsorption of organic micro-pollutants in drinking water and treated wastewater—Aligning breakthrough curves and capacities. Water Res. 2016, 92, 180–187. [Google Scholar] [CrossRef]
- Wahab, M.A.; Jellali, S.; Jedidi, N. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour. Technol. 2010, 101, 5070–5075. [Google Scholar] [CrossRef]
- Na, C.; Xu, J. Freundlich interpretation of pH control and ion specificity in zeolite cation exchange. SN Appl. Sci. 2020, 2, 1–7. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.; Li, W.; Li, X.; Fan, W.; Zhang, Y. Langmuir-diffusion model: Its modification and further application to glutinous rice flour particles. J. Food Process Eng. 2020, 43, e13470. [Google Scholar] [CrossRef]
- Budhiary, K.N.S.; Sumantri, I. Langmuir and Freundlich isotherm adsorption using activated charcoal from banana peel to reduce total suspended solid (TSS) levels in tofu industry liquid waste. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1053, 12113. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, X.; Li, Y. The Breakthrough Time Analyses of Lead Ions in CCL considering Different Adsorption Isotherms. Adv. Civ. Eng. 2020, 2020, 8861866. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Yin, Z.; Wang, J.; Zhang, X.; Chen, C. Adsorption of typical NDMA precursors by superfine powdered activated carbon: Critical role of particle size reduction. J. Environ. Sci. 2025, 147, 101–113. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, F.; Meng, F.; An, P.; Wang, D. Comparison of membrane fouling during short-term filtration of aerobic granular sludge and activated sludge. J. Environ. Sci. 2007, 19, 1281–1286. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthes, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.B.; Saifullah, M.; Nguyen, N.H.; Nguyen, M.H.; Vuong, Q.V. Comparison of ultrasound-assisted and conventional extraction for recovery of pectin from Gac (Momordica cochinchinensis) pulp. Future Foods 2021, 4, 100074. [Google Scholar] [CrossRef]
- Xia, J.; Shen, Y.; Zhang, H.; Hu, X.; Mian, M.M.; Zhang, W. Synthesis of magnetic nZVI@biochar catalyst from acid precipitated black liquor and Fenton sludge and its application for Fenton-like removal of rhodamine B dye. Ind. Crop Prod. 2022, 187, 115449. [Google Scholar] [CrossRef]
- Ling, C.; Huang, R.; Mao, W.; Wu, Z.; Wei, C.; Li, A.; Zhou, J. Activation of H2O2/PDS/PMS by Iron-Based Biochar Derived from Fenton Sludge for Oxidative Removal of 2,4-DCP and As(III). Water 2025, 17, 765. [Google Scholar] [CrossRef]
- Morenocastilla, C.; Ferrogarcla, M.A.; Joly, J.P.; Bautistatoledo, I.; Carrascomarin, F.; Riverautril, J. Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir 1995, 11, 4386–4392. [Google Scholar] [CrossRef]
- Bandosz, T.J.; Jagiello, J.; Schwarz, J.A.; Krzyzanowski, A. Effect of surface chemistry on sorption of water and methanol on activated carbons. Langmuir 1996, 12, 6480–6486. [Google Scholar] [CrossRef]
- Jawad, A.H.; Bardhan, M.; Islam, M.A.; Islam, M.A.; Syed-Hassan, S.S.A.; Surip, S.N.; ALOthman, Z.A.; Khan, M.R. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surf. Interfaces 2020, 21, 100688. [Google Scholar] [CrossRef]
- Cao, X.; Tan, C.; Sindoro, M.; Zhang, H. Hybrid micro-/nano-structures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 2018, 47, 5997. [Google Scholar] [CrossRef]
- An, F.; Cheng, Y.; Wu, D.; Wang, L. The effect of small micropores on methane adsorption of coals from Northern China. Adsorption 2013, 19, 83–90. [Google Scholar] [CrossRef]
- Zhi, F.; Zhou, W.; Chen, J.; Meng, Y.; Hou, X.; Qu, J.; Zhao, Y.; Hu, Q. Adsorption properties of active biochar: Overlooked role of the structure of biomass. Bioresour. Technol. 2023, 387, 129695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, J.; Tian, Q.; Liang, X.; Zhu, Y.; Sand, W.; Li, F.; Ma, C.; Liu, Y.; Yang, B. Durability and performance of loofah sponge as carrier for wastewater treatment with high ammonium. Water Environ. Res. 2019, 91, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, Q.; Gao, J.; Feng, J.; Zhang, X.; Hao, Y.; Yu, F. Biochar-compost addition benefits Phragmites australis growth and soil property in coastal wetlands. Sci. Total Environ. 2021, 769, 145166. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, G.; Wang, X.; Chen, Y.; Liu, Y.; Yang, H.; Shao, J. Physicochemical properties and hygroscopicity of tobacco stem biochar pyrolyzed at different temperatures. J. Renew. Sustain. Energy 2016, 8, 013112. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.; Wang, C.; Wu, J.; Chang, Y.; Duan, X.; Ma, L. Influence of Granular Bed Combination Characteristics on the Performance of PM2.5 and CO2 Synergistic Separation. Ind. Eng. Chem. Res. 2024, 63, 11570–11579. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Z.; Li, Z.; Li, H.; Lin, J. Inhibition Effect of Negative Air Ions on Adsorption between Volatile Organic Compounds and Environmental Particulate Matter. Langmuir 2020, 36, 5078–5083. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, H.; Li, Q.; Cheng, C.; Shen, H.; Zhang, Z.; Zhang, Z.; Wang, H. Removal of refractory organics in wastewater by coagulation/flocculation with green chlorine-free coagulants. Sci. Total Environ. 2021, 787, 147654. [Google Scholar] [CrossRef]
- Huang, L.; Boving, T.B.; Xing, B. Sorption of PAHs by aspen wood fibers as affected by chemical alterations. Environ. Sci. Technol. 2006, 40, 3279–3284. [Google Scholar] [CrossRef]
- Yao, R.P.; Zhang, M.J.; Yang, J.; Yi, D.L.; Xu, J.; Deng, F.; Yue, Y.; Ye, C.H. Preparation of SO3/gamma-Al2O3 solid acid catalyst and characterization of its structure and acidity. Acta Chim. Sin. 2005, 63, 269–273. [Google Scholar]
- Krehula, S.; Musić, S. Influence of ruthenium ions on the precipitation of α-FeOOH, α-Fe2O3 and Fe3O4 in highly alkaline media. J. Alloy Compd. 2006, 416, 284–290. [Google Scholar] [CrossRef]
- Sudakar, C.; Subbanna, G.N.; Kutty, T.R.N. Synthesis of acicular hydrogoethite (α-FeOOH·xH2O; 0.1 < x < 0.22) particles using morphology controlling cationic additives and magnetic properties of maghemite derived from hydrogoethite. J. Mater. Chem. 2002, 12, 107–116. [Google Scholar]
- Li, R.; Pan, J.; Qin, W.; Yang, J.; He, Y. Effect of pH on characterization and coagulation performance of poly-silicic-cation coagulant. Desalination 2014, 351, 37–42. [Google Scholar] [CrossRef]
- Srinivasu, P.; Balasubramanian, V.V.; Kumaresan, L.; Sawant, D.P.; Jin, X.; Alam, S.; Ariga, K.; Mori, T.; Vinu, A. Carboxyl group functionalization of mesoporous carbon nanocage through reaction with ammonium persulfate. J. Nanosci. Nanotechnol. 2007, 7, 3250–3256. [Google Scholar] [CrossRef] [PubMed]
- Valle-Vigón, P.; Sevilla, M.; Fuertes, A.B. Carboxyl-functionalized mesoporous silica–carbon composites as highly efficient adsorbents in liquid phase. Micropor. Mesopor. Mat. 2013, 176, 78–85. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; Li, X.; Duan, J.; Xu, B.; Xia, S.; Dong, P. Direct preparation of polysilicic acid flocculant by using pickling waste liquor of metal plate. J. Water Process Eng. 2020, 36, 101267. [Google Scholar] [CrossRef]
- Xiao, Y.; Long, C.; Zheng, M.; Dong, H.; Lei, B.; Zhang, H.; Liu, Y. High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors. Chin. Chem. Lett. 2014, 25, 865–868. [Google Scholar] [CrossRef]
- Trinh, Q.H.; Lee, S.B.; Mok, Y.S. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite. J. Hazard. Mater. 2015, 285, 525–534. [Google Scholar] [CrossRef]
- Xu, X.; Wang, P.; Xu, W.; Wu, J.; Chen, L.; Fu, M.; Ye, D. Plasma-catalysis of metal loaded SBA-15 for toluene removal: Comparison of continuously introduced and adsorption-discharge plasma system. Chem. Eng. J. 2016, 283, 276–284. [Google Scholar] [CrossRef]
- Wu, M.; Huang, H.; Leung, D.Y.C. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation. J. Environ. Manag. 2022, 307, 114559. [Google Scholar] [CrossRef]
- Teel, A.L.; Ahmad, M.; Watts, R.J. Persulfate activation by naturally occurring trace minerals. J. Hazard. Mater. 2011, 196, 153–159. [Google Scholar] [CrossRef]
- Guo, W.; Li, T.; Chen, Q.; Wan, J.; Zhang, J.; Wu, B.; Wang, Y. The roles of wavelength in the gaseous toluene removal with·OH from UV activated Fenton reagent. Chemosphere 2021, 275, 129998. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Xing, B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. [Google Scholar] [CrossRef] [PubMed]
- Vasilyeva, M.S.; Lukiyanchuk, I.; Yarovaya, T.P.; Ustinov, A.Y.; Nedozorov, P.M.; Fedorets, A.N.; Arefieva, O.D. Degradation of methyl orange in heterogeneous photo-Fenton reaction over V(IV)-containing oxide-phosphate coatings formed on titanium by plasma electrolytic oxidation. Surf. Coat. Tech. 2021, 410, 126898. [Google Scholar] [CrossRef]
- Boehm, H.P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- You, J.; Chiang, H.; Chiang, P. Comparison of adsorption characteristics for VOCs on activated carbon and oxidized activated carbon. Environ. Prog. 1994, 13, 31–36. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, B.; Pang, Y.; Shen, X. Highly efficient heterogeneous electro-Fenton reaction for tetracycline degradation by Fe-Ni LDH@ZIF-67 modified carbon cloth cathode: Mechanism and toxicity assessment. J. Environ. Manag. 2024, 354, 120336. [Google Scholar] [CrossRef]
- Kimura, M.; Miyamoto, I. Discovery of the Activated-Carbon Radical AC+ and the Novel Oxidation-Reactions Comprising the AC/AC+ Cycle as a Catalyst in an Aqueous Solution. B Chem. Soc. Jpn. 1994, 67, 2357–2360. [Google Scholar] [CrossRef]
- Georgi, A.; Kopinke, F. Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Appl. Catal. B-Environ. 2005, 58, 9–18. [Google Scholar] [CrossRef]
- Khalil, L.B.; Girgis, B.S.; Tawfik, T.A.M. Decomposition of H2O2 on activated carbon obtained from olive stones. J. Chem. Technol. Biotechnol. 2001, 76, 1132–1140. [Google Scholar] [CrossRef]
- Oliveira, L.C.A.; Silva, C.N.; Yoshida, M.I.; Lago, R.M. The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon 2004, 42, 2279–2284. [Google Scholar] [CrossRef]
- Fontecha-Camara, M.A.; Alvarez-Merino, M.A.; Carrasco-Marin, F.; Lopez-Ramon, M.V.; Moreno-Castilla, C. Heterogeneous and homogeneous Fenton processes using activated carbon for the removal of the herbicide amitrole from water. Appl. Catal. B-Environ. 2011, 101, 425–430. [Google Scholar] [CrossRef]
- Gasia, J.; Fabiani, C.; Chàfer, M.; Pisello, A.L.; Manni, A.; Ascani, M.; Cabeza, L.F. Life cycle assessment and life cycle costing of an innovative component for refrigeration units. J. Clean. Prod. 2021, 295, 126442. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Zhai, K.; He, C.; Li, Q.; Guo, P. Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons. Colloids Surf. A 2018, 538, 28–35. [Google Scholar] [CrossRef]
- Mohamad Nor, N.; Lau, L.C.; Lee, K.T.; Mohamed, A.R. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—A review. J. Environ. Chem. Eng. 2013, 1, 658–666. [Google Scholar] [CrossRef]
Adsorbent | Pollutant | Protective Effect Time (min) | Breakthrough Adsorption Capacity (mg/g) | Saturated Adsorption Time (min) | Saturated Adsorption Capacity (mg/g) |
---|---|---|---|---|---|
TGS | oils | 20 | 2.09 | 180 | 15.77 |
NMHC | 28 | 1.15 | 166 | 8.32 | |
PM2.5 | 18 | 0.85 | 96 | 6.52 | |
PM10 | 16 | 1.16 | 144 | 11.34 | |
TGSC-0 | oils | 40 | 4.15 | 230 | 22.96 |
NMHC | 46 | 2.40 | 200 | 10.02 | |
PM2.5 | 22 | 1.23 | 120 | 9.49 | |
PM10 | 20 | 1.90 | 164 | 14.04 | |
TGSC-1 | oils | 50 | 5.18 | 260 | 25.79 |
NMHC | 56 | 3.02 | 208 | 13.02 | |
PM2.5 | 24 | 1.39 | 128 | 9.82 | |
PM10 | 22 | 2.06 | 172 | 15.99 |
Pollutant | Equation | K (min/m) | τ0 (min) | R2 |
---|---|---|---|---|
Oils | τ = 1447L − 9.35 | 1447 | 13.35 | 0.995 |
NMHC | τ = 3149L − 53.29 | 3149 | 53.29 | 0.983 |
PM2.5 | τ = 1111L − 18.75 | 1111 | 18.75 | 0.987 |
PM10 | τ = 1161L − 20.62 | 1161 | 20.62 | 0.992 |
Pollutant | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL (m3·mg−1) | qm (mg·g−1) | R2 | 1/n | KF (mg·g−1) | R2 | |
Oils | 0.02 | 32.05 | 0.935 | 0.35 | 1.72 | 0.888 |
NMHC | 0.04 | 14.89 | 0.949 | 0.58 | 1.08 | 0.916 |
PM2.5 | 0.02 | 12.65 | 0.947 | 0.55 | 0.89 | 0.847 |
PM10 | 0.01 | 67.30 | 0.983 | 0.67 | 0.88 | 0.906 |
Material | SBET (m2/g) | Vtotal (cm3/g) | Dp (nm) |
---|---|---|---|
TGS | 5.30 | 0.03 | 9.267 |
TGSC-0 | 650.90 | 0.73 | 3.963 |
TGSC-1 | 427.97 | 0.23 | 2.347 |
Materials | C-C/C-H | C-OH/C-OR/C-N | C=O | -C-O-H | Fe2+ | Fe3+ |
---|---|---|---|---|---|---|
TGS/TGS-Used | 1.12 | 2.10 | 1.84 | 1.92 | / | / |
TGSC-0/TGSC-0-Used | 1.07 | 1.00 | 0.69 | 1.17 | / | / |
TGSC-1/TGSC-1-Used | 1.25 | 0.86 | 0.17 | 1.08 | 1.29 | 1.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, J.; Zhou, B.; Liao, L.; Qin, A.; Mo, S.; Zhou, X.; Wei, J.; Wang, H.; Fan, Y.; Zhang, H. Loofah-Derived Adsorbent Column for Sustainable Purification of Oily Fumes: Synergistic Effect of Filtration and Adsorption. Sustainability 2025, 17, 4079. https://doi.org/10.3390/su17094079
Zhong J, Zhou B, Liao L, Qin A, Mo S, Zhou X, Wei J, Wang H, Fan Y, Zhang H. Loofah-Derived Adsorbent Column for Sustainable Purification of Oily Fumes: Synergistic Effect of Filtration and Adsorption. Sustainability. 2025; 17(9):4079. https://doi.org/10.3390/su17094079
Chicago/Turabian StyleZhong, Jiayi, Bonian Zhou, Lei Liao, Aimiao Qin, Shengpeng Mo, Xiaobin Zhou, Jianwen Wei, Hongqiang Wang, Yinming Fan, and Huan Zhang. 2025. "Loofah-Derived Adsorbent Column for Sustainable Purification of Oily Fumes: Synergistic Effect of Filtration and Adsorption" Sustainability 17, no. 9: 4079. https://doi.org/10.3390/su17094079
APA StyleZhong, J., Zhou, B., Liao, L., Qin, A., Mo, S., Zhou, X., Wei, J., Wang, H., Fan, Y., & Zhang, H. (2025). Loofah-Derived Adsorbent Column for Sustainable Purification of Oily Fumes: Synergistic Effect of Filtration and Adsorption. Sustainability, 17(9), 4079. https://doi.org/10.3390/su17094079