Water Sustainability Criteria to Regulate the Proliferation of Pig Farms on a Karst Aquifer
Abstract
1. Introduction
2. Study Area and Methodology
2.1. Study Area Location
2.2. Pig Farms in Yucatan
2.3. Methodology
2.3.1. Measurements of Water Quality in Wells and Cenotes
2.3.2. Monitoring of Wastewater Effluents in Industrial Pig Farming
2.3.3. Definition of Nitrogen Greywater Footprint and Water Pollution Level Linked to Pig Farms at the Municipality Level
3. Results and Discussion
3.1. Water Quality in Wells and Cenotes
No. | Well Name | pH | EC (µS/cm) | TDS (ppm) | Dissolved Oxygen (mg/L) | T (°C) |
---|---|---|---|---|---|---|
1 | Franboyan | 8.2 | 1577.4 | 1119.9 | 2.0 | 28.2 |
2 | Chicxulub | 7.1 | 1150.5 | 816.8 | 2.9 | 28.4 |
3 | Conkal | 7.3 | 1125.6 | 798.8 | 7.4 | 27.5 |
4 | Sierra Papacal | 7.1 | 2432.5 | 1727.1 | 1.7 | 29.8 |
5 | San Ignacio | 7.0 | 3908.0 | 2774.7 | 1.8 | 28.2 |
6 | Cheuman | 7.5 | 1709.5 | 1213.7 | 5.2 | 27.8 |
7 | Kanasin | 7.0 | 1166.5 | 828.2 | 5.0 | 27.4 |
8 | La Central | 7.2 | 1185.4 | 841.6 | 5.7 | 28.5 |
9 | Acanceh | 7.1 | 1148.6 | 815.5 | 6.3 | 27.4 |
10 | Cuzama | 7.1 | 1142.4 | 811.1 | 7.7 | 28.8 |
11 | Hocaba | 7.0 | 1199.2 | 851.4 | 5.5 | 27.4 |
12 | Opichen | 5.8 | 2990.0 | 2122.9 | 6.6 | 28.2 |
13 | Poxila | 7.0 | 1737.3 | 1233.5 | 4.1 | 27.8 |
14 | Dzibikak | 7.0 | 968.8 | 687.8 | 3.2 | 27.7 |
15 | Texan Palomeque | 6.9 | 1135.8 | 806.4 | 4.2 | 27.6 |
16 | Hunucma | 7.0 | 1366.4 | 970.1 | 4.2 | 27.6 |
17 | Kinchil | 7.1 | 1813.8 | 1287.8 | 4.7 | 27.8 |
18 | Nohuayun | 7.1 | 1683.2 | 1195 | 3.9 | 28.4 |
19 | San Jose Tzal | 7.0 | 1371.1 | 973.5 | 5.9 | 28.6 |
20 | Cacalchen | 7.4 | 744.0 | 528.2 | 7.4 | 29.4 |
21 | Motul | 7.0 | 1076.0 | 763.9 | 6.1 | 27.5 |
22 | San Francisco | 6.9 | 1265.6 | 898.6 | 4.9 | 27.4 |
3.2. Wastewater Effluents in Industrial Pig Farms
3.3. Evaluation of Nitrogen Greywater Footprint and Water Pollution Level Linked to Pig Farms at the Municipality Level
3.4. Criteria for Sustainable Growth in the Swine Industry
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GWF | Greywater footprint |
WPL | Water pollution level |
EC | Electric conductivity |
COD | Chemical oxygen demand |
TSSs | Total suspended solids |
TDSs | Total diluted solids |
PT | Total phosphorous |
BDO | Biochemical demand of oxygen |
References
- Govoni, C.; Chiareli, D.D.; Luciano, A.; Pinotti, L.; Rulli, M.C. Global assessment of land and water resource demand for pork supply. Environ. Res. Lett. 2022, 17, 074003. [Google Scholar] [CrossRef]
- Wu, L.; Gong, X.; Chen, X.; Hu, W. Compromise effect in food consumer choices in China: An analysis on pork products. Front. Psychol. 2020, 11, 1352. [Google Scholar] [CrossRef]
- Rulli, M.C.; D’Odorico, P.; Galli, N.; Hayman, D.T. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2021, 2, 409–416. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water foot print of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow; FAO: Rome, Italy, 2006; Available online: http://www.fao.org/docrep/010/a0701e/a0701e00.HTM (accessed on 6 October 2024).
- Schröder, J.J. Revisiting the agronomic benefits of manure; A correct assessment and exploitation of its fertilizer value spares the environment. Bioresour. Technol. 2005, 96, 253–261. [Google Scholar] [CrossRef]
- Sims, J.T.; Bergström, L.; Bowman, B.T.; Oenema, O. Nutrient management for intensive animal agriculture: Policies and practices for sustainability. Soil Use Manag. 2005, 21, 141–151. [Google Scholar] [CrossRef]
- Menzi, H.; Oenema, O.; Burton, C.; Shipin, O.; Gerber, P.; Robinson, T.; Franceschini, G. Impacts of Intensive Livestock Production and Manure Management on the Environment. In Livestock in a Changing Landscape, Volume 1: Drivers, Consequences, and Responses; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- FAO. World livestock: Transforming the Livestock Sector Through the Sustainable Development Goals. Available online: www.fao.org/3/CA1201EN/ca1201en.pdf (accessed on 15 December 2024).
- Wu, H.J.; Wang, S.; Gao, L.M.; Zhang, L.; Yuan, Z.W.; Fan, T.Y.; Wei, K.P.; Huang, L. Nutrient-derived environmental impacts in Chinese agriculture during 1978–2015. J. Environ. Manag. 2018, 217, 762–774. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Zhou, Z. Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China. Int. J. Environ. Res. Public Health 2017, 14, 1524. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lü, H.; Yin, B. Eutrophication of lake waters in China: Cost, causes, and control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef]
- Andretta, I.; Hauschild, L.; Kipper, M.; Pires, P.G.S.; Pomar, C. Environmental impacts of precision feeding programs applied in pig production. Animal 2018, 12, 1990–1998. [Google Scholar] [CrossRef]
- Chung, S.-J.; Balasubramani, B.; Kim, J.T. A Study on CO2 and NH3 Reduction during Composting of Chicken Manure by Activated Carbon Addition. J. Korea Soc. Waste Manag. 2020, 37, 69–75. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [PubMed]
- Oenema, O.; Oudendag, D.; Velthof, G.L. Nutrient losses from manure management in the European Union. Livest. Sci. 2007, 112, 261–272. [Google Scholar] [CrossRef]
- Latruffe, L.; Desjeux, Y.; Bakucs, Z.; Fertő, I.; Fogarasi, J. Environmental pressures and technical efficiency of pig farms in Hungary. Manag. Decis. Econ. 2013, 34, 409–416. [Google Scholar] [CrossRef]
- Park, J. Operation status and effective operation management model for on-site swine wastewater treatment facilities. Water 2024, 16, 1794. [Google Scholar] [CrossRef]
- Giraldi-Díaz, M.; Castillo-González, E.; Medina-Salas, L.; Cruz, R.; Huerta-Silva, H. Environmental impacts associated with intensive production in pig farms in Mexico through life cycle assessment. Sustainability 2021, 13, 11248. [Google Scholar] [CrossRef]
- USDA-FAS. Pork Production-Top Countries Summary United States Department of Agriculture-Foreign Agricultural Service. 2024. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads (accessed on 1 October 2024).
- Zhang, Z.; Liu, D.; Qiao, Y.; Li, S.; Chen, Y.; Hu, C. Mitigation of carbon and nitrogen losses during pig manure composting: A meta-analysis. Sci. Total Environ. 2021, 783, 147103. [Google Scholar] [CrossRef]
- Shao, H.; Li, B.; Jiang, Y. Effect and Mechanism of Environmental Decentralization on Pollution Emission from Pig Farming—Evidence from China. Sustainability 2023, 15, 8297. [Google Scholar] [CrossRef]
- Bai, Z.; Jin, S.; Wu, Y.; Ermgassen, E.; Oenema, O.; Chadwick, D.; Lassaletta, L.; Velthof, G.; Zhao, J.; Lin, M. China’s pig relocation in balance. Nat. Sustain. 2019, 1, 888. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Zhao, S.; Zhu, Y. An evolutionary systematic framework to quantify short-term and long-term watershed ecological compensation standard and amount for promoting sustainability of livestock industry based on cost-benefit analysis, linear programming, WTA and WTP method. Environ. Sci. Pollut. Res. 2021, 28, 18004–18020. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.; Tian, Z.; Wang, J.; Zhang, H.; Wang, T. Water security sustainability evaluation: Applying a multistage decision support framework in industrial region. J. Clean. Prod. 2018, 196, 1681–1704. [Google Scholar] [CrossRef]
- Radmehr, A.; Bozorg-Haddad, O.; Loáiciga, H. Integrated strategic planning and multi-criteria decision-making framework with its application to agricultural water management. Sci. Rep. 2022, 12, 8406. [Google Scholar] [CrossRef]
- Ruckli, A.; Hörtenhuber, S.; Ferrari, P.; Guy, J.; Helmerichs, J.; Hoste, R.; Hubbard, C.; Kasperczyk, N.; Leeb, C.; Malak-Rawlikowska, A.; et al. Integrative Sustainability Analysis of European Pig Farms: Development of a Multi-Criteria Assessment Tool. Sustainability 2022, 14, 5988. [Google Scholar] [CrossRef]
- Bai, X.; Ren, X.; Khanna, N.; Zhang, G.; Zhou, N.; Bai, Y.; Hu, M. A comparative study of a full value-chain water footprint assessment using two international standards at a large-scale hog farm in China. J. Clean. Prod. 2018, 176, 557–565. [Google Scholar] [CrossRef]
- Picone, C.; Henke, R.; Ruberto, M.; Calligaris, E.; Zucaro, R. A Synthetic Indicator for Sustainability Standards of Water Resources in Agriculture. Sustainability 2021, 13, 8221. [Google Scholar] [CrossRef]
- Repar, N.; Jan, P.; Dux, D.; Nemecek, T.; Doluschitz, R. Implementing farm-level environmental sustainability in environmental performance indicators: A combined global-local approach. J. Clean. Prod. 2017, 140, 692–704. [Google Scholar] [CrossRef]
- Zarei, S.; Bozorg-Haddad, O.; Singh, V.; Loáiciga, H. Developing water, energy, and food sustainability performance indicators for agricultural systems. Sci. Rep. 2021, 11, 22831. [Google Scholar] [CrossRef]
- Lampridi, M.; Sørensen, C.; Bochtis, D. Agricultural Sustainability: A Review of Concepts and Methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef]
- Rouillard, J.; Rinaudo, J. From state to user-based water allocations: An empirical analysis of institutions developed by agricultural user associations in France. Agric. Water Manag. 2020, 239, 106269. [Google Scholar] [CrossRef]
- Eleisegui, P.; Greenfield, P. Drugs, Hormones and Excrement: The Polluting Pig Mega-Farms Supplying Pork to the World. The Guardian, 26 November 2024. Available online: https://www.theguardian.com/environment/2024/nov/25/drugs-hormones-excrement-pig-farms-mexico-water-yucatan (accessed on 26 November 2024).
- Vazquéz, H.L. The Cenote Is My Neighbor: Litigation from Below and More Than Human Ethics of Care Against Meat Extractivism in Mexico. Ph.D. Thesis, Clark University, Worcester, MA, USA, 2023. [Google Scholar]
- Ponette-Gonzalez, A.G.; Fry, M. Pig pandemic: Industrial hog farming in eastern Mexico. Land Use Policy Int. J. Cover. All Asp. Land Use 2010, 27, 1107–1110. [Google Scholar] [CrossRef]
- Fabro, A.; Ávila, J.; Alberich, M.; Sansores, S.; Camargo-Valero, M. Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Appl. Geogr. 2015, 65, 49–57. [Google Scholar] [CrossRef]
- Martínez-Salvador, C.; Moreno-Gómez, M.; Liedl, R. Estimating pollutant residence time and NO3 concentrations in the Yucatan karst aquifer; considerations for an integrated karst aquifer vulnerability methodology. Water 2019, 11, 1431. [Google Scholar] [CrossRef]
- Moreno-Gómez, M.; Martínez-Salvador, C.; Lied, R.; Stefan, C.; Pacheco, J. First application of the integrated karst aquifer vulnerability (ikav) method. potential and actual vulnerability in Yucatan, Mexico. Nat. Hazards Earth Syst. Sci. 2022, 22, 1591–1608. [Google Scholar] [CrossRef]
- Hoekstra, A.; Chapagain, A.; Aldaya, M.; Mekonnen, M. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2011. [Google Scholar]
- Mekonnen, M.; Hoekstra, A.Y. Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef] [PubMed]
- INEGI. Censo de Población y Vivienda 2020; Instituto Nacional de Estadística Geografía e Informática: Aguascalientes, México, 2020.
- Steinich, B.; Marín, L. Determination of flow characteristics in the aquifer of the Northwestern Peninsula of Yucatan, Mexico. J. Hydrol. 1997, 191, 315–331. [Google Scholar] [CrossRef]
- Pacheco, A.; Cabrera, S. Groundwater Contamination by Nitrates in the Yucatan Peninsula, Mexico. Hydrogeol. J. 1997, 5, 47–53. [Google Scholar] [CrossRef]
- Escolero, O.A.; Marín, L.E.; Steinich, B.; Pacheco, J. Delimitation of a hydrogeological reserve for a city within a karstic aquifer: The Merida, Yucatan example. Lanscape Urban Plan. 2000, 51, 53–62. [Google Scholar] [CrossRef]
- Bauer-Gottwein, P.; Gondwe, B.R.N.; Charvet, G.; Marín, L.E.; Rebolledo-Vieyra, M.; Merediz-Alonso, G. Review: The Yucatan Peninsula karst aquifer, Mexico. Hydrogeol. J. 2011, 19, 507–524. [Google Scholar] [CrossRef]
- CONAGUA. Actualización de la Disponibilidad Media Anual De Agua en el Acuífero Península De Yucatan (3105), Estado De Yucatan; Subdirección General Técnica, Gerencia de Aguas subterráneas; Comisión Nacional del Agua: Ciudad de México, México, 2020.
- Bautista, F.; Aguilar, Y.; Gijón, N. Las granjas porcinas en zonas de karst: ¿Cómo pasamos de la contaminación a la sustentabilidad? Trop. Subtrop. Agroecosyst. 2022, 5, 1–23. [Google Scholar] [CrossRef]
- De La Rosa, E.; Cuevas, F.; Loeza, D.; Barreto, M.; García, J. La lucha socioambiental de proyectos alternativos. El caso del cerdo pelón en Yucatan. Ecología Política. Cuad. De Debate Int. 2021, 61, 74–79. [Google Scholar] [CrossRef]
- SEMARNAT. Dictamen Diagnóstico Ambiental de la Actividad Porcícola en Yucatan. Secretaría de Medio Ambiente y Recursos Naturales, Gobierno de México. 2023; 100p. Available online: https://www.gob.mx/semarnat/documentos/dictamen-diagnostico-ambiental-de-la-actividad-porcicola-de-yucatan (accessed on 1 October 2024).
- NOM-230-SSA1-2002; Salud Ambiental. Agua Para uso y Consumo Humano, Requisitos Sanitarios que se Deben Cumplir en los Sistemas de Abastecimiento Públicos y Privados Durante el Manejo del Agua. Procedimientos Sanitarios Para el Muestreo. Secretaría de Salud: Ciudad de México, México, 2005.
- NMX-AA-014-1980; Cuerpos Receptores—Muestreo. Secretaría del Medio Ambiente y Recursos Naturales: Ciudad de México, México, 1980.
- NMX-EC-17025-IMNC-2018; Requisitos Generales para la Competencia de los Laboratorios de Ensayo y Calibración. Secretaría de Economía: Ciudad de México, México, 2018.
- Norma Oficial Mexicana NOM-001-SEMARNAT-2021. Que Establece los Límites Permisibles de Contaminantes en las Descargas de Aguas Residuales en Cuerpos Receptores Propiedad de la Nación. DOF-Diario Oficial de la Federación. (s/f). Gob.mx. Recuperado el 3 de marzo de 2023, de. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5645374&fecha=11/03/2022 (accessed on 3 March 2023).
- Food and Water Watch. Factory Farm Nation: 2020 Edition. Food & Water Watch, 12 May 2020. Available online: www.foodandwaterwatch.org/sites/default/files/ib_2004_updfacfarmmaps-web2.pdf (accessed on 15 September 2024).
- Ruddy, B.C.; Lorenz, D.L.; Mueller, D.K. County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982–2001; Scientific Investigations Report, 2006, 2006-5012; U.S. Geological Survey: Reston, VA, USA, 2006. Available online: https://pubs.usgs.gov/publication/sir20065012 (accessed on 12 September 2022).
- DEFRA. Protecting Our Water, Soil and Air. 2011. Available online: https://www.gov.uk/government/publications/protecting-our-water-soil-and-air (accessed on 18 January 2024).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Koreze, C.; Hoekstra, A.Y.; Gerbens-Leenes, W. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol. Indic. 2012, 18, 42–49. [Google Scholar] [CrossRef]
- Walton, N. Electrical Conductivity and Total Dissolved Solids—What is Their Precise Relationship? Desalination 1989, 72, 275–292. [Google Scholar] [CrossRef]
- Hubert, E.; Wolkersdorfer, C. Establishing a conversion factor between electrical conductivity and total dissolved solids in South African mine waters. Water SA 2015, 41, 490–500. [Google Scholar] [CrossRef]
- Delgado, C.; Pacheco, J.; Cabrera, A.; Batllori, E.; Orellana, R.; Bautista, F. Quality of groundwater for irrigation in tropical karst environment: The case of Yucatan, Mexico. Agric. Water Manag. 2010, 97, 1423–1433. [Google Scholar] [CrossRef]
- Zamora-Luria, J.; Perera-Burgos, J.; González-Calderón, A.; Stillman, L.; Leal-Bautista, R. Control of fracture networks on a coastal karstic aquifer: A case study from northeastern Yucatan Peninsula (Mexico). Hydrogeol. J. 2020, 28, 2765–2777. [Google Scholar] [CrossRef]
- NOM-127-SSA1-2021; Agua Para Uso y Consumo Humano. Límites Permisibles de la Calidad del Agua. Secretaría de Salud: Ciudad de México, México, 2021.
- Bai, Z.H.; Ma, L.; Qin, W.; Chen, Q.; Oenema, O.; Zhang, F.S. Changes in Pig Production in China and Their Effects on Nitrogen and Phosphorus Use and Losses. Environ. Sci. Technol. 2015, 48, 12742–12749. [Google Scholar]
- Xie, D.; Zhuo, L.; Xie, P.; Liu, Y.; Feng, B.; Wu, P. Spatiotemporal variations and developtments of waterfootprints of pig feeding and pork production in China (2004–2013). Agric. Ecosyst. Environ. 2020, 297, 106932. [Google Scholar]
- Willems, J.; van Grinsven, H.J.M.; Jacobsen, B.H.; Jensen, T.; Dalgaard, T.; Westhoek, H.; Silleback Krinstensen, I. Why Danish pig farms have far more land and pigs than Dutch farms? Agric. Syst. 2016, 144, 122–132. [Google Scholar]
- Bai, Z.H.; Zhao, J.; Wei, Z.; Jin, X.; Ma, L. Socioeconomic drivers of pig production and their effects on achieving sustainable development goals in China. J. Integr. Environ. Sci. 2019, 16, 141–155. [Google Scholar] [CrossRef]
- Öhlund, E.; Hammer, M.; Björklund, J. Managing conflicting goals in pig farming: Farmers’ strategies and perspectives on sustainable pig farming in Sweden. Int. J. Agric. Sustain. 2017, 15, 693–707. [Google Scholar] [CrossRef]
- Kruger, S.; Bucior, L.; Casagranda, Y.; Santos, P.; Moro, L.; Mores, G. Sustainability assessment of pig production: A study in Santa Catarina, Brazil. Ciência E Nat. 2023, 45, e8. [Google Scholar] [CrossRef]
- Wang, X.; Dadouma, A.; Chen, Y.; Sui, P.; Gao, W.; Jia, L. Sustainability evaluation of the large-scale pig farming system in North China: An emergy analysis based on life cycle assessment. J. Clean. Prod. 2015, 102, 144–164. [Google Scholar] [CrossRef]
- Gunnarsson, S.; Segerkvist, A.; Wallgren, T.; Hansson, H.; Sonesson, U. A Systematic Mapping of Research on Sustainability Dimensions at Farm-level in Pig Production. Sustainability 2020, 12, 4352. [Google Scholar] [CrossRef]
- Rauw, W.; Rydhmer, L.; Kyriazakis, I.; Øverland, M.; Gilbert, H.; Dekkers, J.; Hermesch, S.; Bouquet, A.; Izquierdo, G.; Louveau, I.; et al. Prospects for sustainability of pig production in relation to climate change and novel feed resources. J. Sci. Food Agric. 2020, 100, 3575–3586. [Google Scholar] [CrossRef]
- Sellare, J.; Meemken, E.-M.; Qaim, M. Fairtrade, agrochemical input use, and effects on human health and the environment. Ecol. Econ. 2020, 176, 106718. [Google Scholar] [CrossRef]
- Swinnen, J. Economics and politics of food standards, trade, and development. Agric. Econ. 2016, 47, 7–19. [Google Scholar] [CrossRef]
- Meemken, E.-M. Do smallholder farmers benefit from sustainability standards? A systematic review and meta-analysis. Glob. Food Secur. 2020, 26, 100373. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013, 1, 25–36. [Google Scholar] [CrossRef]
- Vos, J.; Boelens, R. Sustainability Standards and the Water Question. Dev. Change 2014, 45, 205–230. [Google Scholar] [CrossRef]
- Meemken, E.; Barrett, C.; Michelson, H.; Qaim, M.; Reardon, T.; Sellare, J. Sustainability standards in global agrifood supply chains. Nat. Food 2021, 2, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Grinsven, H.; Van Dam, J.; Lesschen, J.; Timmers, M.; Velthof, G.; Lassaletta, L. Reducing external costs of nitrogen pollution by relocation of pig production between regions in the European Union. Reg. Environ. Change 2018, 18, 2403–2415. [Google Scholar] [CrossRef]
- Liang, J.; Kayawake, E.; Sekine, T.; Suzuki, S.; Lim, K. Developing zero-discharge pig-farming system: A feasibility study in Malaysia. Anim. Prod. Sci. 2017, 57, 1598–1602. [Google Scholar] [CrossRef]
Pig Farm ID | Number of Pigs | Volume of the Effluent (m3/day) |
---|---|---|
Farm 1 | 48,000 | 386 |
Farm 2 | 13,984 | 150 |
Farm 3 | 13,700 | 123 |
Farm 4 | 6912 | 123 |
Farm 5 | 39,000 | 856 |
Farm 6 | 101,568 | 1223 |
Farm 7 | 8000 | 144 |
Farm 8 | 48,640 | 781 |
Farm 9 | 12,000 | 146 |
Farm 10 | 10,000 | 98 |
No. | Cenote | EC (µS/cm) | T (°C) | Sal. (ppt) | d (m) | Total Phosphate (mg/L) | Total P (mg/L) | A. nitro (mg/L) | NO3 (mg/L) | Nitrite Nitrogen (mg/L) | Ch. (mg/L) | Colour (Pt-Co units) | BDO (mg/L) | COD (mg/L) | Sulph. (mg/L) | TDS (mg/L) | Turb. NTU | Fl. (mg/L) | Ca (mg/L) | Mg (mg/L) | K (mg/L) | Na (mg/L) | Tot. Col. (CFU/ 100 mL) | E. coli (CFU/100 mL) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Yokdzonot | 928 | 26.07 | 0.45 | 28.27 | 0.404 | 0.132 | 0.047 | 6.63 | 0.0113 | 96.4 | 2.5 | <1.0 | <5.00 | 22.9 | 504 | 0.1 | 0.314 | 94.6 | 20.46 | 4.59 | 49.71 | 235 | 155 |
2 | Chihuán | 1191 | 27.23 | 0.59 | 3.31 | 0.165 | 0.054 | 0.029 | 5.01 | <0.0100 | 153 | 2.5 | <1.0 | <5.00 | 29.8 | 664 | 0.05 | 0.295 | 95.15 | 38.5 | 4.26 | 75.93 | 116 | 8.00 |
3 | Haktun ha | 871 | 27.25 | 0.42 | 1.29 | 0.086 | 0.028 | 0.071 | 2.68 | <0.0100 | 65.1 | 2.5 | <1.0 | 11.7 | 13.1 | 406 | 0.75 | 0.305 | 92.95 | 36.63 | 1.85 | 34.02 | 4730 | 1700 |
4 | Kankirixche | 1906 | 27.68 | 0.96 | 2.47 | 0.223 | 0.073 | 0.059 | 3.24 | <0.0100 | 297 | 2.5 | <1.0 | <5.00 | 198 | 1142 | 0.02 | 0.495 | 135.9 | 62.43 | 6.25 | 165.39 | 29,800 | 126 |
5 | Polol | 4738 | 30.3 | 2.52 | 0.6 | 0.159 | 0.052 | 0.188 | 0.109 | <0.0100 | 1066 | 3 | 1.7 | 72.4 | 319 | 3008 | 12 | 0.33 | 113.3 | 182.05 | 73.7 | 588.28 | 461 | 261 |
6 | S.Joaquin 1 | -- | -- | -- | -- | 0.309 | 0.101 | 0.3 | <0.100 | <0.0100 | 1283 | 50 | 1.7 | 74 | 312 | 3390 | 2.5 | 0.599 | 84.43 | 199.1 | 33.33 | 744.26 | * | * |
7 | S. Joaquin 2 | 3092 | 29.01 | 1.6 | 1.71 | 0.184 | 0.06 | 0.159 | 0.601 | <0.0100 | 645 | 40 | <1.0 | 89.6 | 340 | 1886 | 6.2 | 0.418 | 100.9 | 110.55 | 24.09 | 365.64 | * | * |
8 | Sacamucuy | 2436 | 27.66 | 1.25 | 0.69 | 0.248 | 0.081 | 0.112 | 3.17 | <0.0100 | 508 | 2.5 | <1.0 | 14.3 | 102 | 1392 | 0.05 | 0.501 | 118.5 | 69.03 | 10.54 | 271.59 | 6260 | 24 |
9 | Sambelá | 1951 | 28.71 | 0.99 | 1.63 | 0.171 | 0.056 | 0.118 | 3.6 | <0.0100 | 369 | 2.5 | <1.0 | 13.1 | 58 | 1054 | 0.3 | 0.384 | 107 | 58.08 | 7.88 | 200.04 | 480 | 290 |
10 | Chen Ha 1 | 1042 | 29.13 | 0.51 | 5.62 | 0.174 | 0.057 | 0.082 | 0.601 | <0.0100 | 497 | 2.5 | <1.0 | 16 | 185 | 1502 | 0.4 | 0.451 | 121 | 75.9 | 10.93 | 265.54 | 743 | 23 |
11 | Ixcojil | 952 | 26.33 | 0.47 | 2.1 | 0.193 | 0.063 | 0.212 | 3.08 | <0.0100 | 93.4 | 2.5 | 1.4 | 9.38 | 16.7 | 516 | 0.4 | 0.292 | 92.4 | 32.01 | 2.42 | 47.31 | 6460 | 140 |
12 | El Altillo | 1378 | 27.24 | 0.68 | 0.69 | 0.202 | 0.066 | 0.188 | 5.44 | <0.0100 | 210 | 2.5 | 1.2 | 14.3 | 34.2 | 748 | 0.5 | 0.402 | 105.6 | 35.75 | 9.15 | 97.87 | 7540 | 1300 |
13 | Xpuchill | 1239 | 27.55 | 0.61 | 1.93 | 0.129 | 0.042 | 0.188 | 3.97 | <0.0100 | 170 | 2.5 | 1.7 | 11.7 | 31.1 | 664 | 0.9 | 0.399 | 104.5 | 33.88 | 3.89 | 78.95 | 6550 | 3200 |
14 | Calle 17 | 2477 | 27.57 | 1.27 | 1.71 | 0.364 | 0.119 | 0.029 | 3.36 | <0.0100 | 537 | 2.5 | 1.8 | 17.1 | 84 | 1300 | 0.02 | 0.389 | 125.1 | 53.24 | 13.16 | 288.92 | 6460 | 182 |
15 | Noc Ac | 1620 | 28.01 | 0.81 | 4.08 | <0.046 | <0.015 | 0.065 | 2.68 | <0.0100 | 298 | 2.5 | <1.0 | <5.00 | 51.7 | 922 | 0.02 | 0.227 | 92.13 | 37.29 | 8.14 | 163.35 | 1180 | 5 |
16 | Chen Ha 2 | 2496 | 29.47 | 1.28 | 12.59 | 0.456 | 0.149 | 0.218 | 0.321 | 0.0143 | 146 | 13 | 1.7 | 14.8 | 36.1 | 562 | 0.4 | 0.389 | 125.1 | 53.24 | 13.16 | 288.92 | 3610 | 65 |
17 | Hunucmá | 1438 | 28.05 | 0.72 | 0.88 | 0.187 | 0.061 | 0.1 | 7.21 | <0.0100 | 216 | 2.5 | <1.0 | <5.00 | 48.9 | 780 | 0.02 | 0.387 | 104.2 | 33.77 | 7.68 | 119.31 | 1100 | 50 |
18 | Xelactun | 2415 | 26.66 | 1.24 | 9.72 | 0.514 | 0.168 | 0.642 | 0.641 | <0.0100 | 241 | 30 | 1.6 | 10.9 | 63.9 | 724 | 2.2 | 0.331 | 84.7 | 29.15 | 10.16 | 125.75 | 11,400 | 636 |
19 | Pozo 1 | 2916 | 27.27 | 1.51 | 28.07 | 0.196 | 0.064 | 0.636 | <0.100 | <0.0100 | 174 | 20 | 2.3 | 14.7 | 59.3 | 598 | 0.55 | 0.326 | 68.75 | 25.08 | 5.4 | 88.33 | 2000 | 72 |
Pig Farm id | T (°C) | pH (pHU) | Colour (nm) | BDO (mg/L) | CDO (mg/L) | PT (mg/L) | Fats and Oils (mg/L) | Total Nitrogen (mg/L) | TSS (mg/L) | Toxicity (TU) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
435 | 535 | 620 | ||||||||||
Farm 1 | 32 | 8.9 | 16.1 | 5.1 | 1.8 | 58 | 407 | 25.4 | 16.5 | 370 | 268 | 7.8 |
Farm 2 | 33.4 | 7.75 | 15.8 | 4.9 | 1.7 | 55 | 606 | 18.6 | <8.56 | 455 | 192 | 8.2 |
Farm 3 | 37.5 | 7.67 | 55.2 | 22.9 | 9.9 | 21 | 748 | 15.8 | <8.56 | 748 | 40 | 1.5 |
Farm 4 | 33.5 | 7.93 | 36.6 | 13.1 | 5.1 | 74 | 808 | 20.7 | 16.2 | 380 | 173 | 13.5 |
Farm 5 | 33.3 | 8 | 61.7 | 28.7 | 13.1 | 176 | 8622 | 158.6 | 184 | 1095 | 6600 | 19 |
Farm 6 | 33.8 | 8.04 | 41.6 | 16 | 6.6 | 36 | 1295 | 23.8 | <8.56 | 531 | 610 | 34.6 |
Farm 7 | 31.6 | 8.14 | 68.3 | 33.7 | 16.8 | 31 | 1273 | 13.7 | 13.8 * | 584 | 265 | 2.8 |
Farm 8 | 30.8 | 8.09 | 59 | 29.2 | 13.5 | 161 | 1304 | 14.9 | 19.7 | 692 | 590 | 15.3 |
Farm 9 | 29.4 | 8.08 | 53.1 | 26.1 | 12 | 184 | 2567 | 50.5 | 109 | 636 | 1360 | 7.4 |
Farm 10 | SD | SD | 68.7 | 33.7 | 16.1 | 27 | 1299 | 16.8 | <8.56 | 431 | 253 | 3.1 |
Environmental limit | 35 | ranging 6 to 9 | 7 | 5 | 3 | N.A. | 60 | 5 | 15 | 15 | 20 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrozo-Acuña, A.; Ramírez-Salinas, N.; Vázquez-Bustos, C. Water Sustainability Criteria to Regulate the Proliferation of Pig Farms on a Karst Aquifer. Sustainability 2025, 17, 3069. https://doi.org/10.3390/su17073069
Pedrozo-Acuña A, Ramírez-Salinas N, Vázquez-Bustos C. Water Sustainability Criteria to Regulate the Proliferation of Pig Farms on a Karst Aquifer. Sustainability. 2025; 17(7):3069. https://doi.org/10.3390/su17073069
Chicago/Turabian StylePedrozo-Acuña, Adrián, Norma Ramírez-Salinas, and Camilo Vázquez-Bustos. 2025. "Water Sustainability Criteria to Regulate the Proliferation of Pig Farms on a Karst Aquifer" Sustainability 17, no. 7: 3069. https://doi.org/10.3390/su17073069
APA StylePedrozo-Acuña, A., Ramírez-Salinas, N., & Vázquez-Bustos, C. (2025). Water Sustainability Criteria to Regulate the Proliferation of Pig Farms on a Karst Aquifer. Sustainability, 17(7), 3069. https://doi.org/10.3390/su17073069