The Role of Italian Local Agencies for Water Management in the Mitigation of and Adaptation to Climate Change: Stated Preference Methods for Future Sustainable Strategies
Abstract
:1. Introduction
1.1. Climate Change and Participatory Irrigation Management: An International Perspective
1.2. Italian Local Agencies for Water Management: The Role of Water User Associations in Participatory Irrigation Management
- (i)
- Groundwater Recharge
- (ii)
- Prevention of Hydrogeological Instability
- (iii)
- Protection and Restoration of Biodiversity
- (iv)
- Natural Water Purification
2. Materials and Methods
2.1. Experimental Design
2.2. Data Collection and Questionnaire Structure
- (i)
- Introduction and Informed Consent
- (ii)
- Choice Experiment
- (iii)
- Awareness and Engagement with Climate Change and Italian Local Agencies for Water Management
- (iv)
- Socioeconomic Information
2.3. Model Specification
3. Results
3.1. Sample Description
3.2. Mixed Logit Model (MLM) Results
3.3. Wtp Analysis
3.4. Latent Class Logit Model (LCL) Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Harvey, J.A.; Tougeron, K.; Gols, R.; Heinen, R.; Abarca, M.; Abram, P.K.; Basset, Y.; Berg, M.; Boggs, C.; Brodeur, J.; et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 2023, 93, e1553. [Google Scholar] [CrossRef]
- Report Scientifico CMCC IPCC Focal Point for Italy’, November 2023. Available online: https://www.aics.gov.it/wp-content/uploads/2023/11/22_09_SC_ETE_rivista_MCN_Web.pdf (accessed on 6 April 2025).
- Cesaretti, G.P.; Misso, R.R.; Ardeleanu, M.P.; Rotondo, G. The challenge of climate change and the common agriculture policy. Qual.-Access Success 2011, 12, 4–9. [Google Scholar]
- Cammarano, D.; Ronga, D.; Di Mola, I.; Mori, M.; Parisi, M. Impact of climate change on water and nitrogen use efficiencies of processing tomato cultivated in Italy. Agric. Water Manag. 2020, 241, 106336. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Wei, T.; Wang, Y.; Liu, Y.; Xu, L.; He, J.; Wang, X. A quantitative analysis framework for analyzing impacts of climate change on water-food-energy-ecosystem nexus in irrigation areas based on WEAP-MODFLOW. J. Clean. Prod. 2024, 470, 143315. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. Comm 640 Final; European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 11 December 2021).
- Kulkarni, S.A.; Tyagi, A.C. Participatory Irrigation Management: Understanding the Role of Cooperative Culture. 2012. Available online: https://www.researchgate.net/publication/341999539 (accessed on 6 April 2025).
- Engler, A.; Melo, O.; Rodríguez, F.; Peñafiel, B.; Jara-Rojas, R. Governing Water Resource Allocation: Water User Association Characteristics and the Role of the State. Water 2021, 13, 2436. [Google Scholar] [CrossRef]
- Gorton, M.; Sauer, J.; Peshevski, M.; Bosev, D.; Shekerinov, D.; Quarrie, S. Water Communities in the Republic of Macedonia: An Empirical Analysis of Membership Satisfaction and Payment Behavior. World Dev. 2009, 37, 1951–1963. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J. An Empirical Examination on the Role of Water User Associations for Irrigation Management in Rural China. Water Resour. Res. 2018, 54, 9791–9811. [Google Scholar] [CrossRef]
- Gany, A.H.A.; Sharma, P.; Singh, S. Global Review of Institutional Reforms in the Irrigation Sector for Sustainable Agricultural Water Management, Including Water Users’ Associations. Irrig. Drain. 2019, 68, 84–97. [Google Scholar] [CrossRef]
- Ricks, J.I. Building Participatory Organizations for Common Pool Resource Management: Water User Group Promotion in Indonesia. World Dev. 2016, 77, 34–47. [Google Scholar] [CrossRef]
- Rustinsyah, R.; Prasetyo, R.A. Stakeholder engagement in a water user association for agricultural irrigation management in the villages in Indonesia. J. Water Land Dev. 2019, 40, 181–191. [Google Scholar] [CrossRef]
- LMworia, M.; Sande, A.; Kiboro, C. Water Resource Users Associations Catchment Protection Strategies on Promotion of Sustainable Water Projects in Tana Catchment Area, Kenya. J. Afr. Interdiscip. Stud. 2019, 3, 134–146. [Google Scholar]
- Richards, N.; Syallow, D. Water Resources Users Associations in the Mara Basin, Kenya: Pitfalls and Opportunities for Community Based Natural Resources Management. Front. Environ. Sci. 2018, 6. [Google Scholar] [CrossRef]
- Shindo, S.; Yamamoto, K. Strengthening Water Users’ Organization targeting for Participatory Irrigation Management in Egypt. Paddy Water Environ. 2017, 15, 773–785. [Google Scholar] [CrossRef]
- Arslan, F.; Tendero, J.I.C.; Díaz, J.A.R.; Zema, D.A. Comparison of Irrigation Management in Water User Associations of Italy, Spain and Turkey Using Benchmarking Techniques. Water Resour. Manag. 2023, 37, 55–74. [Google Scholar] [CrossRef]
- Umetsu, C.; Donma, S.; Nagano, T.; Coşkun, Z. The Role of Efficient Management of Water Users’ Associations for Adapting to Future Water Scarcity Under Climate Change. In Climate Change Impacts on Basin Agro-Ecosystems; Springer International Publishing: Cham, Switzerland, 2019; pp. 319–342. [Google Scholar] [CrossRef]
- Galvani, A. La Legislazione della Bonifica e i Consorzi di Bonifica in Italia; May 2009. Available online: https://amsacta.unibo.it/id/eprint/2570/ (accessed on 6 April 2025).
- Marzano, E. Consorzi di Bonifica: Analisi di un Fenomeno Tra Essenza ed Apparenza. Riv. Della Corte Conti 2021, 55–66. Available online: https://www.corteconti.it/Download?id=e84dd06f-d258-4fe9-8669-9582640b3f31 (accessed on 6 April 2025).
- Gargano, M. I Consorzi di Bonifica in Italia, Ieri e Oggi; Bologna, Italy, 2019. Available online: https://amsacta.unibo.it/id/eprint/6238/ (accessed on 6 April 2025).
- Zucaro, R. Bonifica Idraulica, Impianti e reti Irrigue: Da 150 anni Insieme all’Italia; INEA: Rome, Italy, 2011. [Google Scholar]
- Regione Veneto. Servizi Ecosistemici e Attività Irrigua (Volume 1). Parte 1: Schemi e Sottoschemi Irrigui. Parte 2: Ordinamenti Colturali nei Distretti Irrigui 2023, Venezia Mestre (VE). Available online: https://sharing.regione.veneto.it/index.php/s/cnTLfADmPM3nLnW (accessed on 6 April 2025).
- IX Commissione Agricoltura. Indagine Conoscitiva Sui Consorzi di Bonifica, Irrigazione e Valorizzazione Dell’ambiente; IX Commissione Agricoltura: Roma, Italy, 2020. [Google Scholar]
- Thiery, W.; Davin, E.L.; Lawrence, D.M.; Hirsch, A.L.; Hauser, M.; Seneviratne, S.I. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 2017, 122, 1403–1422. [Google Scholar] [CrossRef]
- Thiery, W.; Visser, A.J.; Fischer, E.M.; Hauser, M.; Hirsch, A.L.; Lawrence, D.M.; Lejeune, Q.; Davin, E.L.; Seneviratne, S.I. Warming of hot extremes alleviated by expanding irrigation. Nat. Commun. 2020, 11, 290. [Google Scholar] [CrossRef]
- Mezzalira, G.; Niceforo, U.; Gusmaroli, G. Forested infiltration areas (FIA); principles, experiences, perspectives. Acque Sotter.-Ital. J. Groundw. 2014, 3. [Google Scholar] [CrossRef]
- Water Framework Directive. 2000/60/EC. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 6 April 2025).
- CIRF. Siccità, Alluvioni e Gestione dei Corsi D’acqua per L’adattamento al Cambiamento Climatico: Servono Soluzioni Integrate e Basate sulla Natura Il. April 2023. Available online: https://www.cirf.org/siccita-alluvioni-e-gestione-corsi-acqua-per-adattamento-al-cambiamento-climatico-servono-soluzioni-integrate-e-basate-sulla-natura/ (accessed on 6 April 2025).
- Rossetto, R.; Bonari, E. The future of Managed Aquifer Recharge in Italy: The European FPVII MARSOL Project and the European Innovation Partnership on Water Mar to Market. Acque Sotter.-Ital. J. Groundw. 2014, 3. [Google Scholar] [CrossRef]
- Presidenza del Consiglio dei Ministri. Piano Nazionale di Ripresa e Resilienza. 2021. Available online: https://www.governo.it/sites/governo.it/files/PNRR.pdf (accessed on 6 April 2025).
- Floods Directive 2007/60/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32007L0060 (accessed on 6 April 2025).
- Lupo, N. Il Piano Nazionale di Ripresa e Resilienza (PNRR) e Alcune Prospettive di Ricerca per i Costituzionalisti, Editoriale in Federalismi. Rivista di Diritto Pubblico Italiano, Comunitario e Comparato, n. 1, 12 Gennaio 2022, pp. 3–13, June 2022. Available online: https://www.researchgate.net/publication/357813042_Il_Piano_Nazionale_di_Ripresa_e_Resilienza_PNRR_e_alcune_prospettive_di_ricerca_per_i_costituzionalisti_editoriale_in_Federalismi_Rivista_di_diritto_pubblico_italiano_comunitario_e_comparato_n_1_12_ge (accessed on 6 April 2025).
- Biodiversità a Rischio. 2024. Legambiente. Available online: https://www.legambiente.it/wp-content/uploads/2024/05/Biodiversita-a-rischio-2024.pdf (accessed on 6 April 2025).
- Global Biodiversity Outlook 5’, Montreal, 2020. Available online: https://www.cbd.int/gbo/gbo5/publication/gbo-5-en.pdf (accessed on 6 April 2025).
- Global Biodiversity Outlook 3 (GBO-3)’, Montréal, 2010. Available online: https://www.cbd.int/doc/publications/gbo/gbo3-final-en.pdf (accessed on 6 April 2025).
- European Commission, Directorate-General for Environment. Guidance on Integrating Climate Change and Biodiversity into Strategic Environmental Assessment; Publications Office: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Linee guida per la riqualificazione ambientale dei canali di bonifica in Emilia-Romagna, 2012. Available online: https://ambiente.regione.emilia-romagna.it/it/suolo-bacino/comunicazione/pubblicazioni/pdf/la-riqualificazione-dei-canali-di-bonifica/@@download/file/Riqualificazione%20canali%20bonifica.pdf (accessed on 6 April 2025).
- Consorzio di Bonifica della Romagna Occidentale (CBRO). Piano di Classifica per Il Riparto Degli Oneri Consortili; November 2023. Available online: https://www.romagnaoccidentale.it/piano-di-classifica/ (accessed on 6 April 2025).
- Carrilho-Nunes, I.; Catalão-Lopes, M. The effects of environmental policy and technology transfer on GHG emissions: The case of Portugal. Struct. Chang. Econ. Dyn. 2022, 61, 255–264. [Google Scholar] [CrossRef]
- Faccioli, M.; Czajkowski, M.; Glenk, K.; Martin-Ortega, J. Environmental attitudes and place identity as determinants of preferences for ecosystem services. Ecol. Econ. 2020, 174, 106600. [Google Scholar] [CrossRef]
- Hanley, N.; Czajkowski, M. The Role of Stated Preference Valuation Methods in Understanding Choices and Informing Policy. Rev. Environ. Econ. Policy 2019, 13, 248–266. [Google Scholar] [CrossRef]
- Lienhoop, N.; Bartkowski, B.; Hansjürgens, B. Informing biodiversity policy: The role of economic valuation, deliberative institutions and deliberative monetary valuation. Environ. Sci. Policy 2015, 54, 522–532. [Google Scholar] [CrossRef]
- Shang, L.; Chandra, Y. An Overview of Stated Preference Methods: What and Why. In Discrete Choice Experiments Using R; Springer Nature: Singapore, 2023. [Google Scholar] [CrossRef]
- Boxall, P.C.; Adamowicz, W.L.; Swait, J.; Williams, M.; Louviere, J. A comparison of stated preference methods for environmental valuation. Ecol. Econ. 1996, 18, 243–253. [Google Scholar] [CrossRef]
- Hoyos, D. The state of the art of environmental valuation with discrete choice experiments. Ecol. Econ. 2010, 69, 1595–1603. [Google Scholar] [CrossRef]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Polit. Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Academic Press: Cambridge, MA, USA, 1974; pp. 105–142. ISBN 0-12-776150-0. [Google Scholar]
- Ghanem, S.; Ferrini, S.; Di Maria, C. Air pollution and willingness to pay for health risk reductions in Egypt: A contingent valuation survey of Greater Cairo and Alexandria households. World Dev. 2023, 172, 106373. [Google Scholar] [CrossRef]
- Natali, F.; Cacchiarelli, L.; Branca, G. There are plenty more (sustainable) fish in the sea: A discrete choice experiment on discarded species in Italy. Ecol. Econ. 2022, 196, 107413. [Google Scholar] [CrossRef]
- Blasi, E.; Rossi, E.S.; Zabala, J.Á.; Fosci, L.; Sorrentino, A. Are citizens willing to pay for the ecosystem services supported by Common Agricultural Policy? A non-market valuation by choice experiment. Sci. Total. Environ. 2023, 893, 164783. [Google Scholar] [CrossRef]
- Hanley, N.; Colombo, S.; Tinch, D.; Black, A.; Aftab, A. Estimating the benefits of water quality improvements under the Water Framework Directive: Are benefits transferable? Eur. Rev. Agric. Econ. 2006, 33, 391–413. [Google Scholar] [CrossRef]
- Hasler, B.; Czajkowski, M.; Elofsson, K.; Hansen, L.B.; Konrad, M.T.; Nielsen, H.Ø.; Niskanen, O.; Nõmmann, T.; Pedersen, A.B.; Peterson, K.; et al. Farmers’ preferences for nutrient and climate-related agri-environmental schemes: A cross-country comparison. AMBIO 2019, 48, 1290–1303. [Google Scholar] [CrossRef] [PubMed]
- Kolcava, D.; Rudolph, L.; Bernauer, T. Citizen preferences on private-public co-regulation in environmental governance: Evidence from Switzerland. Glob. Environ. Chang. 2021, 68, 102226. [Google Scholar] [CrossRef]
- Metcalfe, P.J.; Baker, W.; Andrews, K.; Atkinson, G.; Bateman, I.J.; Butler, S.; Carson, R.T.; East, J.; Gueron, Y.; Sheldon, R.; et al. An assessment of the nonmarket benefits of the Water Framework Directive for households in England and Wales. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Moro, M.; Fischer, A.; Czajkowski, M.; Brennan, D.; Lowassa, A.; Naiman, L.C.; Hanley, N. An investigation using the choice experiment method into options for reducing illegal bushmeat hunting in western Serengeti. Conserv. Lett. 2013, 6, 37–45. [Google Scholar] [CrossRef]
- Villanueva, A.; Gómez-Limón, J.; Arriaza, M.; Rodríguez-Entrena, M. The design of agri-environmental schemes: Farmers’ preferences in southern Spain. Land Use Policy 2015, 46, 142–154. [Google Scholar] [CrossRef]
- Ruberto, M.; Branca, G.; Troiano, S.; Zucaro, R. The economic value of ecosystem services of irrigation: A choice experiment for the monetary evaluation of irrigation canals and fontanili in Lombardy. J. Agric. Econ. 2022, 77, 27–39. [Google Scholar] [CrossRef]
- Alcon, F.; Marín-Miñano, C.; Zabala, J.A.; De-Miguel, M.-D.; Martínez-Paz, J.M. Valuing diversification benefits through intercropping in Mediterranean agroecosystems: A choice experiment approach. Ecol. Econ. 2020, 171. [Google Scholar] [CrossRef]
- Rossi, E.S.; Cacchiarelli, L.; Severini, S.; Sorrentino, A. Consumers preferences and social sustainability: A discrete choice experiment on ‘Quality Agricultural Work’ ethical label in the Italian fruit sector. Agric. Food Econ. 2024, 12, 1–19. [Google Scholar] [CrossRef]
- Mangham, L.J.; Hanson, K.; McPake, B. How to do (or not to do) … Designing a discrete choice experiment for application in a low-income country. Health Policy Plan. 2009, 24, 151–158. [Google Scholar] [CrossRef]
- Parker, C.; Scott, S.; Geddes, A. Snowball Sampling; SAGE Research Methods Foundations: London, UK, 2019. [Google Scholar]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary Guidance for Stated Preference Studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef]
- Carson, R.T.; Groves, T.; List, J.A. Consequentiality: A Theoretical and Experimental Exploration of a Single Binary Choice. J. Assoc. Environ. Resour. Econ. 2014, 1, 171–207. [Google Scholar] [CrossRef]
- Herriges, J.; Kling, C.; Liu, C.-C.; Tobias, J. What are the consequences of consequentiality? J. Environ. Econ. Manag. 2010, 59, 67–81. [Google Scholar] [CrossRef]
- A Vossler, C.; Doyon, M.; Rondeau, D. Truth in Consequentiality: Theory and Field Evidence on Discrete Choice Experiments. Am. Econ. J. Microecon. 2012, 4, 145–171. [Google Scholar] [CrossRef]
- Hensher, D.A.; Greene, W.H. The Mixed Logit model: The state of practice. Transportation 2003, 30, 133–176. [Google Scholar] [CrossRef]
- Hensher, D.A.; Greene, W.H. The Mixed Logit Model: The State of Practice and Warnings for the Unwary; Insitute of Transport Studies: Sydney, Australia, 2001; pp. 1–39. [Google Scholar]
- Jones, S.; Hensher, D.A. Predicting Firm Financial Distress: A Mixed Logit Model. Account. Rev. 2004, 79, 1011–1038. [Google Scholar] [CrossRef]
- Senbil, M.; Kitamura, R. Policy Effects on Decisions under Uncertain Conditions. Transp. Res. Rec. J. Transp. Res. Board 2008, 2076, 1–9. [Google Scholar] [CrossRef]
- Wang, J. Impact of incentives to purchase energy-efficient products: Evidence from Chinese households based on a mixed logit model. Energy Effic. 2023, 16, 1–17. [Google Scholar] [CrossRef]
- Yannis, G.; Antoniou, C. A mixed logit model for the sensitivity analysis of Greek drivers’ behaviour towards enforcement for road safety. Eur. Transp./Trasp. Eur. 2007, 12, 62–77. [Google Scholar]
- Bujosa, A.; Riera, A.; Hicks, R.L. Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach. Environ. Resour. Econ. 2010, 47, 477–493. [Google Scholar] [CrossRef]
- Zhou, M.; Thayer, W.M.; Bridges, J.F.P. Using Latent Class Analysis to Model Preference Heterogeneity in Health: A Systematic Review. PharmacoEconomics 2018, 36, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Hole, A.R.; Kolstad, J.R. Mixed logit estimation of willingness to pay distributions: A comparison of models in preference and WTP space using data from a health-related choice experiment. Empir. Econ. 2012, 42, 445–469. [Google Scholar] [CrossRef]
- Hole, A.R. Fitting Mixed Logit Models by Using Maximum Simulated Likelihood. Stata J. Promot. Commun. Stat. Stata 2007, 7, 388–401. [Google Scholar] [CrossRef]
- Ilevbare, F.M.; Idemudia, E.S. Influence of gender and age on attitudes toward climate change: A survey of a Nigerian university students’ population. Gend. Behav. 2017, 15, 9831–9845. [Google Scholar]
- Beiser-McGrath, L.F.; Huber, R.A. Assessing the relative importance of psychological and demographic factors for predicting climate and environmental attitudes. Clim. Chang. 2018, 149, 335–347. [Google Scholar] [CrossRef]
- Rossi, E.S.; Zabala, J.A.; Caracciolo, F.; Blasi, E. The Value of Crop Diversification: Understanding the Factors Influencing Consumers’ WTP for Pasta from Sustainable Agriculture. Agriculture 2023, 13, 585. [Google Scholar] [CrossRef]
- Zabala, J.A.; Albaladejo-García, J.A.; Navarro, N.; Martínez-Paz, J.M.; Alcon, F. Integration of preference heterogeneity into sustainable nature conservation: From practice to policy. J. Nat. Conserv. 2022, 65, 126095. [Google Scholar] [CrossRef]
- Andor, M.A.; Schmidt, C.M.; Sommer, S. Climate Change, Population Ageing and Public Spending: Evidence on Individual Preferences. Ecol. Econ. 2018, 151, 173–183. [Google Scholar] [CrossRef]
- Skeirytė, A.; Krikštolaitis, R.; Liobikienė, G. The differences of climate change perception, responsibility and climate-friendly behavior among generations and the main determinants of youth’s climate-friendly actions in the EU. J. Environ. Manag. 2022, 323, 116277. [Google Scholar] [CrossRef]
- Alcon, F.; Zabala, J.A.; Martínez-García, V.; Albaladejo, J.A.; López-Becerra, E.I.; De-Miguel, M.D.; Martínez-Paz, J.M. The social wellbeing of irrigation water. A demand-side integrated valuation in a Mediterranean agroecosystem. Agric. Water Manag. 2022, 262, 107400. [Google Scholar] [CrossRef]
- Guerrero-Baena, M.D.; Villanueva, A.J.; Gómez-Limón, J.A.; Glenk, K. Willingness to pay for improved irrigation water supply reliability: An approach based on probability density functions. Agric. Water Manag. 2019, 217, 11–22. [Google Scholar] [CrossRef]
- Falkenmark, M.; Finlayson, M.; Gordon, L.J.; Bennett, E.M.; Chiuta, T.M.; Coates, D.; Ghosh, N.; Gopalakrishnan, M.; de Groot, R.S.; Jacks, G.; et al. Agriculture, Water, and Ecosystems: Avoiding the Costs of Going too Far. Water for food. Water for Life. A Comprehensive as-Sessment of Water Management in Agriculture, November 2007. Available online: https://www.researchgate.net/publication/40102803 (accessed on 6 April 2025).
- OECD. Mitigating Droughts and Floods in Agriculture; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2016. [Google Scholar] [CrossRef]
- OECD. Managing Risk in Agriculture; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2011. [Google Scholar] [CrossRef]
- Martínez-García, V.; Martínez-Paz, J.M.; Alcon, F. The economic value of flood risk regulation by agroecosystems at semiarid areas. Agric. Water Manag. 2022, 266, 107565. [Google Scholar] [CrossRef]
- Macháč, J.; Trantinová, M.; Zaňková, L. Externalities in agriculture: How to include their monetary value in decision-making? Int. J. Environ. Sci. Technol. 2020, 18, 3–20. [Google Scholar] [CrossRef]
- Natali, F.; Branca, G. On positive externalities from irrigated agriculture and their policy implications: An overview. Econ. Agro-alimentare 2020, 1–25. [Google Scholar] [CrossRef]
- Rode, J.B.; Dent, A.L.; Benedict, C.N.; Brosnahan, D.B.; Martinez, R.L.; Ditto, P.H. Influencing climate change attitudes in the United States: A systematic review and meta-analysis. J. Environ. Psychol. 2021, 76. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, X.; Lin, C. A Study on the Impact of Organizing Environmental Awareness and Education on the Performance of Environmental Governance in China. Int. J. Environ. Res. Public Health 2022, 19, 12852. [Google Scholar] [CrossRef]
- Ruan, H.; Qiu, L.; Chen, J.; Liu, S.; Ma, Z. Government Trust, Environmental Pollution Perception, and Environmental Governance Satisfaction. Int. J. Environ. Res. Public Health 2022, 19, 9929. [Google Scholar] [CrossRef]
- Bansal, P.; Kim, E.-J.; Ozdemir, S. Discrete choice experiments with eye-tracking: How far we have come and ways forward. J. Choice Model. 2024, 51, 100478. [Google Scholar] [CrossRef]
Strategy | Description | Main Objective |
---|---|---|
Water storage | Slow down water flow and collect rainwater | Groundwater recharge (preserve water quantity) |
Maintenance and redevelopment of the territory | Ordinary and extraordinary maintenance of natural or artificial waterways, wetlands, and urban green infrastructures | Prevention of hydrogeological disasters |
Increasing ecosystem services and ecosystem resilience | Reforestation, creation of wetlands, and green areas | Protection and restoration of biodiversity |
Reducing water pollutants | Enhance the natural character of waterways | Natural water purification (preserving water quality) |
Attributes | Code | Levels | Description |
---|---|---|---|
Groundwater recharge | GRWAr | Low, medium, high | Uncovered canals promote water percolation into the ground, recharging underground aquifers. This process is helped by vegetation in the channels, which slows the flow. |
Prevention of hydrogeological disasters | PRHYd | Low, medium, high | Irrigation canals can channel meteoric water, slow water flow, and increase flood lamination. |
Protection and restoration of biodiversity | BIOpr | Low, medium, high | Irrigation canals are the habitat of many fish and bird species. The interactions between water, vegetation, and animal species are also amplified through the reforestation of the banks and the management of droughts during non-irrigation periods. Ecosystems with high biodiversity are more resilient and able to mitigate the effects of climate change. |
Natural water purification | WAPU | Low, medium, high | Riparian and aquatic vegetation can absorb and thus reduce the loads of nutrients (e.g., nitrogen) resulting from pollution. |
Monthly increase in water bill per household | Price | EUR 4, 12, 20 |
Variables | Frequency | % | ||
---|---|---|---|---|
Gender | Female | 153 | 65.95 | |
Male | 73 | 31.47 | ||
Unspecified | 6 | 2.59 | ||
Age | 33.6 (mean) | 13.56 (s.d.) | ||
Region | North | 46 | 19.83 | |
Centre | 138 | 59.48 | ||
South | 34 | 14.66 | ||
Islands | 13 | 5.60 | ||
Abroad | 1 | 0.43 | ||
Education | High school or lower | 131 | 56.47 | |
Higher than high school (university, master’s degree, PhD) | 101 | 43.53 | ||
Employment | Public or private employees | 169 | 72.84 | |
Freelance | 21 | 9.05 | ||
Retired | 10 | 4.31 | ||
Student | 23 | 9.91 | ||
Unemployed | 9 | 3.88 | ||
Income level | EUR 0/15,000 | 65 | 28.02 | |
EUR 15,000/28,000 | 90 | 38.79 | ||
EUR 28,000/50,000 | 29 | 12.50 | ||
EUR 50,000/100,000 | 12 | 5.17 | ||
More than EUR 100,000 | 1 | 0.43 | ||
Unspecified | 35 | 15.09 | ||
Attitudinal variables | ||||
Participation in environmental initiatives | Yes | 76 | 32.76 | |
No | 156 | 67.24 | ||
Knowledge of ILAWMs and their functions | Yes | 95 | 40.95 | |
No | 137 | 59.05 | ||
Respondents’ knowledge about climate change | Likert scale (From 1 to 5) | 2.96 | 0.96 | |
CC is real | 4.58 | 0.67 | ||
Humans are the main cause | 4.31 | 0.90 | ||
CC is a normal planetary evolution | 3.35 | 1.10 | ||
Trust in new policies | 4.15 | 0.79 | ||
(mean) | (s.d.) |
Do you Know What ILAWMs Are and What Functions They Perform? | Yes | Total |
---|---|---|
LAWM Activities | ||
Safeguarding inhabited and uninhabited territories from extreme meteorological events | 4.40 | 4.45 |
(1.00) | (0.88) | |
Water supply assurance for farmers and water resource management | 4.36 | 4.23 |
(0.98) | (0.92) | |
Protection of ecosystems and endemic animal and plant species | 4.08 | 4.21 |
(1.02) | (1.02) | |
Reforestation and creation of wetland areas | 3.94 | 4.10 |
(1.09) | (1.03) |
Variables | Coeff | Robust Std. Err | p-Value |
---|---|---|---|
Mean | |||
GRWAr | 0.075 | 0.043 | 0.077 |
PRHYd | 0.510 | 0.065 | 0.000 |
BIOpr | 0.492 | 0.067 | 0.000 |
WAPU | 0.328 | 0.054 | 0.000 |
ASC | −0.611 | 0.515 | 0.236 |
Price | −0.042 | 0.009 | 0.000 |
SD | |||
GRWAr | −0.009 | 0.038 | 0.817 |
PRHYd | 0.397 | 0.079 | 0.000 |
BIOpr | 0.268 | 0.144 | 0.062 |
WAPU | 0.401 | 0.094 | 0.000 |
ASC | 2.601 | 0.550 | 0.000 |
PRICE | 0.060 | 0.015 | 0.000 |
Number of obs. | 4640 | LR chi2 | 158.00 |
(EUR/Month/Household) | PRHYd | BIOpr | WAPU | GRWAr |
---|---|---|---|---|
WTP (Base = Low) | 12.05 | 11.62 | 7.76 | 1.78 |
Lower Limits | 6.22 | 5.44 | 3.44 | −0.45 |
Upper Limits | 17.89 | 17.80 | 12.07 | 4.01 |
Class1 Environmental Citizens | Class2 Conservative Citizens | |||||
---|---|---|---|---|---|---|
Number of Respondents | 202 | 30 | ||||
(87.1%) | (12.9%) | |||||
Coeff. | Std. Err | p-Value | Coeff. | Std. Err | p-Value | |
PRHYd | 0.408 | (0.049) | 0.000 | 0.645 | (0.241) | 0.007 |
BIOpr | 0.401 | (0.058) | 0.000 | 0.332 | (0.228) | 0.145 |
WAPU | 0.357 | (0.045) | 0.000 | −0.214 | (0.222) | 0.336 |
ASC | −0.412 | (0.343) | 0.230 | 2.675 | (1.025) | 0.009 |
Price | −0.032 | (0.007) | 0.000 | −0.059 | (0.031) | 0.06 |
Knowledge of CC | 0.348 | (0.243) | 0.153 | |||
Humans are the main cause of CC | −0.714 | (0.326) | 0.029 | |||
Trust in new policies for CC | 0.491 | (0.282) | 0.082 | |||
Age | −0.038 | (0.015) | 0.013 | |||
Gender | 0.090 | (0.444) | 0.839 | |||
Level of education | −0.029 | (0.476) | 0.952 | |||
Type of master’s degree | −0.083 | (0.112) | 0.459 | |||
Constant | 3.434 | (2.198) | 0.118 |
Class1 Environmental Citizens | Class2 Conservative Citizens | |
---|---|---|
Number of respondents | 202 | 30 |
87.07% | 12.93% | |
Humans are the main cause of CC Likert scale (from 1 to 5) | 4.030 | 4.367 |
(1.055) | (0.928) | |
Trust in new CC policies Likert scale (from 1 to 5) | 4.119 | 4.000 |
(0.928) | (0.947) | |
Age | 32.673 | 39.667 |
(12.243) | (17.215) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galeotti, S.; Cacchiarelli, L.; Rossi, E.S.; Henke, R.; Zucaro, R. The Role of Italian Local Agencies for Water Management in the Mitigation of and Adaptation to Climate Change: Stated Preference Methods for Future Sustainable Strategies. Sustainability 2025, 17, 3360. https://doi.org/10.3390/su17083360
Galeotti S, Cacchiarelli L, Rossi ES, Henke R, Zucaro R. The Role of Italian Local Agencies for Water Management in the Mitigation of and Adaptation to Climate Change: Stated Preference Methods for Future Sustainable Strategies. Sustainability. 2025; 17(8):3360. https://doi.org/10.3390/su17083360
Chicago/Turabian StyleGaleotti, Sofia, Luca Cacchiarelli, Eleonora Sofia Rossi, Roberto Henke, and Raffaella Zucaro. 2025. "The Role of Italian Local Agencies for Water Management in the Mitigation of and Adaptation to Climate Change: Stated Preference Methods for Future Sustainable Strategies" Sustainability 17, no. 8: 3360. https://doi.org/10.3390/su17083360
APA StyleGaleotti, S., Cacchiarelli, L., Rossi, E. S., Henke, R., & Zucaro, R. (2025). The Role of Italian Local Agencies for Water Management in the Mitigation of and Adaptation to Climate Change: Stated Preference Methods for Future Sustainable Strategies. Sustainability, 17(8), 3360. https://doi.org/10.3390/su17083360