An Analysis of Spatiotemporal Evolution and Influencing Factors of Urban Resilience: A Case Study of Liaoning Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Source
2.3. Construction of the Urban Resilience Evaluation Indicator System
2.4. Methodology
2.4.1. Combined Subjective–Objective Weighting Method
2.4.2. TOPSIS
2.4.3. Kernel Density Estimation Methods
2.4.4. Obstacle Degree Model
2.4.5. Optimal Parameter-Based Geographical Detector (OPGD) Model
3. Results
3.1. Spatiotemporal Evolution Characteristics of Urban Resilience
3.1.1. Temporal Evolution Characteristics
3.1.2. Spatial Evolution Characteristics
3.1.3. Temporal Analysis in Urban Resilience Subsystems
3.1.4. Spatial Distribution Patterns of Urban Resilience Subsystems
3.2. Influencing Factors Analysis
3.2.1. Obstacle Factors Recognition of Criterion Layer
3.2.2. Obstacle Factors Recognition on Indicator Layer
3.2.3. Driving Force Analysis Based on the OPGD
Identification of Driver Factors
Results of Interactive Detection
4. Discussion
5. Conclusions
- (1)
- From 2011 to 2022, the urban resilience of Liaoning Province exhibits a fluctuating upward trend, with a clear overall improvement in resilience levels. Shenyang has the highest level of urban resilience. Urban resilience across prefecture-level cities exhibits growth trends of varying magnitudes, with Chaoyang, Jinzhou, and Liaoyang demonstrating significant upward trends. The disparity in urban resilience levels among local municipalities has decreased.
- (2)
- From 2011 to 2015, the urban resilience spatial pattern of Liaoning Province exhibited higher resilience in the east and south and lower resilience in the west and north. From 2015 to 2022, the east–west direction showed an inverted “U”-shaped development trend, while the north–south direction maintained the higher in the northern region and lower in the southern region. By the end of the study period, a spatial heterogeneity pattern formed, with a core in the “Shenyang-Dalian-Jinzhou-Anshan-Yingkou” region, gradually decreasing towards the periphery.
- (3)
- Economic resilience is the primary subsystem hindering the resilience of cities in Liaoning Province. Secondly, the social resilience subsystem is the secondary obstacle to urban resilience improvement in the early stages of the study, while the institutional resilience subsystem becomes the secondary obstacle in the later stages. Lastly, infrastructural resilience ranks fourth in terms of obstacle degree, while ecological resilience ranks last. The cumulative obstacle degree of obstacle factors shows an increasing trend, indicating that urban resilience development in Liaoning Province is facing escalating obstacles.
- (4)
- The primary driving factors influencing the urban resilience in Liaoning Province include the year-end deposit balance of financial institutions, the number of participants with basic pension insurance, the number of hospital beds, the number of international Internet users, the number of Hong Kong-, Macau-, and Taiwan-funded enterprises, financial revenue, and the water supply penetration rate. The year-end deposit balance of financial institutions is a dominant driving factor of urban resilience, and its influence tends to increase. Interactions exist between the driving factors, and after the interaction of two factors, they exhibit either double-factor enhancement or nonlinear enhancement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chrysoulakis, N.; Ludlow, D.; Mitraka, Z.; Somarakis, G.; Khan, Z.; Lauwaet, D.; Hooyberghs, H.; Feliu, E.; Navarro, D.; Feigenwinter, C.; et al. Copernicus for urban resilience in Europe. Sci. Rep. 2023, 13, 16251. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Guo, N.; Zhu, X.; Wu, F. Assessing Urban Resilience from the Perspective of Scaling Law: Evidence from Chinese Cities. Land 2022, 11, 1803. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Kumari, S.; Song, Z. Research on the Spatial Spillover Effect of Transportation Infrastructure on Urban Resilience in Three Major Urban Agglomerations in China. Sustainability 2023, 15, 5543. [Google Scholar] [CrossRef]
- Lv, Y.; Sarker, M.N.I. Integrative approaches to urban resilience: Evaluating the efficacy of resilience strategies in mitigating climate change vulnerabilities. Heliyon 2024, 10, e28191. [Google Scholar] [CrossRef]
- Korhonen, J.; Snäkin, J.-P. Quantifying the relationship of resilience and eco-efficiency in complex adaptive energy systems. Ecol. Econ. 2015, 120, 83–92. [Google Scholar] [CrossRef]
- Crankshaw, O.; Borel-Saladin, J. Causes of urbanisation and counter-urbanisation in Zambia: Natural population increase or migration? Urban Stud. 2019, 56, 2005–2020. [Google Scholar] [CrossRef]
- Lowe, M.; Bell, S.; Briggs, J.; McMillan, E.; Morley, M.; Grenfell, M.; Sweeting, D.; Whitten, A.; Jordan, N. A research-based, practice-relevant urban resilience framework for local government. Local Environ. 2024, 29, 886–901. [Google Scholar] [CrossRef]
- Liu, Z.; Fang, C.; Liao, X.; Fan, R.; Sun, B.; Mu, X. Adaptation and adaptability: Deciphering urban resilience from the evolutionary perspective. Environ. Impact Assess. Rev. 2023, 103, 107266. [Google Scholar] [CrossRef]
- Bottero, M.; Datola, G.; De Angelis, E. A System Dynamics Model and Analytic Network Process: An Integrated Approach to Investigate Urban Resilience. Land 2020, 9, 242. [Google Scholar] [CrossRef]
- Shamsuddin, S. Resilience resistance: The challenges and implications of urban resilience implementation. Cities 2020, 103, 102763. [Google Scholar] [CrossRef]
- Wei, C. The Basic Meaning, Historical Evolution and Practical Path of New Quality Productivity. Theory Reform 2023, 6, 25–38. [Google Scholar]
- Spaans, M.; Waterhout, B. Building up resilience in cities worldwide—Rotterdam as participant in the 100 Resilient Cities Programme. Cities 2017, 61, 109–116. [Google Scholar] [CrossRef]
- Carpenter, S.; Walker, B.; Anderies, J.M.; Abel, N. From Metaphor to Measurement: Resilience of What to What? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Jabareen, Y. Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk. Cities 2013, 31, 220–229. [Google Scholar] [CrossRef]
- Buyukozkan, G.; Ilicak, O.; Feyzioglu, O. A review of urban resilience literature. Sustain. Cities Soc. 2022, 77, 103579. [Google Scholar] [CrossRef]
- Datola, G. Implementing urban resilience in urban planning: A comprehensive framework for urban resilience evaluation. Sustain. Cities Soc. 2023, 98, 104821. [Google Scholar] [CrossRef]
- Davidson, K.; Thi Minh Phuong, N.; Beilin, R.; Briggs, J. The emerging addition of resilience as a component of sustainability in urban policy. Cities 2019, 92, 1–9. [Google Scholar] [CrossRef]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Gonçalves, L. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Tong, P. Characteristics, dimensions and methods of current assessment for urban resilience to climate-related disasters: A systematic review of the literature. Int. J. Disaster Risk Reduct. 2021, 60, 102276. [Google Scholar] [CrossRef]
- Shamsipour, A.; Jahanshahi, S.; Mousavi, S.S.; Shoja, F.; Golenji, R.A.; Tayebi, S.; Alavi, S.A.; Sharifi, A. Assessing and mapping urban ecological resilience using the loss-gain approach: A case study of Tehran, Iran. Sustain. Cities Soc. 2024, 103, 105252. [Google Scholar] [CrossRef]
- Ye, Z.; Li, J.; Chen, J. The promotion mechanism of financial agglomeration and human capital on urban economic resilience: Based on the moderating effect of industrial structure. Int. Rev. Econ. Financ. 2025, 97, 103764. [Google Scholar] [CrossRef]
- Rathnayaka, B.; Robert, D.; Adikariwattage, V.; Siriwardana, C.; Meegahapola, L.; Setunge, S.; Amaratunga, D. A unified framework for evaluating the resilience of critical infrastructure: Delphi survey approach. Int. J. Disaster Risk Reduct. 2024, 110, 104598. [Google Scholar] [CrossRef]
- Mu, X.; Fang, C.; Yang, Z. Spatio-temporal evolution and dynamic simulation of the urban resilience of Beijing-Tianjin-Hebei urban agglomeration. J. Geogr. Sci. 2022, 32, 1766–1790. [Google Scholar] [CrossRef]
- Hudec, O.; Reggiani, A.; Siserova, M. Resilience capacity and vulnerability: A joint analysis with reference to Slovak urban districts. Cities 2018, 73, 24–35. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, R.; Wang, H. Assessing urban resilience to public health disaster using the rough analytic hierarchy process method: A regional study in China. J. Saf. Sci. Resil. 2022, 3, 93–104. [Google Scholar] [CrossRef]
- Rezvani, S.M.H.S.; de Almeida, N.M.; Falcao, M.J.; Duarte, M. Enhancing urban resilience evaluation systems through automated rational and consistent decision-making simulations. Sustain. Cities Soc. 2022, 78, 103612. [Google Scholar] [CrossRef]
- Huang, J.; Lu, H.; Jin, H.; Zhang, L. Urban resilience in China’s eight urban agglomerations: Evolution trends and driving factors. Environ. Sci. Pollut. Res. 2024, 31, 622–633. [Google Scholar] [CrossRef]
- Guo, N.; Wu, F.; Sun, D.; Shi, C.; Gao, X. Mechanisms of resilience in cities at different development phases: A system dynamics approach. Urban Clim. 2024, 53, 101793. [Google Scholar] [CrossRef]
- You, X.; Sun, Y.; Liu, J. Evolution and analysis of urban resilience and its influencing factors: A case study of Jiangsu Province, China. Nat. Hazards 2022, 113, 1751–1782. [Google Scholar] [CrossRef] [PubMed]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Change-Hum. Policy Dimens. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, J.; Zhang, L. The evaluation and obstacle analysis of urban resilience from the multidimensional perspective in Chinese cities. Sustain. Cities Soc. 2022, 86, 104160. [Google Scholar] [CrossRef]
- Mcphearson, T.; Haase, D.; Kabisch, N.; Gren, A. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 2016, 70, 566–573. [Google Scholar] [CrossRef]
- Wang, T.; Yao, C.; Wei, Q. Resilience Assessment and Influencing Factors of Chinese Megacities. Sustainability 2023, 15, 6770. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Yao, S. Evaluating resilience of prefecture cities in the Yangtze River delta region from a socio-ecological perspective. China Popul. Resour. Environ. 2017, 27, 151–158. [Google Scholar]
- Wang, X.; Gao, X. The Evolution of China’s Floating Population and Its Impact on Urbanization: A comparative Analysis based on Inter-and Intra-provincial Perspectives. Sci. Geogr. Sin. 2019, 39, 1866–1874. [Google Scholar]
- Zhang, Y.; Song, S.; Li, X.; Gao, S.; Raubal, M. Leveraging context-adjusted nighttime light data for socioeconomic explanations of global urban resilience. Sustain. Cities Soc. 2024, 114, 105739. [Google Scholar] [CrossRef]
- Jin, X.Y.; Guan, H.H.; Li, D.K.; Broadberry, S. The evolution of China’s Share in the Global Economy: 1000–2017 AD. Econ. Res. J. 2019, 7, 14–29. [Google Scholar]
- Zhu, J.; Sun, H. Research on spatial-temporal evolution and influencing factors of urban resilience of China’s three metropolitan agglomerations. Soft Sci. 2020, 34, 72–79. [Google Scholar]
- Ying, C.; Li, J.; Liu, Y.; Zhang, H.; Tian, P.; Gong, H. The spatiotemporal evolution and influencing factors of resilience of county-level cities in the East China Sea coastal zone based on “background-operation-efficiency”. Acta Geogr. Sin. 2024, 79, 462–483. [Google Scholar]
- Zhang, M.; Feng, X. Comprehensive evaluation on Chinese cities’ resilience. Urban Probl. 2018, 10, 27–36. [Google Scholar]
- Javadpoor, M.; Sharifi, A.; Roosta, M. An adaptation of the Baseline Resilience Indicators for Communities (BRIC) for assessing resilience of Iranian provinces. Int. J. Disaster Risk Reduct. 2021, 66, 102609. [Google Scholar] [CrossRef]
- Qin, W.; Lin, A.; Fang, J.; Wang, L.; Li, M. Spatial and temporal evolution of community resilience to natural hazards in the coastal areas of China. Nat. Hazards 2017, 89, 331–349. [Google Scholar] [CrossRef]
- Buck, K.D.; Dunn, R.J.; Bennett, M.K.; Bousquin, J. Influence of cross-scale measures on neighborhood resilience. Nat. Hazards 2023, 119, 1011–1040. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Xu, X.; Luo, J. Integrated natural disasters urban resilience evaluation: The case of China. Nat. Hazards 2021, 107, 2105–2122. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, L. Research on the overall risk prevention and control of modern cities from the perspective of resilience. Chin. Public Adm. 2020, 2, 123–128. [Google Scholar]
- Liang, Y.; Cheng, Y.; Ren, F.; Du, Q. Urban resilience assessment framework and spatiotemporal dynamics in Hubei, China. Sci. Rep. 2024, 14, 31391. [Google Scholar] [CrossRef]
- Shi, W.; Li, B. Resilience spatial network structure of the three major urban agglomerations in the Yellow River Basin. Arid Land Geogr. 2024, 47, 1767–1780. [Google Scholar]
- Huang, M.; Zhang, W. Comparison of Resilience Levels and Development Strategies of Four Types of Resource-Based Cities in China. Econ. Geogr. 2023, 43, 34–43. [Google Scholar]
- Zhang, Z.; Bai, Y. Spatiotemporal Evolutionary Features and Disorder Factor Diagnosis of Urban Resilience. J. Urban Plan. Dev. 2024, 150, 05024031. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. Giscience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Huang, Q.; Cui, Z. Measurement, Differences Decomposition, Dynamic Evolution and Obstacle Factor Identification of Urban Resilience Development Level in China. Stat. Decis. 2023, 39, 106–111. [Google Scholar]
- Gao, Y.P.; Chen, W.J. Study on the coupling relationship between urban resilience and urbanization quality-A case study of 14 cities of Liaoning Province in China. PLoS ONE 2021, 16, e0244024. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Z.; Du, M. Differences and Drivers of Urban Resilience in Eight Major Urban Agglomerations: Evidence from China. Land 2022, 11, 1470. [Google Scholar] [CrossRef]
- Xun, X.; Yuan, Y. Research on the urban resilience evaluation with hybrid multiple attribute TOPSIS method: An example in China. Nat. Hazards 2020, 103, 557–577. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, C.; Hu, Q.; Kong, S. Towering sustainability: Unraveling the complex effects of skyscrapers on urban resilience. Environ. Impact Assess. Rev. 2024, 108, 107614. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Indicator Layer | Attribute | Weight | ||
---|---|---|---|---|---|---|
AHP | EWM | Combination Weighting | ||||
Urban | Ecological resilience | X1 NDVI | + | 0.009 | 0.014 | 0.012 |
resilience | X2 Greening coverage rate of built-up area (%) | + | 0.003 | 0.006 | 0.004 | |
X3 Park green space area per capita (m2/person) | + | 0.024 | 0.017 | 0.022 | ||
X4 Industrial sulfur dioxide emission (ton) | − | 0.005 | 0.002 | 0.003 | ||
X5 PM2.5 concentration (µg/m3) | − | 0.005 | 0.020 | 0.011 | ||
Economic resilience | X6 Year-end deposit balance of financial institutions (CNY ten thousand) | + | 0.104 | 0.115 | 0.122 | |
X7 Proportion of tertiary industry in GDP (%) | + | 0.208 | 0.015 | 0.062 | ||
X8 Nighttime light index | + | 0.023 | 0.057 | 0.040 | ||
X9 GDP per capita (CNY) | + | 0.046 | 0.047 | 0.052 | ||
X10 Financial revenue (CNY ten thousand) | + | 0.076 | 0.090 | 0.093 | ||
Social resilience | X11 Population density (person/km2) | − | 0.012 | 0.008 | 0.011 | |
X12 Proportion of science expenditure in GDP (%) | + | 0.038 | 0.073 | 0.059 | ||
X13 Proportion of education expenditure in GDP (%) | + | 0.023 | 0.020 | 0.024 | ||
X14 Number of hospital beds (sheet) | + | 0.104 | 0.091 | 0.109 | ||
X15 Average wage of on-the-job employees (CNY) | + | 0.052 | 0.031 | 0.045 | ||
Infrastructure resilience | X16 Number of international Internet users (ten thousand users) | + | 0.052 | 0.061 | 0.063 | |
X17 Water supply penetration rate (%) | + | 0.026 | 0.003 | 0.010 | ||
X18 Gas supply penetration rate (%) | + | 0.006 | 0.002 | 0.004 | ||
X19 Road area per capita (m2/person) | + | 0.012 | 0.019 | 0.016 | ||
X20 Density of drainage pipe of built-up area (km/km2) | + | 0.019 | 0.016 | 0.020 | ||
Institutional resilience | X21 Number of participants with basic pension insurance (ten thousand people) | + | 0.083 | 0.065 | 0.082 | |
X22 Number of participants with basic medical insurance (ten thousand people) | + | 0.048 | 0.132 | 0.089 | ||
X23 Number of Hong Kong-, Macau-, and Taiwan-funded enterprises (number) | + | 0.018 | 0.096 | 0.047 |
City | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shenyang | 0.476 | 0.527 | 0.550 | 0.575 | 0.563 | 0.577 | 0.602 | 0.721 | 0.645 | 0.650 | 0.669 | 0.677 | 0.603 |
Dalian | 0.453 | 0.490 | 0.524 | 0.535 | 0.509 | 0.522 | 0.530 | 0.530 | 0.555 | 0.555 | 0.616 | 0.633 | 0.540 |
Anshan | 0.188 | 0.198 | 0.207 | 0.219 | 0.215 | 0.238 | 0.218 | 0.241 | 0.245 | 0.255 | 0.268 | 0.283 | 0.231 |
Fushun | 0.123 | 0.140 | 0.146 | 0.173 | 0.166 | 0.157 | 0.161 | 0.164 | 0.173 | 0.189 | 0.190 | 0.195 | 0.165 |
Benxi | 0.130 | 0.140 | 0.163 | 0.162 | 0.161 | 0.167 | 0.176 | 0.176 | 0.169 | 0.181 | 0.190 | 0.197 | 0.168 |
Dandong | 0.156 | 0.162 | 0.151 | 0.161 | 0.156 | 0.183 | 0.227 | 0.190 | 0.209 | 0.205 | 0.220 | 0.230 | 0.188 |
Jinzhou | 0.124 | 0.133 | 0.141 | 0.151 | 0.159 | 0.183 | 0.213 | 0.210 | 0.260 | 0.236 | 0.241 | 0.252 | 0.192 |
Yingkou | 0.153 | 0.170 | 0.176 | 0.172 | 0.179 | 0.195 | 0.235 | 0.215 | 0.219 | 0.230 | 0.236 | 0.254 | 0.254 |
Fuxin | 0.110 | 0.122 | 0.119 | 0.112 | 0.131 | 0.176 | 0.209 | 0.175 | 0.183 | 0.187 | 0.191 | 0.200 | 0.160 |
Liaoyang | 0.119 | 0.132 | 0.140 | 0.156 | 0.161 | 0.186 | 0.180 | 0.192 | 0.196 | 0.198 | 0.213 | 0.228 | 0.175 |
Panjin | 0.142 | 0.161 | 0.178 | 0.181 | 0.183 | 0.177 | 0.208 | 0.216 | 0.224 | 0.222 | 0.235 | 0.244 | 0.198 |
Tieling | 0.135 | 0.132 | 0.108 | 0.114 | 0.128 | 0.143 | 0.220 | 0.156 | 0.172 | 0.182 | 0.180 | 0.194 | 0.156 |
Chaoyang | 0.100 | 0.130 | 0.131 | 0.141 | 0.164 | 0.183 | 0.221 | 0.193 | 0.193 | 0.201 | 0.210 | 0.226 | 0.174 |
Huludao | 0.134 | 0.139 | 0.141 | 0.150 | 0.153 | 0.171 | 0.168 | 0.157 | 0.176 | 0.188 | 0.200 | 0.213 | 0.166 |
Average | 0.182 | 0.198 | 0.205 | 0.215 | 0.216 | 0.233 | 0.255 | 0.254 | 0.259 | 0.263 | 0.276 | 0.288 | 0.237 |
Year | Ranking of Obstacle Factors and Obstacle Degree/% | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
2011 | X6 (13.86) | X14 (11.86) | X22 (10.82) | X10 (8.90) | X21 (8.40) |
2015 | X6 (13.27) | X22 (11.44) | X14 (11.35) | X10 (9.81) | X21 (8.34) |
2019 | X6 (12.95) | X22 (12.44) | X14 (11.77) | X10 (9.72) | X21 (8.44) |
2022 | X22 (13.72) | X6 (12.58) | X14 (12.07) | X10 (10.51) | X12 (8.59) |
Factors | 2011 | 2015 | 2019 | 2022 | Entire | |||||
---|---|---|---|---|---|---|---|---|---|---|
Methods | Number | Methods | Number | Methods | Number | Methods | Number | Methods | Number | |
X1 | Equal | 7 | Quantile | 7 | Equal | 6 | Quantile | 7 | Natural | 7 |
X2 | Quantile | 4 | Quantile | 7 | Quantile | 7 | SD | 7 | SD | 7 |
X3 | SD | 6 | SD | 6 | Equal | 5 | Natural | 7 | Natural | 6 |
X4 | Equal | 6 | Quantile | 4 | Natural | 7 | Equal | 6 | Quantile | 7 |
X5 | Natural | 7 | Natural | 7 | Quantile | 7 | Geometric | 6 | Equal | 7 |
X6 | Natural | 7 | Natural | 7 | Natural | 7 | Natural | 7 | Natural | 6 |
X7 | Geometric | 7 | Quantile | 7 | Equal | 7 | SD | 6 | Natural | 7 |
X8 | Equal | 6 | Natural | 7 | Geometric | 6 | Geometric | 7 | SD | 7 |
X9 | Natural | 7 | Quantile | 7 | Natural | 7 | Equal | 7 | Geometric | 7 |
X10 | Quantile | 7 | Natural | 6 | Natural | 7 | Natural | 7 | Natural | 7 |
X11 | Quantile | 7 | Quantile | 6 | Quantile | 7 | SD | 5 | Natural | 7 |
X12 | Natural | 7 | Quantile | 6 | Natural | 7 | Equal | 7 | SD | 7 |
X13 | Quantile | 6 | SD | 5 | Quantile | 7 | Quantile | 7 | Quantile | 7 |
X14 | Natural | 7 | Natural | 5 | Natural | 6 | Natural | 7 | Natural | 6 |
X15 | Quantile | 7 | Quantile | 6 | Natural | 7 | Quantile | 6 | Natural | 7 |
X16 | Quantile | 7 | Natural | 7 | Natural | 7 | Quantile | 7 | SD | 7 |
X17 | Geometric | 6 | Quantile | 6 | Geometric | 4 | Equal | 2 | Geometric | 6 |
X18 | Quantile | 4 | Quantile | 7 | Quantile | 5 | Geometric | 4 | SD | 7 |
X19 | Quantile | 6 | Quantile | 7 | Quantile | 5 | Geometric | 6 | Quantile | 6 |
X20 | Natural | 7 | Quantile | 7 | Quantile | 7 | Quantile | 7 | Equal | 6 |
X21 | Quantile | 6 | Natural | 7 | Natural | 5 | Quantile | 7 | Natural | 7 |
X22 | Quantile | 7 | Natural | 7 | Quantile | 7 | Natural | 7 | SD | 5 |
X23 | Quantile | 6 | Geometric | 4 | Natural | 4 | Natural | 7 | Natural | 7 |
Factors | 2011 | 2015 | 2019 | 2022 | Entire | |
---|---|---|---|---|---|---|
q | q | q | q | q | Ranking | |
X1 | 0.687 *** | 0.360 *** | 0.605 *** | 0.983 *** | 0.183 *** | 16 |
X2 | 0.585 *** | 0.453 *** | 0.471 *** | 0.654 *** | 0.191 *** | 15 |
X3 | 0.993 *** | 0.673 *** | 0.452 ** | 0.694 *** | 0.139 *** | 20 |
X4 | 0.807 *** | 0.708 *** | 0.728 *** | 0.987 *** | 0.091 ** | 22 |
X5 | 0.600 *** | 0.982 *** | 0.474 *** | 0.596 *** | 0.068 | 23 |
X6 | 0.990 *** | 0.995 *** | 0.990 *** | 0.996 *** | 0.968 *** | 1 |
X7 | 0.808 *** | 0.990 *** | 0.982 *** | 0.699 *** | 0.340 *** | 11 |
X8 | 0.588 *** | 0.694 *** | 0.645 *** | 0.675 *** | 0.300 *** | 13 |
X9 | 0.776 *** | 0.987 *** | 0.984 *** | 0.987 *** | 0.527 *** | 9 |
X10 | 0.990 *** | 0.995 *** | 0.988 *** | 0.996 *** | 0.917 *** | 6 |
X11 | 0.365 *** | 0.435 *** | 0.967 *** | 0.657 *** | 0.304 *** | 12 |
X12 | 0.710 *** | 0.487 *** | 0.502 ** | 0.709 *** | 0.241 *** | 14 |
X13 | 0.977 *** | 0.606 *** | 0.407 ** | 0.400 *** | 0.167 *** | 18 |
X14 | 0.986 *** | 0.988 *** | 0.985 *** | 0.988 *** | 0.945 *** | 3 |
X15 | 0.985 *** | 0.978 *** | 0.970 *** | 0.981 *** | 0.467 *** | 10 |
X16 | 0.990 *** | 0.995 *** | 0.987 *** | 0.990 *** | 0.945 *** | 4 |
X17 | 0.994 *** | 0.145 * | 0.999 *** | 0.027 | 0.904 *** | 7 |
X18 | 0.620 *** | 0.260 *** | 0.313 ** | 0.549 *** | 0.142 *** | 19 |
X19 | 0.387 *** | 0.446 *** | 0.613 *** | 0.422 *** | 0.182 *** | 17 |
X20 | 0.550 *** | 0.356 *** | 0.473 *** | 0.419 *** | 0.128 *** | 21 |
X21 | 0.982 *** | 0.997 *** | 0.972 *** | 0.992 *** | 0.949 *** | 2 |
X22 | 0.980 *** | 0.989 *** | 0.977 *** | 0.988 *** | 0.872 *** | 8 |
X23 | 0.993 *** | 0.981 *** | 0.987 *** | 0.993 *** | 0.933 *** | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Liu, J.; Zhu, Y.; Li, Y. An Analysis of Spatiotemporal Evolution and Influencing Factors of Urban Resilience: A Case Study of Liaoning Province, China. Sustainability 2025, 17, 3565. https://doi.org/10.3390/su17083565
Wu C, Liu J, Zhu Y, Li Y. An Analysis of Spatiotemporal Evolution and Influencing Factors of Urban Resilience: A Case Study of Liaoning Province, China. Sustainability. 2025; 17(8):3565. https://doi.org/10.3390/su17083565
Chicago/Turabian StyleWu, Chunyan, Jiafu Liu, Yue Zhu, and Yang Li. 2025. "An Analysis of Spatiotemporal Evolution and Influencing Factors of Urban Resilience: A Case Study of Liaoning Province, China" Sustainability 17, no. 8: 3565. https://doi.org/10.3390/su17083565
APA StyleWu, C., Liu, J., Zhu, Y., & Li, Y. (2025). An Analysis of Spatiotemporal Evolution and Influencing Factors of Urban Resilience: A Case Study of Liaoning Province, China. Sustainability, 17(8), 3565. https://doi.org/10.3390/su17083565