Integration of Google Earth Engine and Aggregated Air Quality Index for Monitoring and Mapping the Spatio-Temporal Air Quality to Improve Environmental Sustainability in Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Research Area
2.2. Data Collection
- (a)
- The Sentinel-5P satellite image data for the four main pollutants—SO2, NO2, O3, and CO products—were obtained annually from the GEE analysis. Since latitude and longitude define the pixels in the Sentinel-5P Level-2 output, the resulting uneven grid made it more challenging to combine several photos. As a result, Level-3 processing was used. This can be resolved by using the harpconvert tool’s bin spatial operation to resample the data to a normal spatial pixel grid (Harpconvert. Available online: http://stcorp.github.io/harp/doc/html/harpconvert.html (accessed on 13 February 2021)). For every variable in a product, the HARP bin_spatial tool projects all time samples into a standard spatial lat/lon grid. As a result, Sentinel-5 provided the CO, NO2, SO2, and O3 photos. After that, cloud-containing images were filtered using cloud filters, followed by spatial and temporal filters, and average maps were extracted using average filters for the years under study (Figure S1). The contaminants listed above were used to calculate the air quality index (AQI) and aggregated air quality index (AAQI). Initial information on the concentration of different contaminants in the atmosphere was derived from datasets acquired by the European Space Agency from the Copernicus Sentinel-5 Precursor satellite project. The high-resolution spectrometer system used by the Sentinel-5 mission uses seven different spectral bands: UV-1 (270–300 nm), UV-2 (300–370 nm), VIS (370–500 nm), NIR-1 (685–710 nm), NIR-2 (745–773 nm), SWIR-1 (1590–1675 nm), and SWIR-3 (2305–2385 nm). The mission operates in the ultraviolet to shortwave infrared range. The MetOp-SG A satellite hosted the device. The yearly average concentrations of SO2, NO2, O3, and CO were calculated using the Google Earth Engine (GEE) to streamline the process of acquiring data from the Copernicus Sentinel-5 Precursor satellite (simplification of data processing of net CDF files). GEE offers a robust and adaptable environment for working with a variety of remote-sensing, satellite, and other geospatial datasets, including Sentinel-5 Precursor data. It consists of a cloud-based computing platform for analyzing and processing large-scale geospatial data. The capacity of GEE to effectively process and analyze vast volumes of data without the need for pricey computer hardware or software is one of its main benefits when used for geospatial analysis. Additionally, GEE provides a collaborative platform for exchanging code, data, and analysis findings. The concentration of pollutants was estimated using the “Sentinel-5P L3” collection (e.g., COPERNICUS/S5P/OFFL/L3_NO2 for nitrogen dioxide). Several filtering techniques (to achieve average annual and monthly values), data processing techniques (such as cropping within the limits of the study area), and additional analyses of the raster values of pollutants were employed for the collection.
- (b)
- The MODIS aerosol optical density (AOD) product’s annual satellite image data were gathered from the GEE platform. The MODIS sensors on NASA’s Aqua and Terra satellites use 36 spectral bands across a broad spectral range (from 410 to 1500 nm) to provide near-global daily readings [69]. In December 1999, MODIS was introduced on the Aqua platform, and in late May 2002, it was introduced on the Terra platform [70]. About 42 satellites with AOD recovery bands have been launched worldwide so far. MODIS AOD products are now among the most widely utilized and well-liked AOD data sources by academics because of their high retrieval accuracy, ease of use, and availability [71]. The Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA satellites Terra and Aqua provide the most widely used AOD datasets in air quality research. The acquired data demonstrated its applicability for evaluating air quality and providing further information on the spatial distribution of aerosols [72]. To determine the PM2.5 concentration level, an increasing number of studies have employed diverse AOD data as well as alternative models and algorithms in recent years, with positive outcomes [73,74,75]. However, most AOD products used in current studies are mainly based on existing mature AOD products, such as MODIS [73,76]. There are certain drawbacks to using MODIS data to calculate PM, such as the fact that MODIS has a limited lifespan and that its anticipated operating term has already passed [77]. Additionally, efforts are being made to alleviate the constraint of recording both the maximal and minimal PM2.5 peaks. To enhance model performance, more attention should be paid to ground data, atmospheric conditions, and physical features of the regression model [13].
- (c)
- Each year, Landsat (OLI/TIRS) sensors, which record temperature data and store them as digital numbers (DNs) within a range from 0 to 255, provide the land surface temperature (LST) [80]. Each image that was used was acquired during the study years. To convert DNs to Kelvin degrees, the following steps are performed:
- (1)
- Transforming DN into spectral radiance: In this study, DNs in each band of the image were transformed into physical measurements of sensor radiance Lλ, as shown in the following Equations (3) and (4):
- (2)
- Radiance value conversion to brightness temperature: The following formula was used for the conversion of spectral radiance to at-sensor brightness temperature:
2.3. AQI Calculations
3. Results and Discussion
3.1. Mean Annual LST
3.2. Mean Annual Pollutants Concentrations
3.2.1. AQI for Particulate Matter (PM2.5 and PM10)
3.2.2. AQI for Carbon Monoxide (CO)
3.2.3. AQI for Nitrogen Dioxide (NO2)
3.2.4. AQI for Sulfur Dioxide (SO2)
3.2.5. AQI for Ozone (O3)
3.3. Aggregated Air Quality Index (AAQI)
4. Limitations and Uncertainties of the Current Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, D.; Wang, J. Air pollution as a substantial threat to the improvement of agricultural total factor productivity: Global evidence. Envir Inter. 2023, 173, 107842. [Google Scholar] [CrossRef]
- Hereher, M.; Eissa, R.; Alqasemi, A.; El Kenawy, A.M. Assessment of air pollution at Greater Cairo in relation to the spatial variability of surface urban heat island. Environ. Sci. Pollut. Res. 2022, 29, 21412–21425. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.-X.; Nie, P.-Y.; Liu, M.; Peng, R.; Guo, T.; Wang, C.; Xie, X.-B. Multi-health effects of clean residential heating: Evidences from rural China’s coal-to-gas/electricity project. Energy Sustain. Dev. 2023, 73, 66–75. [Google Scholar] [CrossRef]
- Mostafa, M.K.; Gamal, G.; Wafiq, A. The impact of COVID 19 on air pollution levels and other environmental indicators-A case study of Egypt. J. Environ. Manag. 2021, 277, 111496. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). C.o.W.G.I., II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 1 January 2025).
- Liu, Q.; Yang, D.; Cao, L. Evolution and Prediction of the Coupling Coordination Degree of Production–Living–Ecological Space Based on Land Use Dynamics in the Daqing River Basin, China. Sustainability 2022, 14, 10864. [Google Scholar] [CrossRef]
- Nouri, F.; Taheri, M.; Ziaddini, M.; Najafian, J.; Rabiei, K.; Pourmoghadas, A.; Shariful Islam, S.M.; Sarrafzadegan, N. Effects of sulfur dioxide and particulate matter pollution on hospital admissions for hypertensive cardiovascular disease: A time series analysis. Front. Physiol. 2023, 14, 1124967. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hwang, J.; Maharjan, K.; Cho, H. A review of hydrogen utilization in power generation and transportation sectors: Achievements and future challenges. Int. J. Hydrogen Energy. 2023, 48, 28629–28648. [Google Scholar] [CrossRef]
- Morillas, C.; Alvarez, S.; Serio, C.; Masiello, G.; Martinez, S. TROPOMI NO2 Sentinel-5P data in the Community of Madrid: A detailed consistency analysis with in situ surface observations. Remote Sens. Appl. Soc. Environ. 2024, 33, 101083. [Google Scholar] [CrossRef]
- Nyaga, E.W. Aerosol Remote Sensing and Modelling: Estimation of Vehicular Emission Impact on Air Pollution in Nairobi, Kenya; University of Nairobi: Nairobi, Kenya, 2021. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Pérez-Navarro, A.; Conesa-García, C.; Zema, D.A.; Amado-Álvarez, J.P. What is going on within google earth engine? A systematic review and meta-analysis. Remote Sens. Appl. Soc. Environ. 2023, 29, 100907. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bui, H.Q.; Pham, H.V.; Luu, H.V.; Man, C.D.; Pham, H.N.; Le, H.T.; Nguyen, T.T. Particulate matter concentration mapping from MODIS satellite data: A Vietnamese case study. Environ. Res. Lett. 2015, 10, 095016. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic land-cover mapping using landsat time-series data based on google earth engine. Remote Sens. 2019, 11, 3023. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.G.; Oliphant, A.; Xiong, J.; Giri, C.; Pyla, V.; Dixit, S.; Whitbread, A.M. Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud. GIScience Remote Sens. 2020, 57, 302–322. [Google Scholar] [CrossRef]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Abdelsamie, E.A.; Mustafa, A.-r.A.; El-Sorogy, A.S.; Maswada, H.F.; Almadani, S.A.; Shokr, M.S.; El-Desoky, A.I.; Meroño de Larriva, J.E. Current and Potential Land Use/Land Cover (LULC) Scenarios in Dry Lands Using a CA-Markov Simulation Model and the Classification and Regression Tree (CART) Method: A Cloud-Based Google Earth Engine (GEE) Approach. Sustainability 2024, 16, 11130. [Google Scholar] [CrossRef]
- Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Huang, W.; Granger, J. A generalized supervised classification scheme to produce provincial wetland inventory maps: An application of Google Earth Engine for big geo data processing. Big Earth Data 2019, 3, 378–394. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Jafarzadeh, H.; Granger, J.E.; Mohammadimanesh, F.; Brisco, B.; Salehi, B.; Homayouni, S.; Weng, Q. A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: A case study in Newfoundland. GIScience Remote Sens. 2020, 57, 1102–1124. [Google Scholar] [CrossRef]
- El-Hamid, H.T.A.; Nour-Eldin, H.; Rebouh, N.Y.; El-Zeiny, A.M. Past and future changes of land use/land cover and the potential impact on ecosystem services value of Damietta Governorate, Egypt. Land 2022, 11, 2169. [Google Scholar] [CrossRef]
- Meng, Q.; Richmond-Bryant, J.; Lu, S.-E.; Buckley, B.; Welsh, W.J.; Whitsel, E.A.; Hanna, A.; Yeatts, K.B.; Warren, J.; Herring, A.H. Cardiovascular outcomes and the physical and chemical properties of metal ions found in particulate matter air pollution: A QICAR study. Environ. Health Perspect. 2013, 121, 558–564. [Google Scholar] [CrossRef]
- Ghasempour, F.; Sekertekin, A.; Kutoglu, S.H. Google Earth Engine based spatio-temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing. J. Clean. Prod. 2021, 319, 128599. [Google Scholar] [CrossRef] [PubMed]
- Sameh, S.; Zarzoura, F.; El-Mewafi, M. Spatio-temporal Analysis Mapping of Air Quality Monitoring in Cairo using Sentinel-5 satellite data and Google earth engine. Mansoura Eng. J. 2023, 49, 3. [Google Scholar] [CrossRef]
- Halder, B.; Ahmadianfar, I.; Heddam, S.; Mussa, Z.H.; Goliatt, L.; Tan, M.L.; Sa’adi, Z.; Al-Khafaji, Z.; Al-Ansari, N.; Jawad, A.H. Machine learning-based country-level annual air pollutants exploration using Sentinel-5P and Google Earth Engine. Sci. Rep. 2023, 13, 7968. [Google Scholar] [CrossRef]
- Aldabash, M.; Bektas Balcik, F.; Glantz, P. Validation of MODIS C6. 1 and MERRA-2 AOD using AERONET observations: A comparative study over Turkey. Atmosphere 2020, 11, 905. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, Z.Y. Space-borne air pollution observation from sentinel-5p tropomi: Relationship between pollutants, geographical and demographic data. J. Eng. Geol. 2020, 5, 130–137. [Google Scholar] [CrossRef]
- de Laat, A.; Vazquez-Navarro, M.; Theys, N.; Stammes, P. Analysis of properties of the 19 February 2018 volcanic eruption of Mount Sinabung in S5P/TROPOMI and Himawari-8 satellite data. Nat. Hazards Earth Syst. Sci. 2020, 20, 1203–1217. [Google Scholar] [CrossRef]
- Chang, R.; Zhao, J.; Li, W.; Jia, J. Temporal and spatial distribution of SO2 in the process of haze in north China based on remote sensing data. Int. J. Environ. Monit. Anal. 2019, 7, 27. [Google Scholar]
- Salmabadi, H.; Saeedi, M. Monitoring of SO2 column concentration over Iran using satellite-based observations during 2005-2016. Pollution 2019, 5, 257–268. [Google Scholar]
- Wang, G.; Deng, X.-J.; Wang, C.-L.; Zhang, X.-Y.; Yan, H.-H.; Chen, D.-H.; Guo, T. A new and detailed assessment of the spatiotemporal characteristics of the SO2 distribution in the pearl river delta region of China and the effect of SO2 emission reduction. Aerosol Air Qual. Res. 2019, 19, 1900–1910. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, D.; Zhang, X. Atmospheric aerosol pollution across China: A spatiotemporal analysis of satellite-based aerosol optical depth during 2000–2016. Int. J. Digit. Earth 2019, 12, 843–857. [Google Scholar] [CrossRef]
- Hajiloo, F.; Hamzeh, S.; Gheysari, M. Impact assessment of meteorological and environmental parameters on PM 2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran). Environ. Sci. Pollut. Res. 2019, 26, 24331–24345. [Google Scholar] [CrossRef]
- Borsdorff, T.; aan de Brugh, J.; Pandey, S.; Hasekamp, O.; Aben, I.; Houweling, S.; Landgraf, J. Carbon monoxide air pollution on sub-city scales and along arterial roads detected by the Tropospheric Monitoring Instrument. Atmos. Chem. Phys. 2019, 19, 3579–3588. [Google Scholar] [CrossRef]
- O’Brien, D.; Polonsky, I.; Utembe, S.; Rayner, P. Remote sensing CO2, CH4 and CO emissions in a polluted urban environment. Atmos. Meas. Tech. Discuss. 2016, 9, 4633–4654. [Google Scholar] [CrossRef]
- Tzortziou, M.; Parker, O.; Lamb, B.; Herman, J.R.; Lamsal, L.; Stauffer, R.; Abuhassan, N. Atmospheric Trace Gas (NO2 and O3) variability in South Korean coastal waters, and implications for remote sensing of coastal ocean color dynamics. Remote Sens. 2018, 10, 1587. [Google Scholar] [CrossRef]
- Xu, J.; Heue, K.-P.; Coldewey-Egbers, M.; Romahn, F.; Doicu, A.; Loyola, D. Full-Physics Inverse Learning Machine for satellite remote sensing of ozone profile shapes and tropospheric columns. Int. Arch. Photogramm. Remote Sens. 2018, 42, 1995–1998. [Google Scholar] [CrossRef]
- Borsdorff, T.; Aan de Brugh, J.; Hu, H.; Aben, I.; Hasekamp, O.; Landgraf, J. Measuring carbon monoxide with TROPOMI: First results and a comparison with ECMWF-IFS analysis data. Geophys. Res. Lett. 2018, 45, 2826–2832. [Google Scholar] [CrossRef]
- Garane, K.; Koukouli, M.-E.; Verhoelst, T.; Lerot, C.; Heue, K.-P.; Fioletov, V.; Balis, D.; Bais, A.; Bazureau, A.; Dehn, A. TROPOMI/S5P total ozone column data: Global ground-based validation and consistency with other satellite missions. Atmos. Meas. Tech. 2019, 12, 5263–5287. [Google Scholar] [CrossRef]
- Al-Alola, S.S.; Alkadi, I.I.; Alogayell, H.M.; Mohamed, S.A.; Ismail, I.Y. Air quality estimation using remote sensing and GIS-spatial technologies along Al-Shamal train pathway, Al-Qurayyat City in Saudi Arabia. Environ. Sustain. Indic. 2022, 15, 100184. [Google Scholar] [CrossRef]
- Leguijt, G.; Maasakkers, J.D.; Denier van der Gon, H.A.; Segers, A.J.; Borsdorff, T.; Aben, I. Quantification of carbon monoxide emissions from African cities using TROPOMI. Geosci. Model Dev. 2023, 2023, 8899–8919. [Google Scholar] [CrossRef]
- Fuladlu, K.; Altan, H. Examining land surface temperature and relations with the major air pollutants: A remote sensing research in case of Tehran. Urban Clim. 2021, 39, 100958. [Google Scholar] [CrossRef]
- Nations, U. World Urbanization Prospects: The 2014 Revision, Highlights; Department of Economic and Social Affairs, Population Division, United Nations: New York, NY, USA, 2014; Volume 32. [Google Scholar]
- World Urbanization Prospects: The 2018 Revision 2018; United Nation: NewYork, NY, USA. 2019. Available online: https://esa.un.org/unpd/wup/ (accessed on 1 January 2025).
- Fuladlu, K. Urban sprawl negative impact: Enkomi return phase. J. Contemp. Urban Aff. 2019, 3, 44–51. [Google Scholar] [CrossRef]
- Fuladlu, K. Urban sprawl measurement with use of VMT pattern: A longitudinal method in case of Famagusta. Int. J. Adv. Appl. Sci. 2020, 7, 12–19. [Google Scholar] [CrossRef]
- Fuladlu, K.; Riza, M.; İlkan, M. Impact of urban sprawl: The case of the Famagusta, Cyprus. In Proceedings of the 1st Regional Conference: Cyprus Network of Urban Morphology CyNUM, Eastern Mediterranean University, Famagusta, Northern Cyprus, 16–18 May 2018; pp. 16–18. [Google Scholar]
- El Kamouri, H.E.A.; Essamoud, R.; Hakdaoui, M. Remote Sensing and Geospatial Approach for Assessing the Impact of Automobiles on Air Quality, Case Study: Casablanca. J. Geosci. Environ. Prot. 2024, 12, 252–271. [Google Scholar] [CrossRef]
- Anggraini, T.S.; Irie, H.; Sakti, A.D.; Wikantika, K. Machine learning-based global air quality index development using remote sensing and ground-based stations. Environ. Adv. 2024, 15, 100456. [Google Scholar] [CrossRef]
- Anggraini, T.S.; Irie, H.; Sakti, A.D.; Wikantika, K. Global Air Quality Index Prediction Using Integrated Spatial Observation Data and Geographics Machine Learning. Sci. Remote Sens. (RSE) 2025, 11, 100197. [Google Scholar] [CrossRef]
- Eze, I.C.; Schaffner, E.; Fischer, E.; Schikowski, T.; Adam, M.; Imboden, M.; Tsai, M.; Carballo, D.; von Eckardstein, A.; Künzli, N. Long-term air pollution exposure and diabetes in a population-based Swiss cohort. Environ. Int. 2014, 70, 95–105. [Google Scholar] [CrossRef]
- Hamid, N.E.; Razek, T.; Hewehy, M.I.; Ahmed, W.S.; Ibrahim, Y.H. Effect of Air Pollution on Human Health of Workers in A Factory. Egypt. J. Chem. 2024, 67, 465–473. [Google Scholar] [CrossRef]
- WHO. 9 Out of 10 People Worldwide Breathe Polluted Air, but More Countries Are Taking Action. 2018. Available online: https://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action (accessed on 1 April 2025).
- World Health Organization. Global Health Observatory Data Repository: Deaths by Country. 2018. Available online: https://apps.who.int/gho/data/view.main.BODAMBIENTAIRDTHS (accessed on 1 April 2025).
- Vollset, S.E.; Goren, E.; Yuan, C.-W.; Cao, J.; Smith, A.E.; Hsiao, T.; Bisignano, C.; Azhar, G.S.; Castro, E.; Chalek, J. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: A forecasting analysis for the Global Burden of Disease Study. Lancet 2020, 396, 1285–1306. [Google Scholar] [CrossRef]
- Larsen, B. Publication: Arab Republic of Egypt—Cost of Environmental Degradation: Air and Water Pollution; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope, C.A., III. Ambient PM2. 5 reduces global and regional life expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef]
- UNEP—UN Environment Programme. Pollution Action Note—Data You Need to Know. 2022. Available online: https://www.unep.org/interactive/air-pollution-note (accessed on 1 April 2025).
- World Health Organization. Egypt: Noncommunicable Diseases. 2022. Available online: http://www.emro.who.int/egy/programmes/noncommunicable-diseases.html (accessed on 1 January 2025).
- Oakes, M.; Baxter, L.; Long, T.C. Evaluating the application of multipollutant exposure metrics in air pollution health studies. Environ. Int. 2014, 69, 90–99. [Google Scholar] [CrossRef]
- Shah, D.P.; Patel, P. A comparison between national air quality index, india and composite air quality index for Ahmedabad, India. Environ. Chall. 2021, 5, 100356. [Google Scholar] [CrossRef]
- Bishoi, B.; Prakash, A.; Jain, V. A comparative study of air quality index based on factor analysis and US-EPA methods for an urban environment. Aerosol Air Qual. Res. 2009, 9, 1–17. [Google Scholar] [CrossRef]
- Cairncross, E.K.; John, J.; Zunckel, M. A novel air pollution index based on the relative risk of daily mortality associated with short-term exposure to common air pollutants. Atmos. Environ. 2007, 41, 8442–8454. [Google Scholar] [CrossRef]
- Mirabelli, M.C.; Ebelt, S.; Damon, S.A. Air Quality Index and air quality awareness among adults in the United States. Environ. Res. 2020, 183, 109185. [Google Scholar] [CrossRef] [PubMed]
- Kyrkilis, G.; Chaloulakou, A.; Kassomenos, P.A. Development of an aggregate Air Quality Index for an urban Mediterranean agglomeration: Relation to potential health effects. Environ. Int. 2007, 33, 670–676. [Google Scholar] [CrossRef]
- Ruggieri, M.; Plaia, A. An aggregate AQI: Comparing different standardizations and introducing a variability index. Sci. Total Environ. 2012, 420, 263–272. [Google Scholar] [CrossRef]
- Remer, L.A.; Tanré, D.; Kaufman, Y.J. Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005. 2006. Available online: https://modis-images.gsfc.nasa.gov/_docs/MOD04-MYD04_ATBD_C005.pdf (accessed on 1 January 2025).
- Sayer, A.; Munchak, L.; Hsu, N.; Levy, R.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Zhu, S.; Tang, J.; Zhou, X.; Li, P.; Liu, Z.; Zhang, C.; Zou, Z.; Li, T.; Peng, C. Research progress, challenges, and prospects of PM2. 5 concentration estimation using satellite data. Environ. Rev. 2023, 31, 605–631. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 2007, 112, D13. [Google Scholar] [CrossRef]
- Shaw, N.; Gorai, A. Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration. Environ. Dev. Sustain. 2020, 22, 265–279. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Im, J.; Song, C.-K.; Choi, M.; Kim, J.; Lee, S.; Park, R.; Kim, S.-M.; Yoon, J. Estimation of spatially continuous daytime particulate matter concentrations under all sky conditions through the synergistic use of satellite-based AOD and numerical models. Sci. Total Environ. 2020, 713, 136516. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A.; et al. Improved 1 km resolution PM 2.5 estimates across China using enhanced space–time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289. [Google Scholar] [CrossRef]
- She, L.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Che, Y.; Fan, C.; Xie, Y.; Li, Y. Joint retrieval of aerosol optical depth and surface reflectance over land using geostationary satellite data. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1489–1501. [Google Scholar] [CrossRef]
- Yao, F.; Si, M.; Li, W.; Wu, J. A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2. 5 concentrations over a heavily polluted region in China. Sci. Total Environ. 2018, 618, 819–828. [Google Scholar] [CrossRef]
- Kan, X.; Zhu, L.; Zhang, Y.; Yuan, Y. Spatial-temporal variability of PM2. 5 concentration in Xuzhou based on satellite remote sensing and meteorological data. Int. J. Sens. Netw. 2019, 29, 181–191. [Google Scholar] [CrossRef]
- Retalis, A.; Sifakis, N. Urban aerosol mapping over Athens using the differential textural analysis (DTA) algorithm on MERIS-ENVISAT data. ISPRS J. Photogramm. 2010, 65, 17–25. [Google Scholar] [CrossRef]
- Coll, C.; Galve, J.M.; Sanchez, J.M.; Caselles, V. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans. Geosci. Remote Sens. 2009, 48, 547–555. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Guideline for Reporting of Daily Air Quality: Air Quality Index (AQI); EPA-454/B06-001; United States Environmental Protection Agency: Washington, DC, USA, 2006.
- Zhang, X.; Lin, M. Comparison between two air quality index systems in study of urban air pollution in China and its socio-economic determinants. J. Univ. Chin. Acad. Sci. 2020, 37, 39–50. [Google Scholar]
- Hu, J.; Ying, Q.; Wang, Y.; Zhang, H. Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices. Environ. Int. 2015, 84, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Shihab, A.S. Assessment of air quality through multiple air quality index models–A comparative study. J. Ecol. Eng. 2023, 24, 110–116. [Google Scholar] [CrossRef]
- Keith, L.; Meerow, S. Planning for Urban Heat Resilience; American Planning Association: Chicago, IL, USA, 2022. [Google Scholar]
- EM-DAT. Emergency Management Database, CRED, Catholic University of Louvain. 2022. Available online: https://www.emdat.be/publications/ (accessed on 6 April 2022).
- Piracha, A.; Chaudhary, M.T. Urban air pollution, urban heat island and human health: A review of the literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Cichowicz, R.; Bochenek, A.D. Assessing the effects of urban heat islands and air pollution on human quality of life. Anthropocene 2024, 46, 100433. [Google Scholar] [CrossRef]
- Weng, Q.; Yang, S. Urban air pollution patterns, land use, and thermal landscape: An examination of the linkage using GIS. Environ. Monit. Assess. 2006, 117, 463–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, J.; Liu, Z.; Liu, Y.; Chen, Z. Relationship between land surface temperature and air quality in urban and suburban areas: Dynamic changes and interaction effects. Sustain. Cities Soc. 2025, 118, 106043. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, W.; Yu, W.; Wu, T. Combined effects of urban forests on land surface temperature and PM2. 5 pollution in the winter and summer. Sustain. Cities Soc. 2024, 104, 105309. [Google Scholar] [CrossRef]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef]
- Xue, H.; Xu, X.; Zhu, Q.; Yang, G.; Long, H.; Li, H.; Yang, X.; Zhang, J.; Yang, Y.; Xu, S. Object-oriented crop classification using time series sentinel images from google earth engine. Remote Sens. 2023, 15, 1353. [Google Scholar] [CrossRef]
- Panis, L.I.; Broekx, S.; Liu, R. Modelling instantaneous traffic emission and the influence of traffic speed limits. Sci. Total Environ. 2006, 371, 270–285. [Google Scholar] [CrossRef]
- Panis, L.I.; Beckx, C.; Broekx, S.; De Vlieger, I.; Schrooten, L.; Degraeuwe, B.; Pelkmans, L. PM, NOx and CO2 emission reductions from speed management policies in Europe. Transp. Policy 2011, 18, 32–37. [Google Scholar] [CrossRef]
- Brunelli, U.; Piazza, V.; Pignato, L.; Sorbello, F.; Vitabile, S. Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Atmos. Environ. 2007, 41, 2967–2995. [Google Scholar] [CrossRef]
- Hong, T.; Huang, X.; Zhang, X.; Deng, X. Correlation modelling between land surface temperatures and urban carbon emissions using multi-source remote sensing data: A case study. Phys. Chem. Earth 2023, 132, 103489. [Google Scholar] [CrossRef]
- Song, C.; Yang, J.; Wu, F.; Xiao, X.; Xia, J.; Li, X. Response characteristics and influencing factors of carbon emissions and land surface temperature in Guangdong Province, China. Urban Clim. 2022, 46, 101330. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Al Rakib, A.; Fattah, M.A.; Rahaman, Z.A.; Sattar, G.S. Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh. Build Environ. 2022, 208, 108573. [Google Scholar] [CrossRef]
- Rahaman, Z.A.; Kafy, A.-A.; Saha, M.; Rahim, A.A.; Almulhim, A.I.; Rahaman, S.N.; Fattah, M.A.; Rahman, M.T.; Kalaivani, S.; Al Rakib, A.; et al. Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Build Environ. 2022, 222, 109335. [Google Scholar] [CrossRef]
- Oderinde, F. A Nexus between Carbon Emissions and Land Surface Temperature in the Six Ecological Zones of Nigeria. Tanz. J. Sci. 2020, 46, 329–344. [Google Scholar]
- Bala, R.; Yadav, V.P.; Kumar, D.N.; Prasad, R. Examining the relationship of major air pollutants with land surface parameters and its monthly variation in Indian cities using satellite data. Remote Sens. Appl. Soc. Environ. 2024, 35, 101232. [Google Scholar] [CrossRef]
- Ngarambe, J.; Joen, S.J.; Han, C.-H.; Yun, G.Y. Exploring the relationship between particulate matter, CO, SO2, NO2, O3 and urban heat island in Seoul, Korea. Hazard. Mater. 2021, 403, 123615. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, H.; Zhe, F.; Xie, W.; Song, J. Study on the relationship between urbanization and fine particulate matter (PM2. 5) concentration and its implication in China. J. Clean. Prod. 2018, 182, 872–882. [Google Scholar] [CrossRef]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.-W.; Cheng, W.-L. Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci. Total Environ. 2009, 407, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.K.; Mathew, A. Investigating the spatio-temporal correlation between urban heat island and atmospheric pollution island interaction over Delhi, India using geospatial techniques. Arab. J. Geosci. 2022, 15, 1591. [Google Scholar] [CrossRef]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and spatial variation relationship and influence factors on surface urban heat island and ozone pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631, 921–933. [Google Scholar] [CrossRef]
- Elsayed, I. Mitigation of the urban heat island of the city of Kuala Lumpur, Malaysia. Middle-East J. Sci. Res. 2012, 11, 1602–1613. [Google Scholar]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of urban heat islands: Materials, utility programs, updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guédalia, D. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Geneva, Switzerland, 2006; Available online: https://www.who.int/publications/i/item/WHO-SDE-PHE-OEH-06.02 (accessed on 1 April 2025).
- Safar, Z.S.; Labib, M.W. Assessment of particulate matter and lead levels in the Greater Cairo area for the period 1998–2007. J. Adv. Res. 2010, 1, 53–63. [Google Scholar] [CrossRef]
- Borsdorff, T.; Hu, H.; Hasekamp, O.; Sussmann, R.; Rettinger, M.; Hase, F.; Gross, J.; Schneider, M.; Garcia, O.; Stremme, W. Mapping carbon monoxide pollution from space down to city scales with daily global coverage. Atmos. Meas. Tech. 2018, 11, 5507–5518. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M. Air quality changes in Shanghai, China, and the surrounding urban agglomeration during the COVID-19 lockdown. J. Geovisualization Spat. Anal. 2020, 4, 22. [Google Scholar] [CrossRef]
- Gamal, G.; Abdeldayem, O.M.; Elattar, H.; Hendy, S.; Gabr, M.E.; Mostafa, M.K. Remote sensing surveillance of NO2, SO2, CO, and AOD along the Suez Canal Pre-and Post-COVID-19 lockdown periods and during the blockage. Sustainability 2023, 15, 9362. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). National Service Center for Environmental Publications (NSCEP). Air Quality Index (AQI): A Guide to Air Quality and Your Health; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2009.
- Abbasi, S.A.; Abbasi, T. Ozone Hole: Past, Present, Future; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Rex, M.; Salawitch, R.; von der Gathen, P.; Harris, N.; Chipperfield, M.; Naujokat, B. Arctic ozone loss and climate change. Geophys. Res. Lett. 2004, 31, L04116. [Google Scholar] [CrossRef]
- Alexandris, D.; Varotsos, C.; Kondratyev, K.Y.; Chronopoulos, G. On the altitude dependence of solar effective UV. Terr. Planet. Sci. 1999, 24, 515–517. [Google Scholar] [CrossRef]
- World Health Organization. Protection Against Exposure to Ultraviolet Radiation; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Fioletov, V.; McArthur, L.; Kerr, J.; Wardle, D. Long-term variations of UV-B irradiance over Canada estimated from Brewer observations and derived from ozone and pyranometer measurements. J. Geophys. Res. 2001, 106, 23009–23027. [Google Scholar] [CrossRef]
- Harris, N.; Ancellet, G.; Bishop, L.; Hofmann, D.; Kerr, J.; McPeters, R.; Prendez, M.; Randel, W.; Staehelin, J.; Subbaraya, B. Trends in stratospheric and free tropospheric ozone. J. Geophys. Res. 1997, 102, 1571–1590. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project; Technical Report 50; WMO: Geneva, Switzerland, 2006. [Google Scholar]
- Morris, G.A.; Ford, B.; Rappenglück, B.; Thompson, A.M.; Mefferd, A.; Ngan, F.; Lefer, B. An evaluation of the interaction of morning residual layer and afternoon mixed layer ozone in Houston using ozonesonde data. Atmos. Environ. 2010, 44, 4024–4034. [Google Scholar] [CrossRef]
- Hu, X.-M.; Klein, P.M.; Xue, M.; Zhang, F.; Doughty, D.C.; Forkel, R.; Joseph, E.; Fuentes, J.D. Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos. Environ. 2013, 70, 123–130. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Eaturu, A.; Biswas, S.; Lasko, K.; Sahu, S.; Garg, J.; Justice, C. Spatial and temporal variations of air pollution over 41 cities of India during the COVID-19 lockdown period. Sci. Rep. 2020, 10, 16574. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; van Aardenne, J.A.; Monni, S.; Doering, U.; Olivier, J.G.J.; Pagliari, V.; et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4. 3.2. Earth Syst. Sci. Data 2018, 10, 1987–2013. [Google Scholar] [CrossRef]
- Alexis, N.E.; Lay, J.C.; Hazucha, M.; Harris, B.; Hernandez, M.L.; Bromberg, P.A.; Kehrl, H.; Diaz-Sanchez, D.; Kim, C.; Devlin, R.B.; et al. Low-level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans. Inhal. Toxicol. 2010, 22, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Veefkind, P.; Van Oss, R.; Eskes, H.; Borowiak, A.; Dentner, F.; Wilson, J. The applicability of remote sensing in the field of air pollution. Inst. Environ. Sustain. 2007, 59, JRC35373. [Google Scholar]
- Engel-Cox, J.A.; Hoff, R.M.; Haymet, A. Recommendations on the use of satellite remote-sensing data for urban air quality. J. Air Waste Manag. 2004, 54, 1360–1371. [Google Scholar] [CrossRef] [PubMed]
- Christopher, S.A.; Gupta, P. Satellite remote sensing of particulate matter air quality: The cloud-cover problem. J. Air Waste Manag. 2010, 60, 596–602. [Google Scholar] [CrossRef]
- Bernardino, T.; Oliveira, M.A.; Silva, J.N. Using remotely sensed data for air pollution assessment. arXiv 2024, arXiv:2402. 06653. [Google Scholar]
LULC Classes | Area | |
---|---|---|
km2 | % | |
Urban areas | 281.40 | 23.11 |
Water bodies | 88.60 | 7.27 |
Cultivated soils | 800.40 | 65.72 |
Bare soils | 47.46 | 3.90 |
AQI | PM2.5 (ppb) | PM10 (ppb) | CO (ppm) | O3 (ppm) | SO2 (ppb) | NO2 (ppb) | AQI Category |
---|---|---|---|---|---|---|---|
0–50 | 0–9 | 0–54 | 0–4.4 | 0–0.054 | 0–35 | 0–53 | Good |
51–100 | 9.1–35.4 | 55–154 | 4.5–9.4 | 0.055–0.070 | 36–75 | 54–100 | Moderate |
101–150 | 35.5–55.4 | 155–254 | 9.5–124 | 0.071–0.085 | 76–185 | 101–360 | Unhealthy for sensitive group |
151–200 | 55.5–125.4 | 255–354 | 12.5–15.4 | 0.086–0.105 | 186–304 | 361–649 | Unhealthy |
201–300 | 125.5–225.4 | 355–424 | 15.5–30.4 | 0.106–0.200 | 305–604 | 650–1249 | Very unhealthy |
301–500 | 225.5–326.4 | 425–604 | 30.5–50.4 | 0.201–0.604 | 605–1004 | 1250–2049 | Hazardous |
Years | PM2.5 | PM10 | CO | O3 | SO2 | NO2 |
---|---|---|---|---|---|---|
2019 | 283–449 | 422–702 | 286–326 | 324–325 | 51–303 | 135–149 |
2020 | 320–505 | 462–774 | 909–956 | 331–333 | 107–339 | 134–149 |
2021 | 298–469 | 425–713 | 918–967 | 304–304 | 85–339 | 136–153 |
2022 | 320–517 | 463–794 | 858–901 | 304–304 | 29–297 | 133–152 |
2023 | 323–479 | 468–729 | 884–936 | 331–333 | 63–281 | 140–157 |
2024 | 340–503 | 492–766 | 928–983 | 348–349 | 66–295 | 147–165 |
Years | AAQI | Category |
---|---|---|
2019 | 265–350 | very unhealthy to hazardous |
2020 | 388–477 | hazardous |
2021 | 377–475 | hazardous |
2022 | 369–470 | hazardous |
2023 | 378–475 | hazardous |
2024 | 397–489 | hazardous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, A.-r.A.; Shokr, M.S.; Alharbi, T.; Abdelsamie, E.A.; El-Sorogy, A.S.; Meroño de Larriva, J.E. Integration of Google Earth Engine and Aggregated Air Quality Index for Monitoring and Mapping the Spatio-Temporal Air Quality to Improve Environmental Sustainability in Arid Regions. Sustainability 2025, 17, 3450. https://doi.org/10.3390/su17083450
Mustafa A-rA, Shokr MS, Alharbi T, Abdelsamie EA, El-Sorogy AS, Meroño de Larriva JE. Integration of Google Earth Engine and Aggregated Air Quality Index for Monitoring and Mapping the Spatio-Temporal Air Quality to Improve Environmental Sustainability in Arid Regions. Sustainability. 2025; 17(8):3450. https://doi.org/10.3390/su17083450
Chicago/Turabian StyleMustafa, Abdel-rahman A., Mohamed S. Shokr, Talal Alharbi, Elsayed A. Abdelsamie, Abdelbaset S. El-Sorogy, and Jose Emilio Meroño de Larriva. 2025. "Integration of Google Earth Engine and Aggregated Air Quality Index for Monitoring and Mapping the Spatio-Temporal Air Quality to Improve Environmental Sustainability in Arid Regions" Sustainability 17, no. 8: 3450. https://doi.org/10.3390/su17083450
APA StyleMustafa, A.-r. A., Shokr, M. S., Alharbi, T., Abdelsamie, E. A., El-Sorogy, A. S., & Meroño de Larriva, J. E. (2025). Integration of Google Earth Engine and Aggregated Air Quality Index for Monitoring and Mapping the Spatio-Temporal Air Quality to Improve Environmental Sustainability in Arid Regions. Sustainability, 17(8), 3450. https://doi.org/10.3390/su17083450