Farmers’ Adoption of Water Management Practice for Methane Reduction in Rice Paddies: A Spatial Analysis in Shiga, Japan
Abstract
1. Introduction
2. Methods
2.1. Study Region
2.2. Spatial Probit Model
2.3. Data Development
2.4. Study Variables
3. Results
3.1. Estimation Results
3.2. Marginal Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC); Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Huang, M.; Yelekçi, O.; Yu, R.; et al. (Eds.) Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Volume 2, p. 2391. [Google Scholar]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three decades of global methane sources and sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Dlugokencky, E.J.; Manning, M.R.; Lowry, D.; Fisher, R.E.; France, J.L.; Michel, J.B.; Miller, J.W.C.; White, B.; Vaughn, P.; et al. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob. Biogeochem. Cycles 2016, 30, 1356–1370. [Google Scholar] [CrossRef]
- United Nations Environment Programme; Climate and Clean Air Coalition. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.L.; et al. The global methane budget 2000–2017. Earth Syst. Sci. Data Discuss. 2019, 2019, 1–136. [Google Scholar] [CrossRef]
- Smith, P.; Reay, D.; Smith, J. Agricultural methane emissions and the potential for mitigation. Philos. Trans. R. Soc. A 2021, 379, 20200451. [Google Scholar] [CrossRef]
- Wang, C.; Lai, D.Y.; Sardans, J.; Wang, W.; Zeng, C.; Peñuelas, J. Factors related with CH4 and N2O emissions from a paddy field: Clues for management implications. PLoS ONE 2017, 12, e0169254. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; Volume 12. [Google Scholar]
- Chen, Z.L.; Li, D.B.; Shao, K.S.; Wang, B.J. Features of CH4 emission from rice paddy fields in Beijing and Nanjing. Chemosphere 1993, 26, 239–245. [Google Scholar]
- Cai, Z.C.; Xu, H.; Zhang, H.H.; Jin, J.S. Estimate of methane emission from rice paddy fields in Taihu region, China. Pedosphere 1994, 4, 297–306. [Google Scholar]
- Chidthaisong, A.; Cha-Un, N.; Rossopa, B.; Buddaboon, C.; Kunuthai, C.; Sriphirom, P.; Towprayoon, S.; Tokida, T.; Padre, A.T.; Minamikawa, K. Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a paddy field in Thailand. Soil Sci. Plant Nutr. 2018, 64, 31–38. [Google Scholar] [CrossRef]
- Setyanto, P.; Pramono, A.; Adriany, T.A.; Susilawati, H.L.; Tokida, T.; Padre, A.T.; Minamikawa, K. Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. 2018, 64, 23–30. [Google Scholar] [CrossRef]
- Howell, K.R.; Shrestha, P.; Dodd, I.C. Alternate wetting and drying irrigation maintained rice yields despite half the irrigation volume, but is currently unlikely to be adopted by smallholder lowland rice farmers in Nepal. Food Energy Secur. 2015, 4, 144–157. [Google Scholar] [CrossRef]
- Suwanmaneepong, S.; Kultawanich, K.; Khurnpoon, L.; Sabaijai, P.E.; Cavite, H.J.; Llones, C.; Lepchn, N.; Kerdsriserm, C. Alternate wetting and drying as water-saving technology: An adoption intention in the perspective of good agricultural practices (GAP) suburban rice farmers in Thailand. Water 2023, 15, 402. [Google Scholar] [CrossRef]
- Wassmann, R.; Papen, H.; Rennenberg, H. Methane emission from rice paddies and possible mitigation strategies. Chemosphere 1993, 26, 201–217. [Google Scholar] [CrossRef]
- Khosa, M.K.; Sidhu, B.S.; Benbi, D.K. Effect of organic materials and rice cultivars on methane emission from rice field. J. Environ. Biol. 2010, 31, 281–285. [Google Scholar]
- Ma, K.E.; Qiu, Q.; Lu, Y. Microbial mechanism for rice variety control on methane emission from rice field soil. Glob. Change Biol. 2010, 16, 3085–3095. [Google Scholar] [CrossRef]
- Sanchis, E.; Ferrer, M.; Torres, A.G.; Cambra-López, M.; Calvet, S. Effect of water and straw management practices on methane emissions from rice fields: A review through a meta-analysis. Environ. Eng. Sci. 2012, 29, 1053–1062. [Google Scholar] [CrossRef]
- Dong, D.; Li, J.; Ying, S.; Wu, J.; Han, X.; Teng, Y.; Zhou, M.; Ren, Y.; Jiang, P. Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer. Sci. Total Environ. 2021, 792, 148460. [Google Scholar] [CrossRef]
- Nan, Q.; Xin, L.; Qin, Y.; Waqas, M.; Wu, W. Exploring long-term effects of biochar on mitigating methane emissions from paddy soil: A review. Biochar 2021, 3, 125–134. [Google Scholar] [CrossRef]
- Truelove, H.B.; Carrico, A.R.; Thabrew, L. A socio-psychological model for analyzing climate change adaptation: A case study of Sri Lankan paddy farmers. Glob. Environ. Change 2015, 31, 85–97. [Google Scholar] [CrossRef]
- Le, L.T. Alternate wetting and drying technique in paddy production in the Mekong Delta, Vietnam: Economic evaluation and adoption determinants. J. Agribus. Dev. Emerg. Econ. 2021, 11, 42–59. [Google Scholar] [CrossRef]
- Enriquez, Y.; Yadav, S.; Evangelista, G.K.; Villanueva, D.; Burac, M.A.; Pede, V. Disentangling challenges to scaling alternate wetting and drying technology for rice cultivation: Distilling lessons from 20 years of experience in the Philippines. Front. Sustain. Food Syst. 2021, 5, 675818. [Google Scholar] [CrossRef]
- Lampayan, R.M.; Palis, F.G.; Flor, R.B.; Bouman, B.A.; Quicho, E.D.; De Dios, J.L.; Espiritu, A.; Sibayan, E.B.; Vicmudo, V.R.; Lctaoen, A.T.; et al. Adoption and dissemination of “safe alternate wetting and drying” in pump irrigated rice areas in the Philippines. In Proceedings of the 60th International Executive Council Meeting of the International Commission on Irrigation and Drainage (ICID), 5th Regional Conference, New Delhi, India, 6–11 November 2009; Volume 6. [Google Scholar]
- Ministry of Agriculture; Forestry and Fisheries of Japan. Summary of the Basic Plan for Food, Agriculture and Rural Areas. Ministry of Agriculture, Forestry and Fisheries (MAFF): Tokyo, Japan. 2020. Available online: https://www.maff.go.jp/e/policies/law_plan/attach/pdf/index-13.pdf (accessed on 10 March 2025).
- Usman, M.; Sawaya, A.; Igarashi, M.; Gayman, J.J.; Dixit, R. Strained agricultural farming under the stress of youths’ career selection tendencies: A case study from Hokkaido (Japan). Humanit. Soc. Sci. Commun. 2021, 8, 19. [Google Scholar] [CrossRef]
- Fuhrmann-Aoyagi, M.B.; Miura, K.; Watanabe, K. Sustainability in Japan’s Agriculture: An Analysis of Current Approaches. Sustainability 2024, 16, 596. [Google Scholar] [CrossRef]
- Läpple, D.; Van Rensburg, T. Adoption of organic farming: Are there differences between early and late adoption? Ecol. Econ. 2011, 70, 1406–1414. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Govaerts, B. How conservation agriculture can contribute to buffering climate change. Clim. Change Crop Prod. 2010, 1, 177–199. [Google Scholar]
- Le Dang, H.; Li, E.; Nuberg, I.; Bruwer, J. Understanding farmers’ adaptation intention to climate change: A structural equation modelling study in the Mekong Delta, Vietnam. Environ. Sci. Policy 2014, 41, 11–22. [Google Scholar] [CrossRef]
- Anselin, L. Spatial econometrics. In Handbook of Spatial Analysis in the Social Sciences; Edward Elgar: Cheltenham, UK, 2022; pp. 101–122. [Google Scholar]
- Itoh, M.; Sudo, S.; Mori, S.; Saito, H.; Yoshida, T.; Shiratori, Y.; Suga, S.; Yoshikawa, N.; Suzue, Y.; Mizukami, H.; et al. Mitigation of methane emissions from paddy fields by prolonging midseason drainage. Agric. Ecosyst. Environ. 2011, 141, 359–372. [Google Scholar] [CrossRef]
- Shiga Prefectural Government. Agricultural and Rural Development in Shiga in 2023. 2023. Available online: https://www.pref.shiga.lg.jp/ippan/shigotosangyou/nougyou/nousonshinkou/18347.html (accessed on 25 December 2023). (In Japanese)
- Ministry of Agriculture; Forestry and Fisheries of Japan. Status of Japanese Direct Payment for Environmentally Friendly Farming in FY2021. 2022. Available online: https://www.maff.go.jp/j/seisan/kankyo/kakyou_chokubarai/other/attach/pdf/r3jisshi-1.pdf (accessed on 25 December 2023). (In Japanese)
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Bivand, R. Applied Spatial Data Analysis with R; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Mala, Z.; Malý, M. The determinants of adopting organic farming practices: A case study in the Czech Republic. Agric. Econ. 2013, 59, 19–28. [Google Scholar] [CrossRef]
- Sodjinou, E.; Glin, L.C.; Nicolay, G.; Tovignan, S.; Hinvi, J. Socioeconomic determinants of organic cotton adoption in Benin, West Africa. Agric. Food Econ. 2015, 3, 12. [Google Scholar] [CrossRef]
- Genius, M.; Pantzios, C.J.; Tzouvelekas, V. Information acquisition and adoption of organic farming practices. J. Agric. Resour. Econ. 2006, 31, 93–113. [Google Scholar]
- Läpple, D. Adoption and abandonment of organic farming: An empirical investigation of the Irish drystock sector. J. Agric. Econ. 2010, 61, 697–714. [Google Scholar] [CrossRef]
- Karki, L.; Schleenbecker, R.; Hamm, U. Factors influencing a conversion to organic farming in Nepalese tea farms. J. Agric. Rural. Dev. Trop. Subtrop. 2011, 112, 113–123. [Google Scholar]
- Liu, X.; Pattanaik, N.; Nelson, M.; Ibrahim, M. The choice to go organic: Evidence from small US farms. Agric. Sci. 2019, 10, 1566–1580. [Google Scholar] [CrossRef]
- Serra, T.; Zilberman, D.; Gil, J.M. Differential uncertainties and risk attitudes between conventional and organic producers: The case of Spanish arable crop farmers. Agric. Econ. 2008, 39, 219–229. [Google Scholar] [CrossRef]
- Cranfield, J.; Henson, S.; Holliday, J. The motives, benefits, and problems of conversion to organic production. Agric. Hum. Values 2010, 27, 291–306. [Google Scholar] [CrossRef]
- Khaledi, M.; Weseen, S.; Sawyer, E.; Ferguson, S.; Gray, R. Factors influencing partial and complete adoption of organic farming practices in Saskatchewan, Canada. Can. J. Agric. Econ. /Rev. Can. D’agroeconomie 2010, 58, 37–56. [Google Scholar] [CrossRef]
- Moumouni, I.; Baco, M.N.; Tovignan, S.; Gbèdo, F.; Nouatin, G.S.; Vodouhê, S.D.; Liebe, U. What happens between technico-institutional support and adoption of organic farming? A case study from Benin. Org. Agric. 2013, 3, 1–8. [Google Scholar] [CrossRef]
- Soltani, N.; Saion, E.; Yunus, W.M.M.; Erfani, M.; Navasery, M.; Bahmanrokh, G.; Rezaee, K. Enhancement of visible light photocatalytic activity of ZnS and CdS nanoparticles based on organic and inorganic coating. Appl. Surf. Sci. 2014, 290, 440–447. [Google Scholar] [CrossRef]
- Nalubwama, S.; Kabi, F.; Vaarst, M.; Kiggundu, M.; Smolders, G. Opportunities and challenges for integrating dairy cattle into farms with certified organic pineapple production as perceived by smallholder farmers in Central Uganda. Org. Agric. 2019, 9, 29–39. [Google Scholar] [CrossRef]
- Kittipanya-Ngam, P.; Tan, K.H. A framework for food supply chain digitalization: Lessons from Thailand. Prod. Plan. Control 2020, 31, 158–172. [Google Scholar] [CrossRef]
- Mills, J.; Gaskell, P.; Ingram, J.; Chaplin, S. Understanding farmers’ motivations for providing unsubsidised environmental benefits. Land Use Policy 2018, 76, 697–707. [Google Scholar] [CrossRef]
- Dessart, F.J.; Barreiro-Hurlé, J.; Van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review. Eur. Rev. Agric. Econ. 2019, 46, 417–471. [Google Scholar] [CrossRef]
- Pannell, D.J.; Claassen, R. The roles of adoption and behavior change in agricultural policy. Appl. Econ. Perspect. Policy 2020, 42, 31–41. [Google Scholar] [CrossRef]
- Defrancesco, E.; Gatto, P.; Runge, F.; Trestini, S. Factors affecting farmers’ participation in agri-environmental measures: A Northern Italian perspective. J. Agric. Econ. 2008, 59, 114–131. [Google Scholar] [CrossRef]
- Allaire, G.; Cahuzac, E.; Simioni, M. Spatial diffusion in France of European Agri-environment support related to extensive grazing. Rev. Agric. Environ. Stud. 2009, 90, 23–50. (In French) [Google Scholar]
- Kuhfuss, L.; Préget, R.; Thoyer, S.; Hanley, N.; Le Coent, P.; Désolé, M. Nudges, social norms, and permanence in agri-environmental schemes. Land Econ. 2016, 92, 641–655. [Google Scholar] [CrossRef]
- Lopes, A.A.; Viriyavipart, A.; Tasneem, D. The role of social influence in crop residue management: Evidence from Northern India. Ecol. Econ. 2020, 169, 106563. [Google Scholar] [CrossRef]
- Läpple, D.; Kelley, H. Spatial dependence in the adoption of organic drystock farming in Ireland. Eur. Rev. Agric. Econ. 2015, 42, 315–337. [Google Scholar] [CrossRef]
- Wollni, M.; Andersson, C. Spatial patterns of organic agriculture adoption: Evidence from Honduras. Ecol. Econ. 2014, 97, 120–128. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry–a systematic literature review on agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Ministry of Agriculture; Forestry and Fisheries of Japan. Agriculture DX Concept 2.0: Pathways to Digital Transformation of Food and Agriculture. 2024. Available online: https://www.maff.go.jp/j/press/kanbo/joho/attach/pdf/240222-2.pdf (accessed on 25 December 2023). (In Japanese)
- Ministry of Agriculture; Forestry and Fisheries of Japan. Promotion of Smart Agriculture. 2023. Available online: https://www.maff.go.jp/j/kanbo/dx/attach/pdf/nougyou_dxkousou-69.pdf (accessed on 25 December 2023).
- DeBoe, G.; Jouanjean, M. Digital Opportunities for Better Agricultural Policies; Organisation for Economic Co-operation and Development: Paris, France, 2019. [Google Scholar]
- de Bourgogne, R.M. Smart Farming Technology in Japan and Opportunities for EU Companies; ECOS: Hrazdan, Armenia, 2021. [Google Scholar]
- Sinitsa, Y.; Borodina, O.; Gvozdeva, O.; Kolbneva, E. Trends in the development of digital agriculture: A review of international practices. In BIO Web of Conferences; EDP Sciences: Ulis, France, 2021; Volume 37, p. 172. [Google Scholar]
- Liu, L.; Liu, K. Can digital technology promote sustainable agriculture? Empirical evidence from urban China. Cogent Food Agric. 2023, 9, 2282234. [Google Scholar] [CrossRef]
- Wu, L.; Hu, K.; Lyulyov, O.; Pimonenko, T.; Hamid, I. The impact of government subsidies on technological innovation in agribusiness: The case for China. Sustainability 2022, 14, 14003. [Google Scholar] [CrossRef]
- Kurosawa, M.; Tezuka, T. Awareness of Farmers Approaching the Sustainable Agriculture to Improve Regional Environment: Case study of Environmentally Conscious Agriculture in Shiga Prefecture. J. Rural. Plan. 2005, 24, S61–S66. (In Japanese) [Google Scholar] [CrossRef]
- Nagai, T. Analysis and categorization of the characteristics of producers with regard to various environmentally friendly agriculture initiatives. J. NARO Res. Dev. 2021, 2021, 43–52. (In Japanese) [Google Scholar]
Statistic | Expectation | Variance | p-Value | |
---|---|---|---|---|
Moran’s I | 0.460 | −0.001 | 1.01 × 10−4 | <2.2 × 1016 |
Global G* | 0.116 | 0.034 | 2.96 × 10−6 | <2.2 × 1016 |
Types of Attributes | Attributes | References |
---|---|---|
Individual Attributes | gender | Mala and Malý, 2013 [37]; Sodjinou et al., 2015 [38] |
academic background | ||
age | ||
concern for environmental issues | ||
Field Attributes | field scale | Genius et al., 2006 [39]; Läpple, 2010 [40]; Karki et al., 2011 [41]; Liu et al., 2019 [42] |
management form | ||
Others | technological innovation | Serra et al., 2008 [43]; Cranfield et al., 2010 [44]; Khaledi et al., 2010 [45]; Moumouni et al., 2013 [46]; Soltani et al., 2014 [47]; Nalubwama et al., 2019 [48]; Kittipanya-Ngam and Tan, 2020 [49] |
information supply | ||
support from the government | ||
data use |
Variables | Description of Variables | |
---|---|---|
Operational Factors | AWD adoption | adoption of AWD |
Data gathering | whether to obtain data (only) | |
Data utilization | whether to obtain and use data | |
Agricultural corporation | is it a company-owned business? | |
Cultivated area | logarithm of the cultivated area | |
Leased land ratio | ratio of leased land to total cultivated area | |
Plot Characteristics | Rice profitability | is rice the most profitable to sell? |
Direct Sales | are there direct sales to consumers? | |
Coop as the main sales channel | is the agricultural cooperative the largest shipping destination for sales? | |
Consumers as the main sales channel | is the consumer the largest shipping destination for sales? | |
Individual Attributes | Gender is male | gender of the farmer (or manager) |
Age is over 60 | is the farmer (or manager) over 60 years of age? | |
Worked in agriculture ≥100 days | did the cumulative days worked in agriculture exceed 100? | |
Worked in agriculture-related field ≥100 days | did the cumulative days worked in agriculture-related jobs exceed 100? | |
Agriculture as the main source of income | is self-employed agriculture the main business? | |
Has a successor | whether there is a successor |
Variables | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|
Operational Factors | AWD adoption | 0.22 | 0.41 | 0.00 | 1.00 |
Data gathering | 0.09 | 0.28 | 0.00 | 1.00 | |
Data utilization | 0.09 | 0.29 | 0.00 | 1.00 | |
Agricultural corporation | 0.03 | 0.18 | 0.00 | 1.00 | |
Cultivated area | 4.73 | 1.09 | 0.69 | 10.48 | |
Leased land ratio | 0.26 | 0.34 | 0.00 | 1.00 | |
Plot Characteristics | Rice profitability | 0.84 | 0.37 | 0.00 | 1.00 |
Direct Sales | 0.26 | 0.44 | 0.00 | 1.00 | |
Coop as the main sales channel | 0.68 | 0.47 | 0.00 | 1.00 | |
Consumers as the main sales channel | 0.08 | 0.28 | 0.00 | 1.00 | |
Individual Attributes | Gender is male | 0.96 | 0.19 | 0.00 | 1.00 |
Age is over 60 | 0.78 | 0.41 | 0.00 | 1.00 | |
Worked in agriculture ≥100 days | 0.43 | 0.49 | 0.00 | 1.00 | |
Worked in agriculture-related field ≥100 days | 0.04 | 0.21 | 0.00 | 1.00 | |
Agriculture as the main source of income | 0.47 | 0.50 | 0.00 | 1.00 | |
Has a successor | 0.28 | 0.45 | 0.00 | 1.00 |
Independent Variable | Model 1 | Model 2 | Model 3 | Model 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k-Nearest Neighbors = 8 | k-Nearest Neighbors = 16 | k-Nearest Neighbors = 24 | k-Nearest Neighbors = 32 | |||||||||
Coefficient | Std. Error | Coefficient | Std. Error | Coefficient | Std. Error | Coefficient | Std. Error | |||||
(Intercept) | −3.040 | *** | 1.18 × 10−3 | −2.674 | *** | 1.16 × 10−3 | −2.529 | *** | 1.01 × 10−3 | −2.451 | *** | 1.04 × 10−3 |
rho (p) | 0.688 | *** | 7.52 × 10−5 | 0.718 | *** | 8.58 × 10−5 | 0.741 | *** | 9.32 × 10−5 | 0.763 | *** | 9.48 × 10−5 |
Data gathering | 0.297 | *** | 3.91 × 10−4 | 0.266 | *** | 3.93 × 10−4 | 0.251 | *** | 4.05 × 10−4 | 0.246 | *** | 4.06 × 10−4 |
Data utilization | 0.337 | *** | 3.81 × 10−4 | 0.326 | *** | 3.67 × 10−4 | 0.318 | *** | 3.80 × 10−4 | 0.313 | *** | 3.86 × 10−4 |
Agricultural corporation | −1.610 | *** | 8.23 × 10−4 | −1.523 | *** | 8.24 × 10−4 | −1.516 | *** | 7.87 × 10−4 | −1.465 | *** | 7.58 × 10−4 |
Cultivated area | 0.329 | *** | 1.74 × 10−4 | 0.288 | *** | 1.69 × 10−4 | 0.278 | *** | 1.53 × 10−4 | 0.274 | *** | 1.55 × 10−4 |
Leased land ratio | 0.171 | ** | 4.78 × 10−4 | 0.186 | *** | 4.35 × 10−4 | 0.179 | *** | 4.25 × 10−4 | 0.178 | *** | 4.56 × 10−4 |
Rice profitability | 0.423 | *** | 4.24 × 10−4 | 0.368 | *** | 4.37 × 10−4 | 0.354 | *** | 3.94 × 10−4 | 0.332 | *** | 3.98 × 10−4 |
Direct sales | 0.123 | *** | 3.16 × 10−4 | 0.133 | *** | 3.08 × 10−4 | 0.138 | *** | 3.11 × 10−4 | 0.127 | *** | 3.24 × 10−4 |
Coop as the main sales channel | 0.214 | *** | 3.41 × 10−4 | 0.179 | *** | 3.21 × 10−4 | 0.166 | *** | 3.18 × 10−4 | 0.162 | *** | 3.15 × 10−4 |
Consumers as the main sales channel | −0.029 | 5.58 × 10−4 | −0.023 | 5.80 × 10−4 | −0.031 | 5.55 × 10−4 | −0.020 | 5.77 × 10−4 | ||||
Gender is male | 0.324 | *** | 7.29 × 10−4 | 0.294 | *** | 7.43 × 10−4 | 0.261 | ** | 7.30 × 10−4 | 0.258 | ** | 7.09 × 10−4 |
Age is over 60 | 0.220 | *** | 3.19 × 10−4 | 0.220 | *** | 3.25 × 10−4 | 0.219 | *** | 3.18 × 10−4 | 0.215 | *** | 3.07 × 10−4 |
Worked in agriculture ≥100 days | 0.084 | * | 3.49 × 10−4 | 0.081 | * | 3.10 × 10−4 | 0.088 | * | 3.20 × 10−4 | 0.091 | * | 3.15 × 10−4 |
Worked in agriculture-related field ≥100 days | 0.006 | 6.26 × 10−4 | 0.009 | 5.72 × 10−4 | −0.015 | 5.87 × 10−4 | −0.029 | 5.59 × 10−4 | ||||
Agriculture as the main source of income | −0.038 | 3.46 × 10−4 | −0.032 | 3.22 × 10−4 | −0.037 | 3.28 × 10−4 | −0.035 | 3.05 × 10−4 | ||||
Has a successor | −0.015 | 2.67 × 10−4 | −0.009 | 2.62 × 10−4 | −0.006 | 2.46 × 10−4 | −0.008 | 2.62 × 10−4 | ||||
# of obs. | 13,549 | 13,549 | 13,549 | 13,549 | ||||||||
# of cases | 13,549 | 13,549 | 13,549 | 13,549 | ||||||||
Log-Likelihood | −6763 | −6524 | −6486 | −6492 | ||||||||
AIC | 13,558 | 13,079 | 13,003 | 13,015 |
Direct Effects | Indirect Effects | Total Effects | |
---|---|---|---|
Data gathering | 0.057 | 0.161 | 0.218 |
Data utilization | 0.072 | 0.203 | 0.276 |
Agricultural corporation | −0.345 | −0.971 | −1.316 |
Cultivated area | 0.063 | 0.178 | 0.241 |
Leased land ratio | 0.041 | 0.115 | 0.155 |
Rice profitability | 0.080 | 0.226 | 0.307 |
Direct sales | 0.031 | 0.088 | 0.120 |
Coop as the main sales channel | 0.038 | 0.106 | 0.144 |
Gender is male | 0.059 | 0.167 | 0.227 |
Age is over 60 | 0.050 | 0.140 | 0.190 |
Worked in agriculture ≥100 days | 0.020 | 0.057 | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Tanaka, K.; Yagi, H. Farmers’ Adoption of Water Management Practice for Methane Reduction in Rice Paddies: A Spatial Analysis in Shiga, Japan. Sustainability 2025, 17, 3468. https://doi.org/10.3390/su17083468
Du S, Tanaka K, Yagi H. Farmers’ Adoption of Water Management Practice for Methane Reduction in Rice Paddies: A Spatial Analysis in Shiga, Japan. Sustainability. 2025; 17(8):3468. https://doi.org/10.3390/su17083468
Chicago/Turabian StyleDu, Shengyi, Katsuya Tanaka, and Hironori Yagi. 2025. "Farmers’ Adoption of Water Management Practice for Methane Reduction in Rice Paddies: A Spatial Analysis in Shiga, Japan" Sustainability 17, no. 8: 3468. https://doi.org/10.3390/su17083468
APA StyleDu, S., Tanaka, K., & Yagi, H. (2025). Farmers’ Adoption of Water Management Practice for Methane Reduction in Rice Paddies: A Spatial Analysis in Shiga, Japan. Sustainability, 17(8), 3468. https://doi.org/10.3390/su17083468