The Impact of Surface Ozone and Particulate Matter 2.5 on Rice Yield in China: An Econometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Variables
2.1.1. Ozone
2.1.2. PM2.5
2.1.3. Weather
2.1.4. Socioeconomic Variables
2.2. Econometric Modeling
2.3. Yield Loss
3. Results and Discussion
3.1. Baseline Results
3.2. Robustness Check
3.3. Yield Loss Measure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Donkelaar, A.V.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite–based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Verstraeten, W.W.; Neu, J.L.; Williams, J.E.; Bowman, K.W.; Worden, J.R.; Boersma, K.F. Rapid increases in tropospheric ozone production and export from China. Nat. Geosci. 2015, 8, 690–695. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef]
- Krupa, S.V.; Nosal, M.; Legge, A.H. A numerical analysis of the combined open-top chamber data from the USA and Europe on ambient ozone and negative crop responses. Environ. Pollut. 1998, 101, 157–160. [Google Scholar] [CrossRef]
- Benton, J.; Fuhrer, J.; Gimeno, B.S.; Skärby, L.; Palmer-Brown, D.; Ball, G.; Roadknight, C.; Mills, G. An international cooperative programme indicates the widespread occurrence of ozone injury on crops. Agric. Ecosyst. Environ. 2000, 78, 19–30. [Google Scholar] [CrossRef]
- Krupa, S.; McGrath, M.T.; Andersen, C.P.; Booker, F.L.; Burkey, K.O.; Chappelka, A.H.; Chevone, B.I.; Pell, E.J.; Zilinskas, B.A. Ambient ozone and plant health. Plant Dis. 2001, 85, 4–12. [Google Scholar] [CrossRef]
- Fuhrer, J.; Booker, F.L. Ecological issues related to ozone: Agricultural issues. Environ. Int. 2003, 29, 141–154. [Google Scholar] [CrossRef]
- Ashmore, M.R. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 2005, 28, 949–964. [Google Scholar] [CrossRef]
- Van Dingenen, R.V.; Dentener, F.J.; Raes, F.; Krol, M.C.; Emberson, L.; Cofala, J. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 2009, 43, 604–618. [Google Scholar] [CrossRef]
- Marr, L.C.; Harley, R.A. Spectral analysis of weekday–weekend differences in ambient ozone, nitrogen oxide, and non-methane hydrocarbon time series in California. Atmos. Environ. 2002, 36, 2327–2335. [Google Scholar] [CrossRef]
- Huixiang, W.; Kiang, C.S.; Xiaoyan, T.; Xiuji, Z.; Chameides, W.L. Surface ozone: A likely threat to crops in Yangtze Delta of China. Atmos. Environ. 2005, 39, 3843–3850. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Martin, M.V.; Heald, C.L. Threat to future global food security from climate change and ozone air pollution. Nature Clim. Change 2014, 4, 817–821. [Google Scholar] [CrossRef]
- Feng, Z.; De Marco, A.D.; Anav, A.; Gualtieri, M.; Sicard, P.; Tian, H.; Fornasier, F.; Tao, F.; Guo, A.; Paoletti, E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 2019, 131, 104966. [Google Scholar] [CrossRef]
- Tang, H.Y.; Takigawa, M.; Liu, G.; Zhu, J.; Kobayashi, K. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Glob. Change Biol. 2013, 19, 2739–2752. [Google Scholar] [CrossRef]
- Maclean, J.L.; Dawe, D.C.; Hardy, B. Rice Almanac, 3rd ed.; International Rice Research Institute (IRRI): Los Baños, Philippines, 2002; pp. 1–253. [Google Scholar]
- Carter, C.A.; Cui, X.; Ding, A.; Ghanem, D.; Jiang, F.; Yi, F.; Zhong, F. Stage-specific, nonlinear surface ozone damage to rice production in China. Sci. Rep. 2017, 7, 44224. [Google Scholar] [CrossRef]
- Tiwari, S.; Agrawal, M. Ozone concentrations in troposphere: Historical and current perspectives. In Tropospheric Ozone and Its Impacts on Crop Plants; Springer: Cham, Switzerland, 2018; pp. 1–29. [Google Scholar] [CrossRef]
- Bai, R.; Lam, J.C.K.; Li, V.O.K. A review on health cost accounting of air pollution in China. Environ. Int. 2018, 120, 279–294. [Google Scholar] [CrossRef]
- Wang, P.; Guo, H.; Hu, J.; Kota, S.H.; Ying, Q.; Zhang, H. Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China. Sci. Total Environ. 2019, 662, 297–306. [Google Scholar] [CrossRef]
- Fan, Y.F.; Ding, X.T.; Hang, J.; Ge, J. Characteristics of urban air pollution in different regions of China between 2015 and 2019. Build. Environ. 2020, 180, 107048. [Google Scholar] [CrossRef]
- Hu, J.L.; Wang, Y.G.; Ying, Q.; Zhang, H. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [Google Scholar] [CrossRef]
- Li, P.; Feng, Z.; Catalayud, V.; Yuan, X.; Xu, Y.; Paoletti, E. A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ. 2017, 40, 2369–2380. [Google Scholar] [CrossRef] [PubMed]
- Bruce, L.; McCracken, D.; Foster, G.; Aitken, M. The effects of sewage sludge on grassland euedaphic and hemiedaphic collembolan populations. Pedobiologia 1999, 43, 209–220. [Google Scholar] [CrossRef]
- Heck, W.W.; Adams, R.M.; Cure, W.W.; Heagle, A.S.; Heggestad, H.E.; Kohut, R.J.; Kress, L.W.; Rawlings, J.O.; Taylor, O.C. A reassessment of crop loss from ozone. Environ. Sci. Technol. 1983, 17, 572A–581A. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Jiang, F.; Zhong, F.; Zhou, X.; Ding, A. The impacts of surface ozone pollution on winter wheat productivity in China—An econometric approach. Environ. Pollut. 2016, 208 Pt B, 326–335. [Google Scholar] [CrossRef]
- Aunan, K.; Berntsen, T.K.; Seip, H.M. Surface ozone in China and its possible impact on agricultural crop yields. AMBIO A J. Hum. Environ. 2000, 29, 294–301. [Google Scholar]
- Wang, Y.; Zhang, Y.; Hao, J.; Luo, M. Seasonal and spatial variability of surface ozone over China: Contributions from background and domestic pollution. Atmos. Chem. Phys. 2011, 11, 3511–3525. [Google Scholar] [CrossRef]
- Yi, F.; Feng, J.; Wang, Y.; Jiang, F. Influence of surface ozone on crop yield of maize in China. J. Integr. Agric. 2020, 19, 578–589. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. The impact of global warming on U.S. agriculture: An econometric analysis of optimal growing conditions. Rev. Econ. Stat. 2006, 88, 113–125. Available online: http://repositories.cdlib.org/areucb/1003 (accessed on 29 March 2025).
- Dixon, B.L.; Garcia, P.; Adams, R.M. Combining economic and Biological Data to estimate the impact of pollution on crop production. West. J. Agric. Econ. 1984, 9, 293–302. [Google Scholar]
- Wang, X.; Mauzerall, D.L. Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos. Environ. 2004, 38, 4383–4402. [Google Scholar] [CrossRef]
- EPA. Air Quality Criteria for Ozone and Related Photochemical Oxidants; United States Environmental Protection Agency (EPA): Washington, DC, USA, 1996; Volumes 1–1–1–33. [Google Scholar]
- Tatsumi, K. Rice yield reductions due to ozone exposure and the roles of VOCs and NOx in ozone production in Japan. J. Agric. Meteorol. 2022, 78, 89–100. [Google Scholar] [CrossRef]
- Lee, J.; Han, J.; Park, J.; Ahn, J.Y.; Lee, G. Long-term changes of rice yield loss estimated with AOT40 and M7 metrics using comprehensive ozone and rice cultivation data over South Korea. Asian J. Atmos. Environ. 2023, 17, 21. [Google Scholar] [CrossRef]
- Anagha, K.S.; Kuttippurath, J.; Sharma, M.; Cuesta, J. A comprehensive assessment of yield loss in rice due to surface ozone pollution in India during 2005–2020: A great concern for food security. Agric. Syst. 2024, 215, 103849. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Tian, X. The impact of fine particulate matter (PM2.5) on China’s agricultural production from 2001 to 2010. J. Clean. Prod. 2018, 178, 133–141. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.; Zhang, Y.; Li, T. Evaluating the effects of surface O3 on three main food crops across China during 2015–2018. Environ. Pollut. 2020, 258, 113794. [Google Scholar] [CrossRef]
- Pleijel, H.; Eriksen, A.B.; Danielsson, H.; Bondesson, N.; Selldén, G. Differential ozone sensitivity in an old and a modern Swedish wheat cultivar—Grain yield and quality, leaf chlorophyll and stomatal conductance. Environ. Exp. Bot. 2006, 56, 63–71. [Google Scholar] [CrossRef]
Variable | Unit | Mean | Std. | Min | Max |
---|---|---|---|---|---|
Yield | ton/ha | 6.6302 | 2.5564 | 0.3481 | 86.6878 |
M7 (ozone-sensitive period) | ppb | 40.2516 | 7.5385 | 19.7574 | 68.3679 |
M12 (ozone-sensitive period) | ppb | 38.8049 | 7.1419 | 19.3875 | 66.8271 |
Sum06 (ozone-sensitive period) | ppm | 4899.13 | 3982.41 | 30.0151 | 23,930.9 |
Aot40 (ozone-sensitive period) | ppm | 2134.98 | 1290.60 | 6.0840 | 7773.01 |
M7 (March–May) | ppb | 39.2897 | 6.6168 | 20.6642 | 63.2793 |
M12 (March–May) | ppb | 37.8921 | 6.2471 | 19.7537 | 60.4312 |
Sum06 (March–May) | ppm | 13,149.4 | 9692.27 | 30.6432 | 53,688.1 |
Aot40 (March–May) | ppm | 5681.89 | 3172.66 | 49.2145 | 19,022.9 |
PM2.5 | μg/m3 | 56.8455 | 40.9722 | 5.0102 | 443.149 |
PM2.5 (growth period) | μg/m3 | 57.2214 | 40.5122 | 5.4924 | 431.759 |
PM2.5 (M7-sensitive period) | μg/m3 | 57.2213 | 40.4816 | 6.1877 | 427.590 |
PM2.5 (M12-sensitive period) | μg/m3 | 57.2254 | 40.4872 | 5.8104 | 424.778 |
PM2.5 (Sum06-sensitive period) | μg/m3 | 57.2271 | 40.4986 | 5.8058 | 426.015 |
PM2.5 (Aot40-sensitive period) | μg/m3 | 57.2213 | 40.4816 | 6.1877 | 427.590 |
PM2.5 (M7-March–May) | μg/m3 | 57.2087 | 40.4705 | 6.1372 | 426.282 |
PM2.5 (M12-March–May) | μg/m3 | 57.2142 | 40.4807 | 5.8166 | 426.540 |
PM2.5 (Sum06-March–May) | μg/m3 | 57.2150 | 40.4801 | 5.9627 | 427.405 |
PM2.5 (Aot40-March–May) | μg/m3 | 57.2087 | 40.4705 | 6.1372 | 426.282 |
Rice sown area | 10,000 ha | 2.4319 | 4.2877 | 0.0001 | 93.537 |
Ratio of the means of production price index and rice price index lag | — | 0.9948 | 0.0257 | 0.9270 | 1.0542 |
Growth degree days (8–32 °C) | 1000 °C | 1.9897 | 0.3943 | 0.4389 | 2.8335 |
Precipitation | m | 0.6359 | 0.2076 | 0.1336 | 1.5963 |
Number of observations | 2466 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
M7 (ozone-sensitive period) | −0.00342 *** (0.00101) | −0.00387 *** (0.00110) | −0.00556 *** (0.00150) | −0.00587 *** (0.00155) |
PM2.5 (growth period) | −0.00161 *** (0.00055) | −0.00143 *** (0.00053) | ||
M7 × PM2.5 | 0.00003 *** (0.00001) | 0.00003 *** (0.00001) | ||
Rice sown area | −0.17078 *** (0.01458) | −0.16791 *** (0.01458) | −0.16994 *** (0.01456) | −0.16732 *** (0.01457) |
Rice sown area squared | 0.00167 *** (0.00033) | 0.00163 *** (0.00032) | 0.00166 *** (0.00033) | 0.00162 *** (0.00032) |
Price index ratio | −0.42198 * (0.22440) | −0.22838 (0.34816) | −0.39911 * (0.22127) | −0.20511 (0.34659) |
Growth degree days (8–32 °C) | −0.36254 (0.23109) | −0.38349* (0.22739) | −0.37241 (0.23126) | −0.39367 * (0.22760) |
Growth degree days (8–32 °C) squared | 0.06957 (0.05954) | 0.06771 (0.05815) | 0.07139 (0.05972) | 0.06997 (0.05815) |
Precipitation | 0.27552 ** (0.12572) | 0.20132 (0.12526) | 0.25619 ** (0.12318) | 0.18913 (0.12388) |
Precipitation squared | −0.23925 *** (0.09186) | −0.21271 ** (0.09115) | −0.22877 ** (0.09000) | −0.20607 ** (0.08985) |
County fixed effect | Yes | Yes | Yes | Yes |
Year fixed effect | No | Yes | No | Yes |
2014 | −0.00724 (0.01742) | −0.00603 (0.01731) | ||
2015 | 0.03770 *** (0.01355) | 0.03718 *** (0.01334) | ||
Constant | 3.12240 *** (0.30762) | 3.10636 *** (0.36120) | 3.21542 *** (0.31364) | 3.09391 *** (0.36627) |
Number of observations | 2466 | 2466 | 2466 | 2466 |
R2 | 0.7577 | 0.7607 | 0.7587 | 0.7614 |
Variable | (1) | (2) | (3) |
---|---|---|---|
M12 (ozone-sensitive period) | −0.00604 *** (0.00163) | ||
PM2.5 (growth period) | −0.00157 *** (0.00058) | ||
M12 × PM2.5 | 0.00004 *** (0.00001) | ||
Sum06 (ozone-sensitive period) | −0.00758 *** (0.00211) | ||
PM2.5 (growth period) | −0.00037 ** (0.00017) | ||
Sum06 × PM2.5 | 0.00005 ** (0.00002) | ||
Aot40 (ozone-sensitive period) | −0.02887 *** (0.00768) | ||
PM2.5 (growth period) | −0.00049 ** (0.00021) | ||
Aot40 × PM2.5 | 0.00016 ** (0.00007) | ||
Rice sown area | −0.16750 *** (0.01459) | −0.16933 *** (0.01460) | −0.16844 *** (0.01459) |
Rice sown area squared | 0.00162 *** (0.00032) | 0.00164 *** (0.00033) | 0.00164 *** (0.00033) |
Price index ratio | −0.21372 (0.34635) | −0.23969 (0.34972) | −0.25981 (0.34964) |
Growth degree days (8–32 °C) | −0.37486 * (0.22632) | −0.36236 (0.22601) | −0.37781 * (0.22713) |
Growth degree days (8–32 °C) squared | 0.06559 (0.05789) | 0.06354 (0.05793) | 0.06687 (0.05814) |
Precipitation | 0.18600 (0.12465) | 0.22138 * (0.12494) | 0.20745 * (0.12420) |
Precipitation squared | −0.20233 ** (0.09017) | −0.21926 ** (0.09094) | −0.21449 ** (0.09039) |
County fixed effect | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes |
2014 | −0.00629 (0.01747) | −0.00505 (0.01710) | −0.00703 (0.01737) |
2015 | 0.03541 *** (0.01341) | 0.03127 ** (0.01343) | 0.03113 ** (0.01341) |
Constant | 3.08305 *** (0.36472) | 2.88505 *** (0.35404) | 2.95207 *** (0.35720) |
Number of observations | 2466 | 2466 | 2466 |
R2 | 0.7612 | 0.7596 | 0.7604 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
M7 (March–May) | −0.00371 *** (0.00098) | −0.00525 *** (0.00122) | −0.00648 *** (0.00163) | −0.00796 *** (0.00182) |
PM2.5 (growth period) | −0.00195 *** (0.00064) | −0.00184 *** (0.00064) | ||
M7 × PM2.5 | 0.00004 *** (0.00001) | 0.00004 *** (0.00001) | ||
Rice sown area | −0.17146 *** (0.01456) | −0.16768 *** (0.01451) | −0.17066 *** (0.01454) | −0.16709 *** (0.01450) |
Rice sown area squared | 0.00167 *** (0.00033) | 0.00163 *** (0.00032) | 0.00166 *** (0.00033) | 0.00162 *** (0.00032) |
Price index ratio | −0.53227 ** (0.20769) | −0.29605 (0.35075) | −0.49640 ** (0.20329) | −0.24845 (0.34881) |
Growth degree days (8–32 °C) | −0.35177 (0.22791) | −0.36919 * (0.22461) | −0.35762 (0.23035) | −0.37678 * (0.22630) |
Growth degree days (8–32 °C) squared | 0.06718 (0.05909) | 0.06290 (0.05763) | 0.06853 (0.05960) | 0.06490 (0.05798) |
Precipitation | 0.26485 ** (0.12481) | 0.16003 (0.12414) | 0.23612 * (0.12183) | 0.13718 (0.12258) |
Precipitation squared | −0.22454 ** (0.09091) | −0.18216 ** (0.08941) | −0.20685 ** (0.08847) | −0.16803 * (0.08763) |
County fixed effect | Yes | Yes | Yes | Yes |
Year fixed effect | No | Yes | No | Yes |
2014 | −0.00877 (0.01728) | −0.00712 (0.01721) | ||
2015 | 0.04565 *** (0.01367) | 0.04616 *** (0.01356) | ||
Constant | 3.23023 *** (0.29895) | 3.13532 *** (0.36413) | 3.32986 *** (0.30955) | 3.21320 *** (0.36959) |
Number of observations | 2466 | 2466 | 2466 | 2466 |
R2 | 0.7575 | 0.7617 | 0.7587 | 0.7626 |
Variable | (1) | (2) | (3) |
---|---|---|---|
M12 (March–May) | −0.00811 *** (0.00188) | ||
PM2.5 (growth period) | −0.00196 *** (0.00068) | ||
M12 × PM2.5 | 0.00005 *** (0.00002) | ||
Sum06 (March–May) | −0.00392 *** (0.00099) | ||
PM2.5 (growth period) | −0.00049 ** (0.00020) | ||
Sum06 × PM2.5 | 0.00003 *** (0.00001) | ||
Aot40 (March-May) | −0.01417 *** (0.00337) | ||
PM2.5 (growth period) | −0.00065 *** (0.00024) | ||
Aot40 × PM2.5 | 0.00009 *** (0.00003) | ||
Rice sown area | −0.16729 *** (0.01452) | −0.16913 *** (0.01457) | −0.16834 *** (0.01454) |
Rice sown area squared | 0.00162 *** (0.00032) | 0.00164 *** (0.00033) | 0.00163 *** (0.00032) |
Price index ratio | −0.25093 (0.34845) | −0.31543 (0.35031) | −0.33569 (0.35121) |
Growth degree days (8–32 °C) | −0.35765 (0.22506) | −0.34767 (0.22675) | −0.35267 (0.22572) |
Growth degree days (8–32 °C) squared | 0.06030 (0.05776) | 0.05888 (0.05824) | 0.05995 (0.05795) |
Precipitation | 0.13915 (0.12311) | 0.19788 (0.12455) | 0.17943 (0.12367) |
Precipitation squared | −0.16984 * (0.08795) | −0.20215 ** (0.08999) | −0.19040 ** (0.08914) |
County fixed effect | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes |
2014 | −0.00695 (0.01724) | −0.00547 (0.01703) | −0.00688 (0.01719) |
2015 | 0.04476 *** (0.01354) | 0.03435 *** (0.01330) | 0.03662 *** (0.01328) |
Constant | 3.19196 *** (0.36720) | 2.97072 *** (0.35620) | 3.02985 *** (0.35875) |
Number of observations | 2466 | 2466 | 2466 |
R2 | 0.7623 | 0.7603 | 0.7612 |
RYL | CPL | |
---|---|---|
2013 | 8.00% | 1759.8076 |
2014 | 6.92% | 1525.8286 |
2015 | 7.07% | 1575.5551 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Song, C.; Yang, Y.; Qie, X. The Impact of Surface Ozone and Particulate Matter 2.5 on Rice Yield in China: An Econometric Approach. Sustainability 2025, 17, 3357. https://doi.org/10.3390/su17083357
Wu Z, Song C, Yang Y, Qie X. The Impact of Surface Ozone and Particulate Matter 2.5 on Rice Yield in China: An Econometric Approach. Sustainability. 2025; 17(8):3357. https://doi.org/10.3390/su17083357
Chicago/Turabian StyleWu, Zhihua, Chengxiao Song, Yongbing Yang, and Xueting Qie. 2025. "The Impact of Surface Ozone and Particulate Matter 2.5 on Rice Yield in China: An Econometric Approach" Sustainability 17, no. 8: 3357. https://doi.org/10.3390/su17083357
APA StyleWu, Z., Song, C., Yang, Y., & Qie, X. (2025). The Impact of Surface Ozone and Particulate Matter 2.5 on Rice Yield in China: An Econometric Approach. Sustainability, 17(8), 3357. https://doi.org/10.3390/su17083357