A Study on the Decoupling Effect and Driving Factors of Industrial Carbon Emissions in the Beibu Gulf City Cluster of China
Abstract
1. Introduction
2. Literature Review
3. Methodology and Data Sources
3.1. Overview of the Research Area
3.2. Research Methodology
3.2.1. Measurement of Industrial Carbon Emissions in the Beibu Gulf City Cluster
3.2.2. Tapio Decoupling Model
3.2.3. Measurement of the Cross-Decoupling Index
3.2.4. Decomposition of Industrial Carbon Emission Drivers
3.3. Data Sources and Processing
4. Results and Discussion
4.1. Trends in Industrial Carbon Emissions in the Beibu Gulf City Cluster
4.2. Analysis of the Decoupling of Industrial Carbon Emissions from Economic Development
4.2.1. Decoupling State Analysis
4.2.2. Vertical Perspective
4.2.3. Synergistic Analysis
4.3. Driver Analysis
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pata, U.K. The influence of coal and noncarbohydrate energy consumption on CO2 emissions: Revisiting the environmental Kuznets curve hypothesis for Turkey. Energy 2018, 160, 1115–1123. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Van Soest, H.; Riahi, K.; Clarke, L.; Krey, V.; Kriegler, E.; Rogelj, J.; Schaeffer, M.; Tavoni, M. Carbon budgets and energy transition pathways. Environ. Res. Lett. 2016, 11, 075002. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Imbalance of carbon embodied in South-South trade: Evidence from China-India trade. Sci. Total Environ. 2020, 707, 134473. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Sun, Z.; Ma, D. Can carbon emission trading improve corporate sustainability? An analysis of green path and value transformation effect of pilot policy. Clean Technol. Environ. Policy 2024, 27, 1505–1520. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Lu, S.Y.; Tan, X.Y.; Chen, K.L.; Zhao, S.Q.; Huang, R.H. A new model for evaluating sustainable utilization of coastline integrating economic output and ecological impact: A case study of coastal areas in Beibu Gulf, China. J. Clean. Prod. 2020, 271, 122423. [Google Scholar] [CrossRef]
- Shamsuzzaman, M.; Shamsuzzoha, A.; Maged, A.; Haridy, S.; Bashir, H.; Karim, A. Effective monitoring of carbon emissions from industrial sector using statistical process control. Appl. Energy 2021, 300, 117352. [Google Scholar] [CrossRef]
- An, Q.; Zhu, K.; Xiong, B.; Shen, Z. Carbon resource reallocation with emission quota in carbon emission trading system. J. Environ. Manag. 2023, 327, 116837. [Google Scholar] [CrossRef] [PubMed]
- Raviv, O.; Palatnik, R.R.; Castellini, M.; Gusperti, C.; Vergalli, S.; Sirota, J.; Shechter, M. Synergies of CGE and IAM modelling for climate change implications on WEFE nexus in the Mediterranean. Clim. Risk Manag. 2024, 44, 100608. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Su, B. Assessing drivers of economy-wide energy use and emissions: IDA versus SDA. Energy Policy 2017, 107, 585–599. [Google Scholar] [CrossRef]
- Zhou, P.; Li, H. Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors. Sustainability 2022, 14, 9123. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Liu, Y.; Jiang, R. Per-capita carbon emissions in 147 countries: The effect of economic, energy, social, and trade structural changes. Sustain. Prod. Consum. 2021, 27, 1149–1164. [Google Scholar] [CrossRef]
- Luo, H.; Li, L.; Lei, Y.; Wu, S.; Yan, D.; Fu, X.; Luo, X.; Wu, L. Decoupling analysis between economic growth and resources environment in Central Plains Urban Agglomeration. Sci. Total Environ. 2021, 752, 142284. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, H. Analysis of Influencing Factors and Prediction of the Peak Value of Industrial Carbon Emission in the Sichuan-Chongqing Region. Sustainability 2024, 16, 4532. [Google Scholar] [CrossRef]
- Han, X.; Gao, X.; Ahmad, F.; Chandio, A.A.; Khan, S. Carbon compensation and carbon neutrality: Regional variations based on net carbon transfer of trade in China. Geosci. Front. 2024, 15, 101809. [Google Scholar] [CrossRef]
- Chen, S.; Tan, Z.; Wang, J.; Zhang, L.; He, X.; Mu, S. Spatial and temporal evolution of synergizing the reduction of pollution and carbon emissions and examination on comprehensive pilot effects–evidence from the national eco-industrial demonstration parks in China. Environ. Impact Assess. Rev. 2023, 101, 107147. [Google Scholar] [CrossRef]
- Qin, J.; Cao, J. Carbon Emission Reduction Effects of Green Credit Policies: Empirical Evidence from China. Front. Environ. Sci. 2022, 10, 798072. [Google Scholar] [CrossRef]
- Wei, W.; Chen, D.; Zhang, X.; Ma, L.; Xie, B.; Zhou, J.; Wang, M.; Wei, X.; Yang, S.; Yan, P. Estimation of carbon emissions from different industrial categories integrated nighttime light and POI data—A case study in the Yellow River Basin. J. Environ. Manag. 2024, 370, 122418. [Google Scholar] [CrossRef]
- Fan, S.; Xu, G.; Chen, Z.; Xing, H.; Gao, Y.; Ai, Q. Carbon-embedded energy coordination strategy in park-level integrated energy system considering time-varying carbon emission measurement. J. Clean. Prod. 2024, 434, 139967. [Google Scholar] [CrossRef]
- Cai, C.; Fan, M.; Yao, J.; Zhou, L.; Wang, Y.; Liang, X.; Liu, Z.; Chen, S. Spatial-temporal characteristics of carbon emissions corrected by socio-economic driving factors under land use changes in Sichuan Province, southwestern China. Ecol. Inform. 2023, 77, 102164. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of carbon dioxide emission control on GNP growth: Interpretation of proposed scenarios. In IPCC Energy and Industry Subgroup, Response Strategies Working Group; The IPCC Secretariat: Geneva, Switzerland, 1990. [Google Scholar]
- Singpai, B.; Wu, D.D. An integrative approach for evaluating the environmental economic efficiency. Energy 2021, 215, 118940. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Hochman, G.; Timilsina, G.R. Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis. Energy Policy 2023, 172, 113315. [Google Scholar] [CrossRef]
Parameters | Raw Coal | Coke | Crude Oil | Petrol | Diesel | Diesel Fuel | Bunker Fuels | Electricity | Natural Gas |
---|---|---|---|---|---|---|---|---|---|
Standard coal conversion factor | 0.7143 | 0.9714 | 1.4286 | 1.4714 | 1.4717 | 1.4571 | 1.4286 | 0.1229 | 13.330 |
Carbon emission factor | 0.76 | 0.86 | 0.59 | 0.55 | 0.57 | 0.59 | 0.62 | 0.68 | 0.45 |
Sorting of Decoupled States | Economic Growth Rate | Carbon Emission Growth Rate | Decoupling Elasticity Coefficient | Decoupled State |
---|---|---|---|---|
1 | Strong decoupling | |||
2 | Weak decoupling | |||
3 | Expansive coupling | |||
4 | Expansive negative decoupling | |||
5 | Strong negative decoupling | |||
6 | Weak negative decoupling | |||
7 | Recessive coupling | |||
8 | Recessive decoupling |
, 0.4) | [0.4, 0.6) | [0.6, 0.8) | [0.8, 1.25) | [1.25, 2.5) | [2.5, 5) | ) | |
---|---|---|---|---|---|---|---|
Cooperative State | Uncoordinated | General Coordination | Coordinated | High Degree of Coordination | Coordinated | General Coordination | Uncoordinated |
City | Strong Decoupling | Weak Decoupling | Expansive Coupling | Strong Coupling | Strong Negative Decoupling |
---|---|---|---|---|---|
Zhanjiang | 10 | 5 | - | 3 | - |
Maoming | 10 | 4 | 2 | 1 | 1 |
Nanning | 9 | 8 | 1 | - | - |
Beihai | 8 | 7 | 1 | 1 | 1 |
Fangchenggang | 9 | 7 | 2 | - | - |
Qinzhou | 9 | 8 | - | 1 | - |
Yulin | 9 | 6 | 1 | 2 | - |
Chongzuo | 8 | 8 | 2 | - | - |
Haikou | 9 | 7 | 2 | - | - |
Year | Guangdong/Guangxi | Guangdong/Hainan | Guangxi/Hainan | |||
---|---|---|---|---|---|---|
2005 | 3.143 | 6.036 | 1.921 | general coordination | uncoordinated | coordinated |
2006 | −3.467 | −0.201 | 0.058 | uncoordinated | uncoordinated | uncoordinated |
2007 | −6.333 | 4.425 | −0.699 | uncoordinated | general coordination | uncoordinated |
2008 | 5.386 | −4.467 | −2.686 | uncoordinated | uncoordinated | uncoordinated |
2009 | −4.216 | 3.058 | −0.063 | uncoordinated | general coordination | uncoordinated |
2010 | 4.063 | 1.932 | 0.476 | general coordination | coordinated | general coordination |
2011 | −0.094 | −0.098 | 1.051 | uncoordinated | uncoordinated | high degree of coordination |
2012 | −0.966 | −1.018 | 1.054 | uncoordinated | uncoordinated | high degree of coordination |
2013 | −4.229 | −6.368 | 0.147 | uncoordinated | uncoordinated | uncoordinated |
2014 | 9.209 | 1.776 | 0.193 | uncoordinated | coordinated | uncoordinated |
2015 | 3.419 | 1.533 | 0.448 | general coordination | coordinated | general coordination |
2016 | 0.295 | 0.389 | 1.317 | uncoordinated | uncoordinated | high degree of coordination |
2017 | 0.038 | −0.005 | −0.140 | uncoordinated | uncoordinated | uncoordinated |
2018 | −9.163 | 1.082 | −0.118 | uncoordinated | high degree of coordination | uncoordinated |
2019 | −9.548 | −6.000 | 0.628 | uncoordinated | uncoordinated | coordinated |
2020 | 1.832 | 0.956 | 0.522 | coordinated | high degree of coordination | general coordination |
2021 | 1.501 | 0.954 | 0.636 | coordinated | high degree of coordination | coordinated |
2022 | 2.980 | 4.854 | 1.630 | general coordination | general coordination | coordinated |
Foundation Period | End Period | Total Effect | Energy Structure | Energy Intensity | Size of Economy | Size of Population |
---|---|---|---|---|---|---|
2005 | 2006 | 4.030 | −6.474 | 0.018 | 9.093 | 1.403 |
2006 | 2007 | 0.682 | −10.157 | −2.163 | 12.303 | 0.699 |
2007 | 2008 | −0.960 | −10.371 | −2.522 | 11.258 | 0.675 |
2008 | 2009 | 7.745 | 1.137 | −0.705 | 6.840 | 0.473 |
2009 | 2010 | 4.607 | −3.612 | −7.218 | 17.902 | −2.462 |
2010 | 2011 | 3.706 | −10.548 | −2.530 | 15.895 | 0.888 |
2011 | 2012 | −2.274 | −14.328 | 4.449 | 6.835 | 0.769 |
2012 | 2013 | 5.995 | −1.411 | −1.855 | 8.502 | 0.759 |
2013 | 2014 | 3.420 | −0.328 | −4.432 | 7.464 | 0.716 |
2014 | 2015 | −5.263 | −2.795 | −8.477 | 5.205 | 0.804 |
2015 | 2016 | 6.532 | −2.326 | 0.918 | 7.046 | 0.895 |
2016 | 2017 | 8.118 | −0.043 | −1.802 | 8.860 | 1.101 |
2017 | 2018 | −4.482 | −4.679 | −11.092 | 10.291 | 0.999 |
2018 | 2019 | 6.567 | 2.710 | −0.758 | 3.698 | 0.917 |
2019 | 2020 | 0.049 | −3.298 | 0.092 | 1.063 | 2.191 |
2020 | 2021 | −2.795 | −22.748 | 2.915 | 16.517 | 0.520 |
2021 | 2022 | −2.208 | −14.467 | 6.870 | 5.181 | 0.208 |
2022 | 2023 | −1.604 | −13.522 | 8.699 | 3.105 | 0.115 |
Cumulative Contribution | 31.865 | −117.259 | −19.599 | 157.053 | 11.671 |
Foundation Period | End Period | ||||
---|---|---|---|---|---|
2005 | 2006 | 0.044 | −0.731 | 0.826 | 0.141 |
2006 | 2007 | −0.058 | −0.662 | 0.891 | 0.027 |
2007 | 2008 | −0.005 | −1.172 | 0.869 | 0.020 |
2008 | 2009 | 0.176 | −0.045 | 0.964 | 0.071 |
2009 | 2010 | 0.017 | −0.343 | 0.928 | 0.053 |
2010 | 2011 | −0.082 | −0.373 | 0.893 | −0.002 |
2011 | 2012 | −0.215 | 1.142 | 0.982 | −0.010 |
2012 | 2013 | −0.194 | −0.266 | 0.912 | −0.002 |
2013 | 2014 | 0.599 | −2.231 | 1.135 | −0.005 |
2014 | 2015 | −0.380 | −1.201 | 0.904 | −0.010 |
2015 | 2016 | −0.962 | 7.977 | 1.021 | −0.006 |
2016 | 2017 | −0.160 | 0.749 | 0.979 | −0.003 |
2017 | 2018 | −0.096 | −0.813 | 0.944 | −0.001 |
2018 | 2019 | 0.590 | −1.445 | 1.062 | −0.003 |
2019 | 2020 | −3.115 | 12.086 | 0.923 | −0.008 |
2020 | 2021 | −0.245 | 1.0122 | 0.873 | 0.047 |
2021 | 2022 | −0.384 | 1.697 | 0.952 | 0.015 |
2022 | 2023 | −0.723 | 4.060 | 0.701 | 0.276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, P.; Liu, H.; Zhang, X. A Study on the Decoupling Effect and Driving Factors of Industrial Carbon Emissions in the Beibu Gulf City Cluster of China. Sustainability 2025, 17, 3993. https://doi.org/10.3390/su17093993
Ma P, Liu H, Zhang X. A Study on the Decoupling Effect and Driving Factors of Industrial Carbon Emissions in the Beibu Gulf City Cluster of China. Sustainability. 2025; 17(9):3993. https://doi.org/10.3390/su17093993
Chicago/Turabian StyleMa, Peiyu, Hewei Liu, and Xingwang Zhang. 2025. "A Study on the Decoupling Effect and Driving Factors of Industrial Carbon Emissions in the Beibu Gulf City Cluster of China" Sustainability 17, no. 9: 3993. https://doi.org/10.3390/su17093993
APA StyleMa, P., Liu, H., & Zhang, X. (2025). A Study on the Decoupling Effect and Driving Factors of Industrial Carbon Emissions in the Beibu Gulf City Cluster of China. Sustainability, 17(9), 3993. https://doi.org/10.3390/su17093993