Enhancing Wheat Productivity and Reducing Lead Uptake Through Biochar, Bentonite, and Rock Phosphate Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Material Collection
2.2. Spiking of Lead and Application of Amendments
2.3. Wheat Seedling Establishment and Growth Conditions
2.4. Soil and Biochar Characterization
2.5. Plant Morphological Characteristics and Root Scanning
2.6. Measurement of Plant Physiological and Gas-Exchange Characteristics
2.7. Estimation of Oxidative Stress Indicator
2.8. Estimation of Antioxidant Enzymatic Activities
2.9. Measurement of Plant Lead Contents
2.10. Statistical Analysis
3. Results
3.1. Growth, Biomass Production, and Leaf and Root Morphology of Wheat Plants
3.2. Physiological and Gas-Exchange Activities of the Wheat Plant
3.3. Oxidative Stress Indicators for the Wheat Plant
3.4. Antioxidant Enzymatic Activities of Wheat Plant
3.5. Lead Concentration in Root and Shoot in Wheat, and Soil DTPA Extractable Pb
3.6. Principal Component Analysis and Pearson Correlation Analysis of Soil and Wheat Plant
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angon, P.B.; Islam, M.S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef] [PubMed]
- Malik, Z.; Afzal, S.; Dawood; Abbasi, G.H.; Khan, M.I.; Kamran, M.; Zhran, M.; Hayat, M.T.; Aslam, M.N.; Rafay, M. Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. Environ. Geochem. Health 2022, 44, 1451–1469. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Alghanem, S.M.; Alsudays, I.M.; Malik, Z.; Abbasi, G.H.; Ali, A.; Noreen, S.; Ali, M.; Irfan, M.; Rizwan, M. Effect of biochar, zeolite and bentonite on physiological and biochemical parameters and lead and zinc uptake by maize (Zea mays L.) plants grown in contaminated soil. J. Hazard. Mater. 2024, 469, e33927. [Google Scholar] [CrossRef]
- Ghouri, F.; Shahid, M.J.; Zhong, M.; Zia, M.A.; Alomrani, S.O.; Liu, J.; Sun, L.; Ali, S.; Liu, X.; Shahid, M.Q. Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO2 nanoparticles on gene expression, cytological and physiological changes. Sci. Total Environ. 2024, 911, e168709. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Y.; Yang, W.; Liu, J.; Wang, Z. Community metagenomics reveals the processes of nutrient cycling regulated by microbial functions in soils with P fertilizer input. Plant Soil. 2024, 499, 139–154. [Google Scholar] [CrossRef]
- Aslam, M.; Aslam, A.; Sheraz, M.; Ali, B.; Ulhassan, Z.; Najeeb, U.; Zhou, W.; Gill, R.A. Lead toxicity in cereals: Mechanistic insight into toxicity, mode of action, and management. Front. Plant Sci. 2021, 11, 587785. [Google Scholar] [CrossRef] [PubMed]
- Noreen, S.; Malik, Z.; Luqman, M.; Fatima, I.; Tahir, U.A.; Dar, M.; Rizwan, M. Effect of bacillus strain and Fe-modified biochar on lead (Pb) bioaccumulation and oxidative stress in wheat (Triticum aestivum L.) grown in Pb contaminated soil. S. Afr. J. Bot. 2024, 172, 720–735. [Google Scholar] [CrossRef]
- FAO/WHO. Food additives and contaminants. In Joint Codex Alimentarius Commission, FAO/WHO Food Standards Program; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2001; Volume 34, pp. 745–750. [Google Scholar]
- FAO. Maximum Limits for Dangerous Substances in Soil and Groundwater. 2004. Available online: https://faolex.fao.org/docs/pdf/est97999E.pdf (accessed on 9 March 2025).
- Rizwan, M.; Ali, S.; Rehman MZ, U.; Javed, M.R.; Bashir, A. Lead Toxicity in Cereals and Its Management Strategies: A Critical Review. Water Air Soil Pollut. 2018, 229, e211. [Google Scholar] [CrossRef]
- Rehman, M.Z.U.; Rizwan, M.; Ali, S.; Sabir, M.; Sohail, M.I. Contrasting Effects of Organic and Inorganic Amendments on Reducing Lead Toxicity in Wheat. Bull. Environ. Contam. Toxicol. 2017, 99, 642–647. [Google Scholar] [CrossRef]
- Rizwan, M.; Murtaza, G.; Ahmed, Z.; Lin, Q.; Chen, X.; Khan, I.; Abdelrahman, H.; Antoniadis, V.; Ali, E.F.; Lee, S.S.; et al. Synergistic effect of biochar and intercropping on lead phyto-availability in the rhizosphere of a vegetable-grass system. Sci. Total Environ. 2024, 954, e176531. [Google Scholar] [CrossRef]
- Zong, Y.; Chen, H.; Malik, Z.; Xiao, Q.; Lu, S. Comparative study on the potential risk of contaminated-rice straw, its derived biochar and phosphorus modified biochar as an amendment and their implication for environment. Environ. Pollut. 2022, 293, 118515. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Valipour, M.; Ali, B.; Zulfiqar, U.; Aziz, U.; Zaheer, M.S.; Sarfraz, A.; Javed, M.A.; Afridi, M.S.; Ercisli, S.; et al. Maximizing wheat yield through soil quality enhancement: A combined approach with Azospirillum brasilense and bentonite. Plant Stress. 2024, 11, 100321. [Google Scholar] [CrossRef]
- Klik, B.; Holatko, J.; Jaskulska, I.; Gusiatin, M.Z.; Hammerschmiedt, T.; Brtnicky, M.; Liniauskienė, E.; Baltazar, T.; Jaskulski, D.; Kintl, A.; et al. Bentonite as a functional material enhancing phytostabilization of post-industrial contaminated soils with heavy metals. Materials 2022, 15, 8331. [Google Scholar] [CrossRef] [PubMed]
- Sande, T.J.; Tindwa, H.J.; Alovisi, A.M.; Shitindi, M.J.; Semoka, J.M. Enhancing sustainable crop production through integrated nutrient management: A focus on vermicompost, bio-enriched rock phosphate, and inorganic fertilisers—A systematic review. Front. Agron. 2024, 6, e1422876. [Google Scholar] [CrossRef]
- Shahzad, A.; Aslam, U.; Ferdous, S.; Qin, M.; Siddique, A.; Billah, M.; Naeem, M.; Mahmood, Z.; Kayani, S. Combined effect of endophytic Bacillus mycoides and rock phosphate on the amelioration of heavy metal stress in wheat plants. BMC Plant Biol. 2024, 24, e125. [Google Scholar] [CrossRef]
- Yasmeen, T.; Arif, M.S.; Shahzad, S.M.; Riaz, M.; Tufail, M.A.; Mubarik, M.S.; Ahmad, A.; Ali, S.; Albasher, G.; Shakoor, A. Abandoned agriculture soil can be recultivated by promoting biological phosphorus fertility when amended with nano-rock phosphate and suitable bacterial inoculant. Ecotoxicol. Environ. Saf. 2022, 234, e113385. [Google Scholar] [CrossRef]
- Kumkum, P.; Kumar, S. A review on biochar as an adsorbent for Pb (II) removal from water. Biomass 2024, 4, 243–272. [Google Scholar] [CrossRef]
- Tu, C.; Zheng, C.R.; Chen, H.M. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil. Chemosphere 2000, 41, 133–138. [Google Scholar] [CrossRef]
- World Weather. 2024. Available online: https://world-weather.info/forecast/pakistan/bahawalpur/april-2024/ (accessed on 8 March 2025).
- Tutiempo. 2023. Available online: https://en.tutiempo.net/climate/12-2023/ws-417000.html (accessed on 8 March 2025).
- Zhang, G.L.; Gong, Z.T. Soil Survey Laboratory Methods; Science Press: Beijing, China, 2012; Volume 38, pp. 47–49. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. J. Agron. 1962, 5, 464–465. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 539–579. [Google Scholar] [CrossRef]
- Blake, G.R. Bulk density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; American Society of Agronomy: Madison, WI, USA, 1965; Volume 9, pp. 374–390. [Google Scholar] [CrossRef]
- Regional Salinity Laboratory (US). Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture: Washington, DC, USA, 1954; p. 160. [Google Scholar]
- Rhoades, J.D. Cation exchange capacity. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 149–157. [Google Scholar] [CrossRef]
- Page, D.L.; Dupont, W.D.; Rogers, L.W.; Landenberger, M. Intraductal carcinoma of the breast: Follow-up after biopsy only. Cancer 1982, 49, 751–758. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 595–624. [Google Scholar] [CrossRef]
- Watanabe, F.S.; Olsen, S.R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 1965, 6, 677–678. [Google Scholar] [CrossRef]
- Lazcano-Ferrat, I.; Lovatt, C.J. Salt stress inhibits arginine biosynthesis in tepary bean (Phaseolusa cutifolius). Hort. Sci. 1990, 25, 1091. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 1, 1. [Google Scholar] [CrossRef] [PubMed Central]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 3, 307–313. [Google Scholar] [CrossRef]
- Ali, S.; Gill, R.A.; Ulhassan, Z.; Najeeb, U.; Kanwar, M.K.; Abid, M.; Mwamba, T.M.; Huang, Q.; Zhou, W. Insights on the responses of Brassica napus cultivars against the cobalt-stress as revealed by carbon assimilation, anatomical changes and secondary metabolites. Environ. Exp. Bot. 2018, 156, 183–196. [Google Scholar] [CrossRef]
- Ye, T.; Shi, H.; Wang, Y.; Chan, Z. Contrasting changes caused by drought and submergence stresses in bermudagrass (Cynodon dactylon). Front. Plant Sci. 2015, 6, 951. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A.J. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R.P. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal. Biochem. 1997, 253, 162–168. [Google Scholar] [CrossRef]
- Zhang, X.Z. The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In Research Methodology of Crop Physiology; Agriculture Press: Beijing, China, 1992; pp. 208–211. [Google Scholar]
- Aebi, H. [13] Catalase in vitro: In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Wolf, B. A Comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil. Sci. Plant. Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Chen, F.; Gong, Z.; Kelly, B.C. Bioavailability and bioconcentration potential of perfluoroalkyl-phosphinic and-phosphonic acids in zebrafish (Danio rerio): Comparison to perfluorocarboxylates and perfluorosulfonates. Sci. Total Environ. 2016, 568, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics. In A Biometrical Approach, 3rd ed.; McGraw Hill Book Co.: New York, NY, USA, 2007. [Google Scholar]
- Rehman, M.; Liu, L.; Bashir, S.; Saleem, M.H.; Chen, C.; Peng, D.; Siddique, K.H. Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiol. Biochem. 2019, 138, 121–129. [Google Scholar] [CrossRef]
- Cong, M.; Hu, Y.; Sun, X.; Yan, H.; Yu, G.; Tang, G.; Chen, S.; Xu, W.; Jia, H. Long-term effects of biochar application on the growth and physiological characteristics of maize. Front. Plant Sci. 2023, 14, e1172425. [Google Scholar] [CrossRef]
- Wu, J.; Fu, X.; Zhao, L.; Lv, J.; Lv, S.; Shang, J.; Lv, J.; Du, S.; Guo, H.; Ma, F. Biochar as a partner of plants and beneficial microorganisms to assist in-situ bioremediation of heavy metal contaminated soil. Sci. Total Environ. 2024, 923, e171442. [Google Scholar] [CrossRef]
- Yang, F.; Chen, Y.; Huang, Y.; Cao, X.; Zhao, L.; Qiu, H.; Xu, X. New insights into the underlying influence of bentonite on Pb immobilization by undissolvable and dissolvable fractions of biochar. Sci. Total Environ. 2021, 775, e145824. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, Q.; Chen, Y.; Lu, H. Effects of biochar on plant growth and hydro-chemical properties of recycled concrete aggregate. Sci. Total Environ. 2023, 882, e163557. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, H.; Rengel, Z.; Du, Z.; Hu, N.; Wang, Y.; Zhang, A. Biochar application promotes crops yield through regulating root development and the community structure of root endophytic fungi in wheat-maize rotation. Soil. Till. Res. 2023, 234, e105827. [Google Scholar] [CrossRef]
- Kamran, M.; Malik, Z.; Parveen, A.; Zong, Y.; Abbasi, G.H.; Rafiq, M.T.; Shaaban, M.; Mustafa, A.; Bashir, S.; Rafay, M.; et al. Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil. J. Environ. Manag. 2019, 250, e109500. [Google Scholar] [CrossRef]
- Zong, Y.; Xiao, Q.; Malik, Z.; Su, Y.; Wang, Y.; Lu, S. Crop straw-derived biochar alleviated cadmium and copper phytotoxicity by reducing bioavailability and accumulation in a field experiment of rice-rape-corn rotation system. Chemosphere 2021, 280, e130830. [Google Scholar] [CrossRef]
- Rassaei, F. The effect of sugarcane bagasse biochar on maize growth factors in lead and cadmium-polluted soils. Commun. Soil Sci. Plant Anal. 2023, 54, 1426–1446. [Google Scholar] [CrossRef]
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Mahmood, A.; Zia-ur-Rehman, M.; Ibrahim, M.; Arshad, M.; Qayyum, M.F. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol. Environ. Saf. 2018, 148, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Peiris, C.; Alahakoon, Y.A.; Arachchi, U.M.; Mlsna, T.E.; Gunatilake, S.R.; Zhang, X. Phosphorus-enriched biochar for the remediation of heavy metal contaminated soil. J. Agri. Food Res. 2023, 12, e100546. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Sci. Rep. 2020, 1, e18282. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Li, Y.; Sun, H.; Liu, R.; Han, Y.; Bi, F.; Fan, H.; Zhang, G.; Zhang, Y.; Wang, Y.; et al. Ball-milled sepiolite/phosphate rock for simultaneous remediation of cadmium-contaminated farmland and alleviation of phosphorus deficiency symptoms in pepper. J. Chem. Eng. 2024, 488, e150925. [Google Scholar] [CrossRef]
- Tanzeem-ul-Haq, H.S.; Rasool, B.; Ehtisham-ul-Haque, S.; Saif, S.; Zafar, S.; Younis, T.; Akhtar, I.; Jafri, L.; Iqbal, N.; Masood, N.; et al. Chitosan with bentonite and biochar in Ni-affected soil reduces grain Ni concentrations, improves soil enzymes and grain quality in lentil. Minerals 2020, 1, 11. [Google Scholar] [CrossRef]
- Lahori, A.H.; Zhang, Z.; Shaheen, S.M.; Rinklebe, J.; Guo, Z.; Li, R.; Mahar, A.; Wang, Z.; Ren, C.; Mi, S.; et al. Mono-and co-applications of Ca-bentonite with zeolite, Ca-hydroxide, and tobacco biochar affect Phyto availability and uptake of copper and lead in a gold mine-polluted soil. J. Hazard. Mater. 2019, 374, 401–411. [Google Scholar] [CrossRef]
- Cao, X.; Meng, Z.; Song, E.; Sun, X.; Hu, X.; Li, W.; Liu, Z.; Gao, S.; Song, B. Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water. Chemosphere 2022, 299, e134414. [Google Scholar] [CrossRef]
- Kaewsichan, L.; Techato, K.; Qaisrani, Z.N.; Chowdhury, M.S.; Yilmaz, M. Elimination of selected heavy metals from aqueous solutions using biochar and bentonite composite monolith in a fixed-bed operation. J. Environ. Chem. Eng. 2022, 10, e106993. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Shen, F.; Zhang, Z. Effect of calcium bentonite on Zn and Cu mobility and their accumulation in vegetable growth in soil amended with compost during consecutive planting. Environ. Sci. Poll. Res. 2017, 24, 15645–15654. [Google Scholar] [CrossRef]
- Hussain, T.; Ahmed, S.R.; Lahori, A.H.; Mierzwa-Hersztek, M.; Vambol, V.; Khan, A.A.; Rafique, L.; Wasia, S.; Shahid, M.F.; Zengqiang, Z. In-situ stabilization of potentially toxic elements in two industrial polluted soils ameliorated with rock phosphate-modified biochars. Environ. Pollut. 2022, 309, e119733. [Google Scholar] [CrossRef]
- Ameen, F.; Mumtaz, S.; Ali, B.; Hussain, I.; Hafeez, A.; Gul, A.; Elsharkawy, M.M.; Hashim, T.A.; Yasin, G.; Khan, M.N.; Ali, I. The impact of Cu-polluted and organic soil on the fibrous plant; insights into plant growth promotion, antioxidant defenses system, and oxidative stress. Funct. Plant Biol. 2023, 50, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, D.D.; Parlak, K.U. Changes in proline accumulation and antioxidative enzyme activities in Groenlandia densa under cadmium stress. Ecol. Indic. 2011, 11, 417–423. [Google Scholar] [CrossRef]
- Shahkolaie, S.S.; Baranimotlagh, M.; Dordipour, E.; Khormali, F. Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. S. Afr. J. Biol. 2020, 128, 132–140. [Google Scholar] [CrossRef]
- Hannan, F.; Huang, Q.; Farooq, M.A.; Ayyaz, A.; Ma, J.; Zhang, N.; Ali, B.; Deyett, E.; Zhou, W.; Islam, F. Organic and inorganic amendments for the remediation of nickel contaminated soil and its improvement on Brassica napus growth and oxidative defense. J. Hazard. Mater. 2021, 416, e125921. [Google Scholar] [CrossRef]
- Rasool, B.; Ramzani, P.M.; Zubair, M.; Khan, M.A.; Lewińska, K.; Turan, V.; Karczewska, A.; Khan, S.A.; Farhad, M.; Tauqeer, H.M.; et al. Impacts of oxalic acid-activated phosphate rock and root-induced changes on Pb bioavailability in the rhizosphere and its distribution in mung bean plant. Environ. Pollut. 2021, 280, e116903. [Google Scholar] [CrossRef]
- Yang, S.; Yin, R.; Wang, C.; Wang, J. Improved efficiency of Sedum lineare (Crassulaceae) in remediation of arsenic-contaminated soil by phosphate-dissolving strain P-1 in association with phosphate rock. Environ. Geochem. Health. 2023, 11, 8317–8336. [Google Scholar] [CrossRef]
- Baruah, N.; Gogoi, N.; Farooq, M. Influence of biochar and organic soil amendments on bioavailability and immobilization of copper and lead to common cocklebur in acidic sandy loam soil. J. Environ. Chem. Eng. 2020, 8, e104480. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, A.; Li, T.; Wu, X.; Liuz, Y.; Naidu, R. Immobilization of Cd and Pb in a contaminated acidic soil amended with hydroxyapatite, bentonite, and biochar. J. Soils Sediments. 2021, 21, e2262–e2272. [Google Scholar] [CrossRef]
- Pandey, B.; Suthar, S.; Chand, N. Effect of biochar amendment on metal mobility, phytotoxicity, soil enzymes, and metal-uptakes by wheat (Triticum aestivum) in contaminated soils. Chemosphere 2022, 307, e135889. [Google Scholar] [CrossRef]
- Ece, D.; Aydemir, Ö.E.; Özkutlu, F. The effect of ca-bentonite application on cadmium uptake and shoot dry matter of bread wheat. Turkish J. Nat. Sci. 2022, 11, 50–54. [Google Scholar] [CrossRef]
- Naveenkumar, A.; Manjaiah, K.M.; Sharma, V.K.; Ray, P.; Pandey, P.; Sahoo, R.N.; Kumar, R.; Das, T.K.; Raza, M.B.; Meena, S.; et al. Assessing the impact of functionalized bentonite in reducing lead content and uptake in Spinach (Spinacia oleracea cv. All Green). Biol. Forum. 2023, 15, 135–140. [Google Scholar]
- Khan, W.U.; Wei, X.; Ali, H.H.; Zulfiqar, F.; Chen, J.; Iqbal, R.; Zaheer, M.S.; Ali, B.; Ghafoor, S.; Rabiya, U.E.; et al. Investigating the role of bentonite clay with different soil amendments to minimize the bioaccumulation of heavy metals in Solanum melongena L. under the irrigation of tannery wastewater. Front. Plant Sci. 2022, 13, e958978. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jiang, R.; Jiang, R.; Zhu, C.; Cao, Y.; Xia, T.; Hou, X. The effects of phosphate application in Pb-contaminated soil on the oxidative stress of leaves, Pb accumulation in maize biomass and Pb speciation in rhizosphere soil. Cereal Res. Commun. 2024, 12, 1855–1862. [Google Scholar] [CrossRef]
- Xing, W.; Fang, L.; Ippolito, J.A.; Cai, F.; Wang, Y.; Wang, Y.; Yang, Y.; Li, L. Effect of soluble phosphate and bentonite amendments on lead and cadmium bioavailability and bio-accessibility in a contaminated soil. Sci. Total Environ. 2023, 900, e166370. [Google Scholar] [CrossRef]
- Viana, R.D.; de Figueiredo, C.C.; Chagas, J.K.; Paz-Ferreiro, J. Combined use of biochar and phosphate rocks on phosphorus and heavy metal availability: A meta-analysis. J. Environ. Manag. 2024, 353, e120204. [Google Scholar] [CrossRef]
Parameters | Units | Soil | Biochar |
---|---|---|---|
Textural class | -- | Silty Clay loam | -- |
Soil order | -- | Aridisols | -- |
Sand | % | 25 | -- |
Silt | % | 45 | -- |
Clay | % | 30 | -- |
Bulk density | g cm−3 | 1.56 | -- |
SAR | (mmol L−1)1/2 | 8.58 | -- |
OM | % | 0.75 | -- |
pHs | -- | 8.45 | 8.32 |
ECe | dSm−1 | 3.87 | 0. |
CEC | cmol c kg−1 | 5.2 | -- |
Total Pb contents | (mg kg−1) | 104 | -- |
Available Cu | (mg kg−1) | 8.52 | 3.55 |
Available Zn | (mg kg−1) | 16.74 | 42.20 |
Available nitrogen | (mg kg−1) | 0.98 | 0.75 |
Available phosphorus | (mg kg−1) | 617.8 | 584.0 |
Available potassium | (mg kg−1) | 86.94 | 0.015 |
Treatments | Description | Levels of Pb | Amendment Levels |
---|---|---|---|
- | (ppm) | (%) | |
CK | Control soil | 0 | 0 |
Pb | Pb | 700 | 0 |
BC | Pb + BC | 700 | 2 |
BN | Pb + BN | 700 | 5 |
RP | Pb + RP | 700 | 5 |
MBA-1 | Pb+ BC+ BN + RP | 700 | 1.5 |
MBA-2 | Pb+ BC+ BN + RP | 700 | 1.5 |
MBA-3 | Pb+ BC+ BN + RP | 700 | 1.5 |
Biochar–Mineral Amendments | Contents | Mixing Ratio | |
MBA-1 | Biochar + Bentonite + Rock phosphate | 50% + 30% + 20% | |
MBA-2 | Biochar +Bentonite + Rock phosphate | 40% + 30% + 30% | |
MBA-3 | Biochar + Bentonite + Rock phosphate | 30% + 30% + 40% |
Treatment | Root Fresh Weight (g) | Shoot Fresh Weight (g) | Leaf Area (cm2) | Root Surface Area (cm2) | Root Volume (cm3) | Number of Root Tips | Average Root Diameter (mm) |
---|---|---|---|---|---|---|---|
CK | 3.92 ± 0.08 a | 6.26 ± 0.09 a | 80 ± 0.73 a | 277 ± 3.94 a | 7.33 ± 0.33 ab | 2293 ± 22 a | 2.94 ± 0.07 a |
Pb | 2.87 ± 0.09 e | 3.02 ± 0.05 e | 53 ± 0.74 e | 157 ± 3.92 d | 4.04 ± 0.20 e | 1256 ± 38 e | 1.17 ± 0.06 d |
BC | 3.28 ± 0.11 cd | 5.60 ± 0.15 c | 79 ± 0.45 ab | 245 ± 7.69 b | 6.66 ± 0.19 cd | 1886 ± 34 c | 2.67 ± 0.10 b |
BN | 3.10 ± 0.11 de | 4.76 ± 0.07 d | 75 ± 0.79 cd | 224 ± 8.70 c | 6.19 ± 0.13 d | 1728 ± 28 d | 2.40 ± 0.11 c |
RP | 3.11 ± 0.05 de | 4.87 ± 0.08 d | 73 ± 0.78 d | 253 ± 5.01 b | 6.92 ± 0.06 a–c | 1949 ± 34 c | 2.86 ± 0.11 ab |
MBA-1 | 3.52 ± 0.07 b | 6.18 ± 0.05 a | 79 ± 1.20 ab | 255 ± 3.71 b | 7.45 ± 0.17 a | 2047 ± 26 b | 2.75 ± 0.07 ab |
MBA-2 | 3.45 ± 0.06 bc | 6.17 ± 0.03 a | 78 ± 1.43 a–c | 243 ± 6.88 b | 6.88 ± 0.14 bc | 1803 ± 35 d | 2.32 ± 0.08 c |
MBA-3 | 3.41 ± 0.08 bc | 5.88 ± 0.04 b | 77 ± 1.17 bc | 253 ± 3.42 b | 6.80 ± 0.15 bc | 2062 ± 28 b | 2.65 ± 0.09 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshikh, M.S.; Alwahibi, M.S.; Malik, Z.; Ali, A.; Mehmood, H.; Ahmad, H.T.; Soysal, S.; Prasad, P.V.V.; Djalovic, I.; Dugalic, B. Enhancing Wheat Productivity and Reducing Lead Uptake Through Biochar, Bentonite, and Rock Phosphate Integration. Sustainability 2025, 17, 3491. https://doi.org/10.3390/su17083491
Elshikh MS, Alwahibi MS, Malik Z, Ali A, Mehmood H, Ahmad HT, Soysal S, Prasad PVV, Djalovic I, Dugalic B. Enhancing Wheat Productivity and Reducing Lead Uptake Through Biochar, Bentonite, and Rock Phosphate Integration. Sustainability. 2025; 17(8):3491. https://doi.org/10.3390/su17083491
Chicago/Turabian StyleElshikh, Mohamed S., Mona S. Alwahibi, Zaffar Malik, Ahmad Ali, Hassan Mehmood, Hafiz Tanvir Ahmad, Sipan Soysal, P. V. Vara Prasad, Ivica Djalovic, and Bogdan Dugalic. 2025. "Enhancing Wheat Productivity and Reducing Lead Uptake Through Biochar, Bentonite, and Rock Phosphate Integration" Sustainability 17, no. 8: 3491. https://doi.org/10.3390/su17083491
APA StyleElshikh, M. S., Alwahibi, M. S., Malik, Z., Ali, A., Mehmood, H., Ahmad, H. T., Soysal, S., Prasad, P. V. V., Djalovic, I., & Dugalic, B. (2025). Enhancing Wheat Productivity and Reducing Lead Uptake Through Biochar, Bentonite, and Rock Phosphate Integration. Sustainability, 17(8), 3491. https://doi.org/10.3390/su17083491