Temporal–Spatial Evolution and Driving Mechanism for an Ecosystem Health Service Based on the GD-MGWR-XGBOOT-SEM Model: A Case Study in Guangxi Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area and Data Source
2.2. Research Method
2.2.1. Ecosystem Health Assessment Model
2.2.2. XGBOOTS-SHAP Model
2.2.3. MGWR Model
2.2.4. Geodetector (GD)
2.2.5. Structural Equation Model
3. Results
3.1. Characteristics of Ecosystem Health Changes
3.1.1. Spatial Distribution of Ecosystem Health, 2000–2020
3.1.2. Characteristics of Ecosystem Service Value Spatial Differentiation
3.2. Spatial Influence Analysis of Driving Factors
3.3. The Analysis of Driving Factor Influence Mechanism
3.4. The Impact Characteristics of Driving Factors
3.5. The Dependent Characteristics of Driving Factors
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolf, K.L.; Blahna, D.J.; Brinkley, W.; Romolini, M. Environmental Stewardship Footprint Research: Linking Human Agency and Ecosystem Health in the Puget Sound Region. Urban Ecosyst. 2013, 16, 13–32. [Google Scholar]
- Xiao, Z.; Liu, R.; Gao, Y.; Yang, Q.; Chen, J. Spatiotemporal Variation Characteristics of Ecosystem Health and Its Driving Mechanism in the Mountains of Southwest China. J. Clean. Prod. 2022, 345, 131138. [Google Scholar]
- Wang, X.; Dong, Q. Assessment of Urban Ecosystem Health and Its influencing Factors: A Case Study of Zibo City, China. Sci. Rep. 2024, 14, 8455. [Google Scholar]
- Chase, J.M.; Blowes, S.A.; Knight, T.M.; Gerstner, K.; May, F. Ecosystem Decay Exacerbates Biodiversity Loss with Habitat Loss. Nature 2020, 584, 238–262. [Google Scholar] [CrossRef]
- Jiang, S.M.; Feng, F.; Zhang, X.N.; Xu, C.Y.; Jia, B.Q.; Lafortezza, R. Ecological Transformation is the Key to Improve Ecosystem Health for Resource-Exhausted Cities: A Case Study in China Based on Future Development Scenarios. Sci. Total Environ. 2024, 921, 171147. [Google Scholar]
- Yu, W.; Yu, W. Analysis of the Coupling Coordination between the Ecosystem Service Value and Urbanization in the Circum-Bohai-Sea Region and Its Obstacle Factors. Sustainability 2024, 16, 3776. [Google Scholar] [CrossRef]
- Cai, W.; Shu, C.; Lin, L. Integrating Ecosystem Service Values into Urban Planning for Sustainable Development. Land 2024, 13, 1985. [Google Scholar] [CrossRef]
- Alipbeki, O.; Grossul, P.; Rakhimov, D.; Kupidura, P.; Alipbekova, C.; Musaif, G.; Turekeldiyeva, R.; Augambaev, K.; Begaliyeva, M. Ecosystem Health Assessment of the Zerendy District, Kazakhstan. Sustainability 2025, 17, 277. [Google Scholar] [CrossRef]
- Harwell, M.A.; Gentile, J.H.; McKinney, L.D.; Tunnell, J.W., Jr.; Dennison, W.C.; Kelsey, R.H.; Stanzel, K.M.; Stunz, G.W.; Withers, K.; Tunnell, J. Conceptual Framework for Assessing Ecosystem Health. Integr. Environ. Assess. Manag. 2019, 15, 544–564. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, X.; Shi, R.; Zhang, Z.; Yu, W.; Li, Y.; Chen, G.; Gao, J. Ecosystem Health Monitoring in the Shanghai-Hangzhou Bay Metropolitan Area: A Hidden Markov Modeling Approach. Environ. Int. 2019, 133, 105170. [Google Scholar] [CrossRef]
- Xu, F.L.; Tao, S.; Dawson, R.W.; Li, P.; Cao, G.J. Lake Ecosystem Health Assessment: Indicators and Methods. Water Res. 2001, 35, 3157–3167. [Google Scholar] [CrossRef] [PubMed]
- Dernbach, J.C.; Mintz, J.A. Environmental Laws and Sustainability: An Introduction. Sustainability 2011, 3, 531–540. [Google Scholar] [CrossRef]
- Sun, B.D.; Tang, J.C.; Yu, D.H.; Song, Z.W.; Wang, P.G. Ecosystem Health Assessment: A PSR Analysis Combining AHP and FCE Methods for Jiaozhou Bay China. Ocean. Coast. Manag. 2019, 168, 41–50. [Google Scholar] [CrossRef]
- Liu, Y.J.; Peng Yang, P.; Zhang, S.Q.; Wang, W.Y. Dynamic Identification and Health Assessment of Wetlands in the Middle Reaches of the Yangtze River Basin under Changing Environment. J. Clean. Prod. 2022, 345, 131105. [Google Scholar] [CrossRef]
- Jafary, P.; Sarab, A.A.; Tehrani, N.A. Ecosystem Health Assessment Using a Fuzzy Spatial Decision Support System in Taleghan Watershed Before and After Dam Construction. Environ. Process. 2018, 5, 807–831. [Google Scholar] [CrossRef]
- Sun, X.X.; Yang, G.S.; Ou, W.X. Impacts of Cropland Change on Ecosystem Services in the Taihu Lake Basin. J. Nat. Res. 2014, 29, 1675–1685. [Google Scholar]
- Malekmohammadi, B.; Jahanishakib, F. Vulnerability Assessment of Wetland Landscape Ecosystem Services Using Driver-Pressure-State-Impact-Response (DPSIR) Model. Ecol. Indic. 2017, 82, 293–303. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem Health and Ecological Engineering. Ecol. Eng. 2012, 45, 24–29. [Google Scholar] [CrossRef]
- Zanotti, L.; Ma, Z.; Johnson, J.L.; Johnson, D.R.; Yu, D.J.; Burnham, M.; Carothers, C. Sustainability, Resilience, Adaptation, and Transformation: Tensions and Plural Approaches. Ecol. Soc. 2020, 25, 4. [Google Scholar] [CrossRef]
- He, J.H.; Pan, Z.Z.; Liu, D.F.; Guo, X.N. Exploring the Regional Differences of Ecosystem Health and Its Driving Factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef] [PubMed]
- De Toro, P.; Iodice, S. Ecosystem Health Assessment in Urban Contexts: A Proposal for the Metropolitan Area of Naples (Italy). Aestimum 2018, 7, 39–59. [Google Scholar]
- Pan, Z.; He, J.; Liu, D.; Wang, J. Predicting the Joint Effects of Future Climate and Land Use Change on Ecosystem Health in the Middle Reaches of the Yangtze River Economic Belt, China. Appl. Geogr. 2020, 124, 102293. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, J.; Yang, S.; Liu, W.; Dai, Y.; Huang, G.; Lin, J. Spatiotemporal Evolution, Driving Mechanisms, and Zoning Optimization Pathways of Ecosystem Health in China. Forests 2024, 15, 1987. [Google Scholar] [CrossRef]
- Xu, W.; He, M.; Meng, W.; Zhang, Y.; Yun, H.; Lu, Y.; Huang, Z.; Mo, X.; Hu, B.; Liu, B.; et al. Temporal-Spatial Change of China’s Coastal Ecosystems Health and Driving Factors Analysis. Sci. Total Environ. 2022, 845, 157319. [Google Scholar] [CrossRef]
- Yadav, A.; Kansal, M.L.; Singh, A. Ecosystem Health Assessment Based on the V-O-R-S Framework for the Upper Ganga Riverine Wetland in India. Environ. Sustain. Indic. 2025, 25, 100580. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, L.; Sang, W. Impact of Fast Urbanization on Ecosystem Health in Mountainous Regions of Southwest China. Int. J. Environ. Res. Public Health 2020, 17, 826. [Google Scholar] [CrossRef]
- Shen, W.; Li, Y.; Qin, Y.C. Research on the Influencing Factors and Multi-Scale Regulatory Pathway of Ecosystem Health: A Case Study in the Middle Reaches of the Yellow River, China. J. Clean. Prod. 2023, 406, 137038. [Google Scholar] [CrossRef]
- Hern’andez-Blanco, M.; Costanza, R.; Chen, H.j.; DeGroot, D. Ecosystem Health, Ecosystem Services, and the Well-Being of Humans and the Rest Of Nature. Glob. Change Biol. 2022, 28, 5027–5040. [Google Scholar] [CrossRef]
- Song, F.; Su, F.L.; Mi, C.X.; Sun, D. Analysis of Driving Forces on Wetland Ecosystem Services Value Change: A Case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the Impacts of Natural and Human Factors on Ecosystem Service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Li, Y.; Qin, L.; Wang, Y.; Liu, H.; Zhang, M.; Hao, H. Ecosystem Health Assessment of the Largest Lake Wetland in the Yellow River Basin Using An Improved Vigor-Organization-Resilience-Services Model. Ecol. Indic. 2024, 166, 112539. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Li, C.; Gao, B.; Zheng, K.; Wang, M.; Deng, Y.; Fan, X. Spatial Relationships and Impact Effects between Urbanization and Ecosystem Health in Urban Agglomerations along the Belt and Road: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Int. J. Environ. Res. Public Health 2022, 19, 16053. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Kang, J.W.; Wang, Y. Seasonal Changes in Ecosystem Health and Their Spatial Relationship with Landscape Structure in China’s Loess Plateau. Ecol. Indic. 2024, 163, 112127. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.Q.; Jiang, W.G.; Qiu, H.H. Spatial and Temporal Variation and Prediction of Ecological Carrying Capacity Based on Machine Learning and PLUS Model. Ecol. Ind. 2023, 154, 110611. [Google Scholar] [CrossRef]
- Chang, G.J. Biodiversity Estimation by Environment Drivers Using Machine/Deep Learning for Ecological Management. Ecol. Inform. 2023, 78, 102319. [Google Scholar] [CrossRef]
- Das, B.K.; Paul, S.; Mandal, B.; Gogoi, P.; Paul, L.; Saha, A.; Johnson, C.; Das, A.; Ray, A.; Roy, S.; et al. Integrating Machine Learning Models for Optimizing Ecosystem Health Assessments through Prediction of Nitrate–N Concentrations in the Lower Stretch of Ganga River, India. Environ. Sci. Pollut. Res. 2025, 32, 4670–4689. [Google Scholar] [CrossRef]
- Gao, Y.; Fang, Z.; Van Zwieten, L.; Bolan, N.; Dong, D.; Quin, B.F.; Meng, J.; Li, F.; Wu, F.; Wang, H.; et al. A Critical Review of Biochar-based Nitrogen Fertilizers and Their Effects on Crop Production and the Environment. Biochar 2022, 4, 36. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, T.; Du, Q.; Ouyang, N.; Nie, W.; Liu, Y.; Gou, P.; Li, G. Spatiotemporal Changes of Ecosystem Health and the Impact of Its Driving Factors on the Loess Plateau in China. Ecol. Indic. 2025, 170, 113020. [Google Scholar] [CrossRef]
- Suryanta, J.; Nahib, I.; Ramadhani, F.; Rifaie, F.; Suwedi, N.; Karolinoerita, V.; Cahyana, D.; Amhar, F.; Suprajaka, S. Modelling and Dynamic Water Analysis for the Ecosystem Service in the Central Citarum Watershed, Indonesia. J. Water Land Dev. 2024, 60, 122–137. [Google Scholar] [CrossRef]
- Tian, C.; Pang, L.; Yuan, Q.; Deng, W.; Ren, P. Spatiotemporal Dynamics of Ecosystem Services and Their Trade-Offs and Synergies in Response to Natural and Social Factors: Evidence from Yibin, Upper Yangtze River. Land 2024, 13, 1009. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, G.; Yu, H.; Zhao, J.; Yin, Y. Revealing the Nonlinear Impact of Human Activities and Climate Change on Ecosystem Services in the Karst Region of Southeastern Yunnan Using the XGBoost–SHAP Model. Forests 2024, 15, 1420. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Yuan, H.; Zhou, S.; Wang, Y.; Ikram, R.M.A.; Li, J. An XGBoost-SHAP Approach to Quantifying Morphological Impact on Urban Flooding Susceptibility. Ecol. Indic. 2023, 156, 111137. [Google Scholar] [CrossRef]
- Jacobs, S.; Kelemen, E.; O’Farrell, P.; Martin, A.; Schaafsma, M.; Dendoncker, N.; Pandit, R.; Mwampamba, T.H.; Palomo, I.; Castro, A.J.; et al. The Pitfalls of Plural Valuation. Curr. Opin. Environ. Sustain. 2023, 64, 101345. [Google Scholar] [CrossRef]
- Edens, B.; Maes, J.; Hein, L.; Obst, C.; Siikamaki, J.; Schenau, S.; Javorsek, M.; Chow, J.; Chan, J.Y.; Steurer, A.; et al. Establishing the SEEA Ecosystem Accounting as a Global Standard. Ecosyst. Serv. 2022, 54, 101413. [Google Scholar] [CrossRef]
- Amatucci, A.; Ventura, V.; Simonetto, A.; Gilioli, G. The Economic Value of Ecosystem Services: Meta-analysis and Potential Application of Value Transfer for Freshwater Ecosystems. Environ. Resour. Econ. 2024, 87, 3041–3061. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Agnes, Z.; Alex, F.; Barbara, S.; Ilkhom, S. Ecosystem Services as the Silver Bullet? A Systematic Review of How Ecosystem Services Assessments Impact Biodiversity Prioritisation in Policy. Earth Syst. Gov. 2023, 16, 100178. [Google Scholar]
- Liu, Y.; Wang, S.; Chen, Z.; Tu, S. Research on the Response of Ecosystem Service Function to Landscape Pattern Changes Caused by Land Use Transition: A Case Study of the Guangxi Zhuang Autonomous Region, China. Land 2022, 11, 752. [Google Scholar] [CrossRef]
- Zhou, L.; Song, C.; You, C.; Liu, L. Evaluating the Influence of Human Disturbance on the Ecosystem Service Scarcity Value: An Insightful Exploration in Guangxi Region. Sci. Rep. 2024, 14, 27439. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, W.; Lu, L.X. An Innovative Digitization Evaluation Scheme for Spatio-Temporal Coordination Relationship between Multiple Knowledge Driven Rural Economic Development and Agricultural Ecological Environment-Coupling Coordination Model Analysis Based on Guangxi. J. Innov. Knowl. 2022, 7, 100208. [Google Scholar]
Factor Type | Data Type | Data Description | Data Source |
---|---|---|---|
Ecology | Land utilization | 2000–2020 resolution 1 km × 1 km | National Tibetan Plateau Scientific Data Center |
NPP | Spatial resolution 500 m × 500 m | Earth resource data cloud platform | |
Vegetational type | China 1:1 million vegetation dataset | National Data Center for Glaciology and Permafrost Desert Science | |
Agrotype | Spatial resolution 1 km × 1 km | Resource Environmental Science and Data Center | |
Terrain | DEM | Spatial resolution 450 m | SRTM15 |
Climate | Potential evapotranspiration | Spatial resolution 500 m × 500 m | National Tibetan Plateau Scientific Data Center |
Mean annual temperature | Spatial resolution 1 km × 1 km | Resource Environmental Science and Data Center | |
Human activity | Population | Spatial resolution 1 km × 1 km | Resource Environmental Science and Data Center |
Construction land | Spatial resolution 1 km × 1 km | Resource Environmental Science and Data Center |
Variable Abbreviation | Variable Name | Variable Description |
---|---|---|
GPP | Gross primary productivity | The total amount of carbon fixed by plants through photosynthesis per unit time, reflecting the primary productive capacity of the ecosystem (gC/m2·yr). |
NDVI | Normalized difference vegetation index | The vegetation coverage index (range: −1~1) calculated based on the reflectance of red and near-infrared bands. The higher the value, the more dense the vegetation. |
l_pd | Landscape patch density | The number of landscape patches per unit area (unit: units/km2), which represents the degree of landscape fragmentation (the higher the value, the more severe the fragmentation). |
l_cnnct | Landscape connectivity | Describes the spatial connectivity between patches in a landscape (common index: probabilistic connectivity index) that affects species dispersal and ecological processes. |
DEM | Digital elevation model | Digital representation of surface elevation (in meters) used to analyze topographic features such as slope and slope direction and their impact on ecological processes. |
SOIL | Soil organic matter content | Soil key attributes (such as organic matter content, pH, texture, etc.), directly affecting vegetation growth and nutrient cycling. |
GDP | Gross domestic product | Regional economic aggregate index (unit: CNY/person), reflecting the intensity of human economic activities and their pressure on the ecosystem. |
NLT | Nighttime light | Night light brightness based on satellite remote sensing as an indicator of human activity intensity. |
P | Precipitation | The total amount of precipitation per unit time (unit: mm) affects the water budget and vegetation distribution pattern of ecosystem. |
T | Temperature | Temperature index (unit: °C), regulating plant photosynthesis, respiration and species distribution. |
2000 | 2005 | 2010 | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GWR | MGWR | GWR | MGWR | GWR | MGWR | GWR | MGWR | GWR | MGWR | |
AIC: | 3234.86 | 1915.94 | 3926.00 | 2311.69 | 3815.37 | 2306.74 | 3576.94 | 2252.14 | 4086.72 | 2591.34 |
AICc: | 3236.99 | 2050.59 | 3928.13 | 2410.94 | 3817.50 | 2458.77 | 3579.07 | 2392.13 | 4088.86 | 2758.86 |
BIC: | −17,819.20 | 4033.76 | −17,637.28 | 4151.23 | −17,670.08 | 4545.46 | −17,735.77 | 4407.98 | −17,586.83 | 4931.04 |
R2 | 0.77 | 0.90 | 0.70 | 0.88 | 0.71 | 0.89 | 0.74 | 0.89 | 0.68 | 0.88 |
Ad. R2 | 0.77 | 0.89 | 0.70 | 0.86 | 0.71 | 0.87 | 0.74 | 0.87 | 0.67 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Chen, D.; Huang, Q.; Chen, Q.; Wei, C. Temporal–Spatial Evolution and Driving Mechanism for an Ecosystem Health Service Based on the GD-MGWR-XGBOOT-SEM Model: A Case Study in Guangxi Region. Sustainability 2025, 17, 3305. https://doi.org/10.3390/su17083305
Wei Z, Chen D, Huang Q, Chen Q, Wei C. Temporal–Spatial Evolution and Driving Mechanism for an Ecosystem Health Service Based on the GD-MGWR-XGBOOT-SEM Model: A Case Study in Guangxi Region. Sustainability. 2025; 17(8):3305. https://doi.org/10.3390/su17083305
Chicago/Turabian StyleWei, Zhenfeng, Dong Chen, Qunying Huang, Qifeng Chen, and Chunxia Wei. 2025. "Temporal–Spatial Evolution and Driving Mechanism for an Ecosystem Health Service Based on the GD-MGWR-XGBOOT-SEM Model: A Case Study in Guangxi Region" Sustainability 17, no. 8: 3305. https://doi.org/10.3390/su17083305
APA StyleWei, Z., Chen, D., Huang, Q., Chen, Q., & Wei, C. (2025). Temporal–Spatial Evolution and Driving Mechanism for an Ecosystem Health Service Based on the GD-MGWR-XGBOOT-SEM Model: A Case Study in Guangxi Region. Sustainability, 17(8), 3305. https://doi.org/10.3390/su17083305