Study on Human Health Risks Associated with Consuming Vegetables Grown in Industrially Polluted Soil in Sasar Area, NW Romania, in the Context of Sustainable Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Presentation of the Study Area and Sampling
2.2. Preparation and Analysis of Samples
2.3. Indices of Soil Pollution and Health Risk
3. Results and Discussion
3.1. The Soil Characterization
3.2. Vegetable Characterization
3.3. Indices of Soil Pollution and Transfer Factors
3.4. Risk Index for Human Health
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jolly, Y.N.; Islam, A.; Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus 2013, 2, 385. [Google Scholar] [CrossRef]
- Miclean, M.; Levei, E.A.; Senila, M.; Roman, C.; Cordos, E. Heavy metal contamination of soil in Baia Mare mining area. Stud. Chem. 2008, 53, 57–63. [Google Scholar]
- Mihali, C.; Oprea, G.; Michnea, A.; Jelea, S.G.; Jelea, M.; Man, C.; Grigor, L. Assessment of heavy metals content and pollution level in soil and plants in Baia Mare area, NW Romania. Carpathian J. Earth Environ. Sci. 2013, 8, 143–152. [Google Scholar]
- Kashif, S.R.; Akram, M.; Yaseen, M.; Ali, S. Studies on heavy metals status and their uptake by vegetables in adjoining areas of Hudiara drain in Lahore. Soil Environ. 2009, 28, 7–12. [Google Scholar]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Gruszecka-Kosowska, A.; Kicińska, A. Long-Term Metal-Content Changes in Soils on the Olkusz Zn–Pb Ore-Bearing Area, Poland. Int. J. Environ. Res. 2017, 11, 359–376. [Google Scholar] [CrossRef]
- Kicińska, A. Arsenic, Cadmium, and Thallium Content in the Plants Growing in Close Proximity to a Zinc Works—Long-Term Observations. J. Ecol. Eng. 2019, 20, 61–69. [Google Scholar] [CrossRef]
- Modoi, O.C.; Ozunu, A.; Stezar, I.C. Risks Associated to Soil Pollution in the Proximity of Tailing Facilities in the Western Area of Baia Mare. ProEnvironment 2010, 3, 352–358. [Google Scholar]
- Bălănescu, S.; Achim, V.; Ciolte, A. History of Mining Management, Precious Non-Ferrous Metallurgy in North-West Romania; Gutinul: Baia Mare, Romania, 2002. (In Romanian) [Google Scholar]
- Nădișan, I.; Cherecheș, D.; Ieremia, G. The Pollution Scourge in Baia Mare—The “Gold” Event; Vasile Goldiș University Press: Arad, Romania, 2001. (In Romanian) [Google Scholar]
- Miclean, M.; Levei, E.-A.; Senila, M.; Roman, C.; Cordos, E.A. Assessment of Cu, Pb, Zn and Cd availability to vegetable species grown in the vicinity of tailing deposits from Baia Mare area. Rev. Chim. 2009, 60, 1–4. [Google Scholar] [CrossRef]
- Levei, E.; Frentiu, T.; Ponta, M.; Senila, M.; Miclean, M.; Roman, C.; Cordos, E. Characterisation of soil quality and mobility of Cd, Cu, Pb and Zn in the Baia Mare area Northwest Romania following the historical pollution. Int. J. Environ. Anal. Chem. 2009, 89, 635–649. [Google Scholar]
- Mihali, C.; Michnea, A.; Oprea, G.; Gogoaşa, I.; Pop, C.; Senila, M.; Grigor, L. Trace element transfer from soil to vegetables around the lead smelter in Baia Mare, NW Romania. J. Agric. Food Environ. 2012, 10, 828–834. [Google Scholar]
- Roba, C.; Rosu, C.; Pistea, I.; Baciu, C.; Costin, D.; Ozunu, A. Transfer of heavy metals from soil to vegetables in a mining/smelting influenced area (Baia Mare—Ferneziu, Romania). J. Environ. Prot. Ecol. 2015, 16, 891–898. [Google Scholar]
- Donici, A.; Bunea, C.I.; Călugăr, A.; Harsan, E.; Racz, I.; Bora, F.D. Assessment of heavy metals concentration in soil and plants from Baia Mare area, NW Romania. Bull. UASVM Hortic. 2018, 75, 127–132. [Google Scholar] [CrossRef]
- Berar, I.M.; Micle, V.; Oros, V.; Cociorhan, C.S.; Urs, A.M. Studies and research regarding the evaluation of the quality of the soils in the area SC Romplumb SA. Baia Mare in order to remediate polluted land. ProEnvironment 2010, 3, 472–476. [Google Scholar]
- Cordos, E.A.; Frentiu, T.; Ponta, M.; Marginean, I.; Abraham, B.; Roman, C. Distribution study of inorganic arsenic (III) and (V) species in soil and their mobility in the area of Baia-Mare, Romania. Chem. Speciat. Bioavailab. 2006, 18, 11–25. [Google Scholar] [CrossRef]
- Oprea, G.; Cristina, M.; Michnea, A.; Gabriela, O.; Roman, C.; Stela, J.; Butean, C.; Barz, C. Arsenic and antimony content in soil and plants from Baia Mare area, Romania. Am. J. Environ. Sci. 2010, 6, 33–40. [Google Scholar] [CrossRef]
- Hassan, J.; Rajib, M.M.R.; Khan, M.N.E.A.; Khandaker, S.; Zubayer, M.; Ashab, K.R.; Kuba, T.; Marwani, H.M.; Asiri, A.M.; Hasan, M.M.; et al. Assessment of heavy metals accumulation by vegetables irrigated with different stages of textile wastewater for evaluation of food and health risk. J. Environ. Manag. 2024, 353, 120206. [Google Scholar] [CrossRef]
- Kasa, E.; Contin, M.; Gjoka, F. Accumulation of heavy metals in vegetables from agricultural soils. Albanian J. Agric. Sci. 2015, 14, 169–175. [Google Scholar]
- Mihali, C.; Dippong, T.; Butean, C.; Goga, F. Heavy metals and As content in soil and in plants in the Baia Mare mining and metallurgical area (NW of Roumania). Rev. Roum. Chim. 2017, 62, 373–379. [Google Scholar]
- Mizan, A.; Mamun, M.A.H.; Islam, M.d.S. Metal contamination in soil and vegetables around Savar tannery area, Dhaka, Bangladesh: A preliminary study for risk assessment. Heliyon 2023, 9, 13856. [Google Scholar] [CrossRef]
- Liu, P.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y.; Wang, X.; Zhou, Y.; Shi, B.; Kwon, B.O.; Choi, K.; et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef] [PubMed]
- Manoj, S.R.; Karthik, C.; Kadirvelu, K.; Arulselvi, P.I.; Shanmugasundaram, T.; Bruno, B.; Rajkumar, M. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. J. Environ. Manag. 2020, 254, 109779. [Google Scholar] [CrossRef]
- Khan, S.; Farooq, R.; Shahbaz, S.; Khan, M.A.; Sadique, M. Health risk assessment of heavy metals for population via consumption of vegetables. World Appl. Sci. J. 2009, 6, 1602–1606. [Google Scholar]
- Lokeshappa, B.; Shivpuri, K.; Tripath, V.; Dikshit, A.K. Assessment of toxic metals in agricultural product. Food Pub. Heat. 2012, 2, 24–29. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Bernard, A. Cadmium and its adverse effects on human health. Indian J. Med. Res. 2008, 128, 557–564. [Google Scholar]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.-J.; Zhu, Y.G.; Zhai, R.H.; Chen, D.Y.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef]
- Agbor, E.; Besong, E.; Ebai, P.; Inyang, D.I.; Okon, L.E.; Ugar, S.; Nganje, T.N. Baseline assessment of the health risk of potentially toxic heavy metals in commonly consumed vegetables in parts of Mamfe, Southwest Region, Cameroon. J. Trace Elem. Miner. 2024, 8, 100115. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Y.; Shen, Z.; Lin, Y.; Mei, N.; Luo, C.; Wang, Y.; Zhang, C.; Wang, D. Identifying heavy metal sources and health risks in soil-vegetable systems of fragmented vegetable fields based on machine learning, positive matrix factorization model and Monte Carlo simulation. J. Hazard. Mater. 2024, 478, 135481. [Google Scholar] [CrossRef]
- Afriyie, R.Z.; Arthur, E.K.; Gikunoo, E.; Baah, D.S.; Dziafa, E. Potential health risk of heavy metals in some selected vegetable crops at an artisanal gold mining site: A case study at Moseaso in the Wassa Amenfi West District of Ghana. J. Trace Elem. Miner. 2023, 4, 100075. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, L.; Liu, J.; Zhang, Z.; Tan, C. Removal of different kinds of heavy metals by novel PPG-nZVI beads and their application in simulated stormwater infiltration facility. Appl. Sci. 2019, 9, 4213. [Google Scholar] [CrossRef]
- Su, C.; Wang, J.; Chen, Z.; Meng, J.; Yin, G.; Zhou, Y.; Wang, T. Sources and health risks of heavy metals in soils and vegetables from intensive human intervention areas in South China. Sci. Total Environ. 2023, 857, 159389. [Google Scholar] [CrossRef] [PubMed]
- Chinnannan, K.; Somagattu, P.; Yammanuru, H.; Reddy, U.K.; Nimmakayala, P. Health risk assessment of heavy metals in soil and vegetables from major agricultural sites of Ohio and West Virginia. Biocatal. Agric Biotechnol. 2024, 57, 103108. [Google Scholar] [CrossRef]
- Abbas, M.T.; Waddan, M.A.; Ullah, H.; Farooq, M. Bioaccumulation and Mobility of Heavy Metals in the Soil-Plant System and Health Risk Assessment of Vegetables Irrigated by Wastewater. Sustainability 2023, 15, 15321. [Google Scholar] [CrossRef]
- Khan, M.N.; Aslam, M.A.; Muhsinah, A.B.; Uddin, J. Heavy Metals in Vegetables: Screening Health Risks of Irrigation with Wastewater in Peri-Urban Areas of Bhakkar, Pakistan. Toxics 2023, 11, 460. [Google Scholar] [CrossRef]
- Big, C.L.; Lacatusu, R.; Damian, F. Heavy metals in soil-plant system around Baia Mare city, Romania. Carpathian J. Earth Environ. Sci. 2012, 7, 219–230. [Google Scholar]
- Security Report Iaz Aurul, SC Romaltyn Mining SRL Baia Mare; SC Ocon Ecorisc Ltd.: Bucharest, Romania, 2012; Available online: http://www.romaltyn.ro/autorizare-mediu/ (accessed on 26 April 2025). (In Romanian)
- STAS 7184/1-84; Soils. Sample Collection for Pedological and Agrochemical Studies. ASRO: Bucharest, Romania, 1984. (In Romanian)
- EN ISO 10523:2012; Water Quality. Determining pH. ISO: Geneva, Switzerland, 2012. (In Romanian)
- STAS 7184/21-82; Soils. Determination of Humus Content. ASRO: Bucharest, Romania, 1982. (In Romanian)
- STAS 7184/12-88; Soils. Determination of Cation Exchange Properties. ASRO: Bucharest, Romania, 1988. (In Romanian)
- STAS 7184/19-82; Soils. Determination of Extractable Phosphorus in Ammonium Acetate-Lactate. ASRO: Bucharest, Romania, 1982. (In Romanian)
- STAS 7184/18-80; Soils. Determination of Accessible and Potentially Accessible Potassium Content for Plants. ASRO: Bucharest, Romania, 1980. (In Romanian)
- Ministry of Agriculture and Rural Development (MARD), National Institute for Research—Development for Pedology. Agrochemistry and Environmental Protection, Methods of Chemical and Microbiological Analysis (Used in the Soil Monitoring System); Sintech Publishing House: Craiova, Romania, 2011. (In Romanian) [Google Scholar]
- The Methodology of Development of Pedological Studies (MDPS). National Institute for Research and Development in Pedology; Agrochemistry and Environmental Protection (ICPA): Bucharest, Romania, 1987. (In Romanian) [Google Scholar]
- STAS 7184/10-79; Soils. Determination of Granulometric Composition. ASRO: Bucharest, Romania, 1984. (In Romanian)
- Colnaghi, G.; Carnaroglio, D. Revolutionizing Elemental Analysis: A Comprehensive Guide to Microwave Digestion Technology, Milestone Microwave Laboratory System, Milestone SRL, September 2024, Milano, Italy. Available online: https://www.milestonesci.com/wp-content/uploads/2024/09/eBook-Revolutioning-Elemental-Analysis-9.2024.pdf (accessed on 26 April 2025).
- SR ISO 11047:1999; Soil Quality. Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc from Soil Extracts in Royal Water. Methods by Atomic Absorption Spectrometry in Flame and Electrothermal Atomization. ISO: Geneva, Switzerland, 1999.
- Hu, Y.; Liu, X.; Bai, J.; Shih, K.; Zeng, E.Y.; Cheng, H. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ. Sci. Pollut. Res. 2013, 20, 6150–6159. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risk of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar]
- Wang, X.; Sato, T.; Xing, B.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef]
- Shokri, S.; Abdoli, N.; Sadighara, P.; Mahvi, A.H.; Esrafili, A.; Gholami, M.; Jannat, B.; Yousefi, M. Risk assessment of heavy metals consumption through onion on human health in Iran. Food Chem. 2022, 14, 100283. [Google Scholar] [CrossRef]
- Order No. 756 of 3 November 1997 for the Approval of the Regulation on Environmental Pollution Assessment. Eminent: Ministry of Waters, Forests and Environmental Protection. (Published in: Official Gazette no 303 bis of 6 November 1997). 1997. Available online: http://legislatie.just.ro/Public/DetaliiDocumentAfis/151788 (accessed on 10 March 2025). (In Romanian).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Zinc. U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp60.pdf (accessed on 1 August 2024).
- United States Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual; Office of Emergency and Remedial Response: Washington, DC, USA, 1989. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf (accessed on 15 September 2024).
- United States Environmental Protection Agency (USEPA). Risk-Based Concentration Table; Washington Agency, United States Environmental Protection Agency: Washington, DC, USA, 2000. Available online: https://archive.epa.gov/region9/superfund/web/html/index-23.html (accessed on 15 September 2024).
- United States Environmental Protection Agency (US EPA). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Office of Emergency and Remedial Response: Washington, DC, USA, 2002. Available online: https://semspub.epa.gov/work/HQ/175878.pdf (accessed on 15 September 2024).
- Song, D.; Zhuang, D.; Jiang, D.; Fu, D. Integrated Health Risk Assessment of Heavy Metals in Suxian County, South China. Int. J. Environ. Res. Public Health 2015, 12, 7100–7117. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium. U.S. Department of Health and Human Services Public Health Service. 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (accessed on 15 September 2024).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile of Nickel. U.S. Department of Health and Human Services Public Health Service. 2024. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp15.pdf (accessed on 20 October 2024).
- Cheng, J.-J.; Shi, Z.; Zhu, Y. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. J. Environ. Sci. 2007, 19, 50–54. [Google Scholar] [CrossRef]
- Charles, V.E.; Polis, C.B.; Sridhara, S.K.; Blum, R.W. Abortion and long-term mental health outcomes: A systematic review of the evidence. Contraception 2008, 78, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Borlan, Z.; Rauta, C. Methodology for Agrochemical Analysis of Soils to Establish the Need for Amendments and Fertilizers; Methods, Guidance Reports Series, ICPA 3; Research Institute for Soil Science and Agrochemistry (ICPA): Bucharest, Romania, 1981; Volume 1. (In Romanian) [Google Scholar]
- Jelea, O.C. The Effects of Acid Mine Drainage upon Vegetation in the Bozanta Tailings Pond (Maramureş County). Stud. UBB Ambient. 2015, 60, 57–70. [Google Scholar]
- Modoi, O.C.; Roba, C.; Török, Z.; Ozunu, A. Environmental Risks due to Heavy Metal Pollution of Water Resulted from Mining Wastes in NW Romania. Environ. Eng. Manag. J. 2014, 13, 2325–2336. [Google Scholar]
- Cordos, E.A.; Roman, C.; Ponta, M.; Frentiu, T.; Rautiu, R. Evaluation of soil pollution with copper, lead, zinc and cadmium in the mining area Baia Mare. Rev. Chim. 2007, 58, 470–474. [Google Scholar]
- Damian, G.; Damian, F.; Nasui, D.; Pop, C.; Pricop, C. The soils quality from the southern–eastern part of Baia Mare zone affected by metallurgical industry. Carpathian J. Earth Environ. Sci. 2010, 5, 139–147. [Google Scholar]
- Farkas, A.; Mereuti, F.; Butiuc-Keul, A.; Podar, D.; Roba, C.; Balc, R. Effects of Long-Term exposure to Heavy Metals upon Rhizosphere Bacteria from Baia Mare Area (Maramureş County, Romania). Geomicrobiol. J. 2020, 37, 867–876. [Google Scholar] [CrossRef]
- Lacatusu, R.; Kovacsovics, B.; Breaban, I.G.; Carstea, S.; Lungu, M.; Bretan, A. Abundance of heavy metals in urban soils as concerns genesis and polluting impact. Sci. Pap. Mag. Agron. Ser. USAMV Iasi 2007, 50, 141–149. [Google Scholar]
- Bora, F.D.; Mihaly-Cozmuța, L.; Mihaly-Cozmuța, A.; Peter, A.; Nicula, C.; Donici, A. A study on cadmium, lead, zinc and cobalt concentration in Baia Mare County, N-W Romania soils. AAB Bioflux 2015, 7, 227–240. [Google Scholar]
- Miclean, M.; Cadar, O.; Levei, L.; Senila, L.; Ozunu, A. Metal contents and potential health risk assessment of crops grown in a former mining district (Romania). J. Environ. Sci. Health B 2018, 53, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Dziubanek, G.; Piekut, A.; Rusin, M.; Baranowska, R.; Hajok, I. Contamination of food crops grown on soils with elevated heavy metals content. Ecotoxicol. Environ. Saf. 2015, 118, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hoque, M.F. Concentrations of heavy metals in vegetables around the industrial area of Dhaka city, Bangladesh and health risk assessment. Int. Food Res. J. 2014, 21, 2121–2126. [Google Scholar]
- Likuku, A.S.; Obuseng, G. Health Risk Assessment of Heavy Metals via Dietary Intake of Vegetables Irrigated with Treated Wastewater around Gaborone, Botswana. In Proceedings of the International Conference on Plant, Marine and Environmental Sciences PMES, Kuala Lumpur, Malaysia, 1–2 January 2015; pp. 32–37. [Google Scholar] [CrossRef]
Indicator | Units | Method | Standard |
---|---|---|---|
pH | pH units | The potentiometric method, in aqueous suspension | SR EN ISO 10523:2012 [42] |
Humus | % | Walkley-Black modified by Gogoasa, wet oxidation | STAS 7184/21-82 [43] |
Hydrolytic acidity (Vah) | % | By percolation at exhaustion with 1N potassium acetate solution | STAS 7184/12-88 [44] |
Total exchangeable bases SB | me·100 g−1 | Kappen method | STAS 7184/12-88 [44] |
Mobile phosphorus PALc | mg kg−1 | The Egner-Riehm-Domingo method | STAS 7184/19-82 [45] |
Mobile potassium KALc | mg kg−1 | The Egner-Riehm-Domingo method | STAS 7184/18-80 [46] |
Nitrogen index NI | - | NI = (Humus ∗ VAh)/100 | MARD (2011) [47] |
Texture | - | Determination of granulometric composition | STAS 7184/10-79 [49] |
Structure | - | Visual evaluation in the field | MDPS (1987) [48] |
Determined Elements | Wavelength, nm | Slit Width, nm | Laboratory-Calibrated Working Range | The Correlation Coefficient of the Calibration Curve, R2 | Quantification Limits |
---|---|---|---|---|---|
Standard atomic absorption condition for flame technique (air-acetylene) | |||||
Mn | 279.5 | 0.2 | 0.075–2.00 mg L−1 | 0.9989 | 0.075 mg L−1 |
Zn | 213.9 | 0.7 | 0.05–2.00 mg L−1 | 0.9985 | 0.050 mg L−1 |
Standard atomic absorption condition with electrothermal atomization (graphite furnace—argon) | |||||
Cu | 324.75 | 0.7 | 3.0–30.0 μg L−1 | 0.9988 | 3.00 μg L−1 |
Cd | 228.80 | 0.7 | 0.20–4.00 μg L−1 | 0.9990 | 0.20 μg L−1 |
Pb | 283.30 | 0.7 | 3.0–39.0 μg L−1 | 0.9990 | 3.00 μg L−1 |
Ni | 232.00 | 0.7 | 2.5–40.0 μg L−1 | 0.9993 | 3.00 μg L−1 |
As | 193.70 | 0.7 | 1.5–15 μg L−1 | 0.9987 | 1.50 μg L−1 |
The Normal Value of the Metal Concentration Si [mg kg−1] [57] | ||||||
---|---|---|---|---|---|---|
As = 5 | Cd = 1 | Cu = 20 | Mn = 900 | Ni = 20 | Pb = 20 | Zn = 100 |
The reference oral dose RDf [mg kg−1 d−1] [58,59,60,61,62,63,64] | ||||||
As = 3 × 10−4 | Cd = 1 × 10−3 | Cu = 4 × 10−2 | Mn = 1.4 × 10−1 | Ni = 2 × 10−2 | Pb = 3.5 × 10−3 | Zn = 3 × 10−1 |
The global pollution index Nemerow PIN [-] [65] | ||||||
Safety PIN ≤ 0.7 | Precaution 0.7 < PIN ≤ 1.0 | Slightly polluted 1.0 < PIN ≤ 2.0 | Moderately polluted 2.0 < PIN ≤ 3.0 | Seriously polluted PIN > 3.0 | ||
Human health risk index HRI [66] | ||||||
HRI < 1—The consumers are safe | HRI ≥ 1 There is a risk of disease |
Sampling Point | Humus [%] | pH [–] | SB [me/100 g] | VAh [%] | NI | PALc [mg kg−1] | KALc [mg kg−1] |
---|---|---|---|---|---|---|---|
P1 | 2.70 | 6.85 | 28.26 | 92.63 | 3.62 | 4 | 40 |
P2 | 3.60 | 6.80 | 24.80 | 91.21 | 4.05 | 3 | 54 |
P3 | 3.60 | 6.40 | 15.57 | 81.94 | 3.24 | 4 | 174 |
P4 | 3.60 | 6.40 | 8.26 | 72.84 | 1.36 | 2 | 58 |
P5 | 2.07 | 6.35 | 8.26 | 72.69 | 1.37 | 3 | 68 |
P6 | 2.07 | 6.65 | 14.61 | 84.64 | 2.73 | 5 | 100 |
P7 | 2.07 | 6.35 | 15.96 | 79.68 | 2.99 | 4 | 68 |
P8 | 2.07 | 6.50 | 15.19 | 79.61 | 2.19 | 5 | 76 |
P9 | 2.07 | 6.55 | 15.19 | 85.82 | 1.54 | 4 | 62 |
P10 | 2.07 | 6.75 | 16.73 | 86.95 | 1.96 | 3 | 50 |
P11 | 2.07 | 6.20 | 15.38 | 80.18 | 2.27 | 5 | 60 |
P12 | 2.07 | 6.30 | 12.88 | 80.70 | 2.05 | 2 | 84 |
P13 | 3.60 | 6.30 | 11.73 | 79.41 | 2.60 | 4 | 76 |
P14 | 3.60 | 6.15 | 18.07 | 80.16 | 3.34 | 3 | 56 |
P15 | 3.60 | 6.10 | 11.53 | 76.51 | 2.42 | 5 | 54 |
Metal | Mean ± SE [mg kg−1] | df | SD, [mg kg−1] | Median, [mg kg−1] | Minim, [mg kg−1] | Maxim, [mg kg−1] | Kurtosis | Skewness | CL |
---|---|---|---|---|---|---|---|---|---|
As | 5.22 ± 0.30 | 179.00 | 1.12 | 5.07 | 3.50 | 7.06 | −0.84 | 0.33 | 0.65 |
Cd | 2.63 ± 0.14 | 179.00 | 0.88 | 2.44 | 1.26 | 4.11 | −0.99 | 0.23 | 0.51 |
Cu | 71.68 ± 6.00 | 179.00 | 22.46 | 69.76 | 36.34 | 110.60 | −1.01 | 0.03 | 13.00 |
Mn | 992.70 ± 13.34 | 179.00 | 199.59 | 925.50 | 773.00 | 1538.00 | 3.58 | 1.72 | 85.20 |
Ni | 23.17 ± 0.72 | 179.00 | 4.04 | 22.15 | 15.80 | 38.30 | 2.06 | 1.40 | 3.47 |
Pb | 28.39 ± 2.30 | 179.00 | 8.62 | 27.52 | 17.44 | 45.56 | −0.22 | 0.72 | 5.00 |
Zn | 123.20 ± 5.19 | 179.00 | 26.92 | 118.50 | 91.00 | 183.00 | 0.54 | 0.93 | 15.54 |
Metal | Mean ± SE [mg kg−1] | df | SD [mg kg−1] | Median [mg kg−1] | Minim. [mg kg−1] | Max. [mg kg−1] | Kurtosis | Skewness | CL |
---|---|---|---|---|---|---|---|---|---|
Carrot | |||||||||
As | 0.10 ± 0.00 | 44.00 | 0.02 | 0.10 | 0.07 | 0.13 | −0.81 | 0.36 | 0.01 |
Cd | 0.15 ± 0.01 | 44.00 | 0.04 | 0.16 | 0.10 | 0.21 | −1.39 | −0.19 | 0.02 |
Cu | 5.39 ± 0.33 | 44.00 | 1.68 | 6.04 | 2.57 | 8.06 | −0.89 | −0.40 | 0.93 |
Mn | 1.66 ± 0.07 | 44.00 | 0.25 | 1.67 | 1.20 | 2.16 | 0.66 | 0.07 | 0.14 |
Ni | 0.77 ± 0.04 | 44.00 | 0.16 | 0.72 | 0.60 | 1.24 | 5.75 | 2.14 | 0.09 |
Pb | 0.22 ± 0.02 | 44.00 | 0.08 | 0.22 | 0.11 | 0.40 | −0.29 | 0.55 | 0.05 |
Zn | 2.76 ± 0.16 | 44.00 | 0.63 | 2.80 | 1.88 | 3.72 | −1.32 | 0.03 | 0.35 |
Onion | |||||||||
As | 0.12 ± 0.01 | 44.00 | 0.04 | 0.11 | 0.07 | 0.21 | 0.70 | 0.94 | 0.02 |
Cd | 0.15 ± 0.01 | 44.00 | 0.05 | 0.13 | 0.09 | 0.21 | −0.94 | 0.11 | 0.03 |
Cu | 5.48 ± 0.48 | 44.00 | 1.86 | 5.82 | 2.83 | 9.13 | −0.77 | 0.27 | 1.03 |
Mn | 1.54 ± 0.08 | 44.00 | 0.32 | 1.51 | 1.00 | 2.10 | −0.79 | 0.22 | 0.18 |
Ni | 0.76 ± 0.04 | 44.00 | 0.15 | 0.72 | 0.58 | 1.19 | 3.46 | 1.56 | 0.09 |
Pb | 0.25 ± 0.02 | 44.00 | 0.08 | 0.22 | 0.13 | 0.41 | −0.28 | 0.72 | 0.05 |
Zn | 2.77 ± 0.17 | 44.00 | 0.65 | 2.80 | 1.82 | 4.26 | 0.35 | 0.56 | 0.36 |
Tomato | |||||||||
As | 0.10 ± 0.01 | 44.00 | 0.03 | 0.09 | 0.06 | 0.18 | 2.24 | 1.67 | 0.02 |
Cd | 0.08 ± 0.01 | 44.00 | 0.02 | 0.07 | 0.06 | 0.12 | −0.38 | 0.97 | 0.01 |
Cu | 1.62 ± 0.07 | 44.00 | 0.27 | 1.64 | 1.10 | 2.06 | −0.42 | −0.43 | 0.15 |
Mn | 2.52 ± 0.15 | 44.00 | 0.27 | 1.64 | 1.10 | 2.06 | −0.42 | −0.43 | 0.15 |
Ni | 0.45 ± 0.02 | 44.00 | 0.07 | 0.44 | 0.31 | 0.57 | −0.13 | −0.16 | 0.04 |
Pb | 0.12 ± 0.01 | 44.00 | 0.03 | 0.12 | 0.09 | 0.21 | 3.56 | 1.64 | 0.02 |
Zn | 1.62 ± 0.07 | 44.00 | 0.60 | 2.41 | 1.73 | 4.04 | 1.81 | 1.10 | 0.33 |
Pepper | |||||||||
As | 0.09 ± 0.01 | 44.00 | 0.03 | 0.08 | 0.05 | 0.16 | 0.53 | 0.90 | 0.02 |
Cd | 0.11 ± 0.01 | 44.00 | 0.02 | 0.06 | 0.05 | 0.10 | −0.90 | 0.54 | 0.01 |
Cu | 2.58 ± 0.15 | 44.00 | 0.59 | 2.82 | 1.72 | 3.44 | −1.67 | −0.14 | 0.33 |
Mn | 1.68 ± 0.08 | 44.00 | 0.31 | 1.63 | 1.24 | 2.30 | −0.41 | 0.57 | 0.17 |
Ni | 0.45 ± 0.02 | 44.00 | 0.06 | 0.47 | 0.36 | 0.53 | −1.64 | −0.13 | 0.03 |
Pb | 0.07 ± 0.01 | 44.00 | 0.02 | 0.10 | 0.08 | 0.14 | −1.54 | 0.26 | 0.01 |
Zn | 2.85 ± 0.12 | 44.00 | 0.45 | 2.71 | 2.36 | 4.11 | 3.74 | 1.79 | 0.25 |
Metal | The Global Pollution Index Nemerow (PIN) | The Pollution Degree of the Studied Area |
---|---|---|
As | 1.445 | Slightly polluted domain |
Cu | 6.046 | Seriously polluted domain |
Pb | 2.484 | Moderately polluted domain |
Mn | 1.876 | Slightly polluted domain |
Cd | 4.515 | Seriously polluted domain |
Ni | 2.077 | Moderately polluted domain |
Zn | 2.019 | Moderately polluted domain |
DIM (mg·kg−1·day−1) | ||||||||
---|---|---|---|---|---|---|---|---|
Vegetable | As | Cd | Cu | Mn | Ni | Pb | Zn | |
Carrot | Children | 0.00006 | 0.00009 | 0.00325 | 0.00100 | 0.00047 | 0.00013 | 0.00166 |
Adult | 0.00004 | 0.00006 | 0.00226 | 0.00070 | 0.00032 | 0.00009 | 0.00116 | |
Onion | Children | 0.00007 | 0.00009 | 0.00331 | 0.00093 | 0.00046 | 0.00015 | 0.00167 |
Adult | 0.00005 | 0.00006 | 0.00230 | 0.00064 | 0.00032 | 0.00010 | 0.00116 | |
Tomato | Children | 0.00006 | 0.00005 | 0.00166 | 0.00098 | 0.00027 | 0.00007 | 0.00152 |
Adult | 0.00004 | 0.00003 | 0.00115 | 0.00068 | 0.00019 | 0.00005 | 0.00106 | |
Pepper | Children | 0.00005 | 0.00004 | 0.00156 | 0.00101 | 0.00027 | 0.00006 | 0.00172 |
Adult | 0.00004 | 0.00003 | 0.00108 | 0.00070 | 0.00019 | 0.00005 | 0.00120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smical, I.; Muntean, A.; Micle, V.; Sur, I.M.; Moldovan, A.C. Study on Human Health Risks Associated with Consuming Vegetables Grown in Industrially Polluted Soil in Sasar Area, NW Romania, in the Context of Sustainable Development. Sustainability 2025, 17, 4072. https://doi.org/10.3390/su17094072
Smical I, Muntean A, Micle V, Sur IM, Moldovan AC. Study on Human Health Risks Associated with Consuming Vegetables Grown in Industrially Polluted Soil in Sasar Area, NW Romania, in the Context of Sustainable Development. Sustainability. 2025; 17(9):4072. https://doi.org/10.3390/su17094072
Chicago/Turabian StyleSmical, Irina, Adriana Muntean, Valer Micle, Ioana Monica Sur, and Aurelian Cosmin Moldovan. 2025. "Study on Human Health Risks Associated with Consuming Vegetables Grown in Industrially Polluted Soil in Sasar Area, NW Romania, in the Context of Sustainable Development" Sustainability 17, no. 9: 4072. https://doi.org/10.3390/su17094072
APA StyleSmical, I., Muntean, A., Micle, V., Sur, I. M., & Moldovan, A. C. (2025). Study on Human Health Risks Associated with Consuming Vegetables Grown in Industrially Polluted Soil in Sasar Area, NW Romania, in the Context of Sustainable Development. Sustainability, 17(9), 4072. https://doi.org/10.3390/su17094072