Structural Characteristics of Small Ruminant Production in Muş, Türkiye: A Model for Organic Livestock on the Basis of Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Sample Selection
2.2. Statistical Assessments
3. Results
3.1. Socio-Demographic Characteristics of Farmers
3.2. Animal Stock and Management Practices in Farms
3.3. Characteristics of Shelters on Farms
3.4. Pasture Management and Feed Production on Farms
3.5. Feeding Practices on Farms
3.6. Health Care on Farms
4. Discussion
4.1. Socio-Demographic Characteristics of Farmers
4.2. Animal Stock and Management Practices in Farms
4.3. Characteristics of Shelters on Farms
4.4. Pasture Management and Feed Production on Farms
4.5. Feeding Practices on Farms
4.6. Health Care on Farms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cristache, S.-E.; Vuță, M.; Marin, E.; Cioaca, S.-I.; Vuță, M. Organic versus Conventional Farming—A Paradigm for the Sustainable Development of the European Countries. Sustainability 2018, 10, 4279. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- van Wagenberg, C.P.A.; de Haas, Y.; Hogeveen, H.; van Krimpen, M.M.; Meuwissen, M.P.M.; van Middelaar, C.E.; Rodenburg, T.B. Animal Board Invited Review: Comparing conventional and organic livestock production systems on different aspects of sustainability. Animal 2017, 11, 1839–1851. [Google Scholar] [CrossRef] [PubMed]
- Cerniglia, C.E.; Kotarski, S. Evaluation of Veterinary Drug Residues in Food for Their Potential to Affect Human Intestinal Microflora. Regul. Toxicol. Pharmacol. 1999, 29, 238–261. [Google Scholar] [CrossRef]
- Samanidou, V.; Nisyriou, S. Multi-residue methods for confirmatory determination of antibiotics in milk. J. Sep. Sci. 2008, 31, 2068–2090. [Google Scholar] [CrossRef]
- Beyene, T. Veterinary drug residues in food-animal products: Its risk factors and potential effects on public health. J. Vet. Sci. Tech. 2016, 7, 1000285. [Google Scholar] [CrossRef]
- Kyuchukova, R. Antibiotic residues and human health hazard-review. Bulg. J. Agric. Sci. 2020, 26, 664–668. [Google Scholar]
- Khalifa, H.O.; Shikoray, L.; Mohamed, M.Y.I.; Habib, I.; Matsumoto, T. Veterinary drug residues in the food chain as an emerging public health threat: Sources, analytical methods, health impacts, and preventive measures. Foods 2024, 13, 1629. [Google Scholar] [CrossRef]
- Mesfin, Y.M.; Mitiku, B.A.; Tamrat Admasu, H. Veterinary drug residues in food products of animal origin and their public health consequences: A review. Vet. Med. Sci. 2024, 10, e70049. [Google Scholar] [CrossRef]
- Twine, R. Emissions from animal agriculture—16.5% is the new minimum figure. Sustainability 2021, 13, 6276. [Google Scholar] [CrossRef]
- Åkerfeldt, M.P.; Gunnarsson, S.; Bernes, G.; Blanco-Penedo, I. Health and welfare in organic livestock production systems-a systematic mapping of current knowledge. Org. Agr. 2020, 11, 105–132. [Google Scholar] [CrossRef]
- Shubeena, S.; Hamdani, S.; Hai, A.; Hussain, K.; Amin, B. Organic livestock farming- with special reference to Indian system. Int. J. Livest. Res. 2017, 7, 43–55. [Google Scholar] [CrossRef]
- Wallace, R.J. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 2004, 63, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Miresa, A. Thymus plant in animal nutrition: Review. Glob. J. Anim. Sci. Res. 2020, 8, 115–135. [Google Scholar]
- Suciu, N.A.; Ferrari, F.; Trevisan, M. Organic and conventional food: Comparison and future research. Trends Food Sci. Technol. 2019, 84, 49–51. [Google Scholar] [CrossRef]
- Zervas, G.; Fegeros, K.; Papadopoulos, G. Feeding system of sheep in a mountainous area of Greece. Small Rum. Res. 1996, 21, 11–17. [Google Scholar] [CrossRef]
- Durmuş, M.; Agossou, D.J.; Koluman, N. Sustainability of small ruminant production in Mediterranean Region. J. Environ. Sci. Eng. B 2019, 8, 241–248. [Google Scholar] [CrossRef]
- Iñiguez, L. The challenges of research and development of small ruminant production in dry areas. Small Rum. Res. 2011, 98, 12–20. [Google Scholar] [CrossRef]
- Kumar, S.; Roy, M.M. Small Ruminant’s Role in Sustaining Rural Livelihoods in Arid and Semiarid Regions and their Potential for Commercialization. In New Paradigms in Livestock Production from Traditional to Commercial Farming and Beyond; Agrotech Publishing Academy: Udaipur, India, 2013; pp. 57–80. [Google Scholar]
- Monteiro, A.L.G.; da Faro, A.M.C.; Peres, M.T.P.; Batista, R.; Poli, C.H.E.C.; Villalba, J.J. The role of small ruminants on global climate change. Acta Sci. Anim. Sci. 2018, 40, 43124. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate change and livestock production: A literature review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Gowane, G.; Gadekar, Y.; Prakash, V.; Kadam, V.; Chopra, A.; Prince, L. Climate change impact on sheep production: Growth, milk, wool, and meat. In Sheep Production Adapting to Climate Change; Springer: Singapore, 2017; pp. 31–69. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, V. Organic Livestock husbandry: An approach to welfare; sustainability. Indian J. Anim. Prod. Manag. 2016, 32, 125–129. [Google Scholar]
- Savaş, T.; Cedden, F.; Cemal, İ.; Daşkıran, İ.; Esenbuğa, N.; Gül, S.; Kandemir, Ç.; Karaca, O.; Keskin, M.; Koluman, N.; et al. Current situation and future of sheep breeding in Turkey. In Proceedings of the IXth Technical Congress of Turkish Agricultural Engineering, Book of Proceedings-2, Ankara, Türkiye, 13–17 January 2020; pp. 133–152. [Google Scholar]
- TURKSTAT. Livestock Statistics. Available online: https://biruni.tuik.gov.tr/medas/?kn=101&locale=tr (accessed on 13 August 2024).
- Koyuncu, M.; Taşkın, T. Ecological sheep and goat farming. Anim. Prod. 2016, 57, 56–62. [Google Scholar]
- Gökkuş, A. Forage resources for organic livestock farming: Meadow-pasture and shrublands. In Proceedings of the 6th Organic Agriculture Symposium, İzmir, Türkiye, 15–17 May 2019; pp. 148–158. [Google Scholar]
- TURKSTAT. Address Based Population Registration System. Available online: https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr (accessed on 13 August 2024).
- Türkiye Ministry of Agriculture and Forestry. Briefing of Muş Provincial Directorate of Agriculture and Forestry; Türkiye Ministry of Agriculture and Forestry: Muş, Türkiye, 2023.
- Türkiye Ministry of Agriculture and Forestry. Change in Pasture Areas by Years. Available online: https://www.tarimorman.gov.tr/Konular/Bitkisel-Uretim/Cayir-Mera-ve-Yem-Bitkileri (accessed on 13 August 2024).
- TURKSTAT. Crop Production Statistics. Available online: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (accessed on 13 August 2024).
- Dhankhar, N.; Kumar, J. Impact of Increasing Pesticides and Fertilizers on Human Health: A Review. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Türkiye Ministry of Agriculture and Forestry. Chemical Fertilizer Consumption and Production Statistics by Years. Available online: https://www.tarimorman.gov.tr/Konular/Bitkisel-Uretim/Bitki-Besleme-ve-Tarimsal-Teknolojiler/Bitki-Besleme-Istatistikleri (accessed on 13 August 2024).
- Türkiye Ministry of Agriculture and Forestry. Agrochemical Statistics. Available online: https://www.tarimorman.gov.tr/GKGM/Menu/115/Resmi-Tarimsal-Ilac-Istatistikleri (accessed on 13 August 2024).
- FAO. Building a Common Vision for Sustainable Food and Agriculture. Principles and Approaches; FAO: Rome, Italy, 2014; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/cd7ebb4f-da7c-474d-83df-b5cc224d2ff8/content (accessed on 13 August 2024).
- Sundberg, D.N. What Is Sustainable Agriculture? Available online: https://www.ucsusa.org/resources/what-sustainable-agriculture (accessed on 15 March 2022).
- Kamakaula, Y. Sustainable agriculture practices: Economic, ecological, and social approaches to enhance farmer welfare and environmental sustainability. West Sci. Nat. Technol. 2024, 2, 47–54. [Google Scholar]
- Türkiye Ministry of Agriculture and Forestry. General Directorate of Meteorology, General Statistics Data for Provinces. Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=MUS (accessed on 13 August 2024).
- Çiçek, A.; Erkan, O. Research and Sampling Methods in Agricultural Economics; Gaziosmanpasa University. Faculty of Agriculture Publication: Tokat, Türkiye, 1996. [Google Scholar]
- Mensah, É.J.-P.A.; Kindomihou, V.; Moussa, H.; Houndonougbo, F.; Vodouhè, D.S.; Aiyelaagbe, I.; Sinsin, B. Potentialités de production biologique des systèmes d’élevage traditionnels de Petits Ruminants: Une synthèse. J. Anim. Plant Sci. 2022, 52, 9404–9451. [Google Scholar]
- Kredi Kayıt Bürosu. Turkey Agricultural Outlook Field Survey 2019. Available online: https://www.kkb.com.tr/Resources/ContentFile/2019_KKB_TURKIYE_TARIMSAL_GORUNUM_SAHA_ARA%C5%9ETIRMASI.pdf (accessed on 13 August 2024).
- FAO. Youth and Agriculture: Key Challenges and Concrete Solutions; FAO: Rome, Italy, 2014; Available online: https://www.fao.org/3/i3947e/i3947e.pdf (accessed on 13 August 2024).
- Dash, D. A Review on organic farming as a potential sector of agripreneurship development among the tribal youth of India. Int. J. Agric. Environ. Biotech. 2018, 11, 761–767. [Google Scholar] [CrossRef]
- Jansen, K. Labour, livelihoods and the quality of life in organic agriculture in Europe. Biol. Agric. Hortic. 2000, 17, 247–278. [Google Scholar] [CrossRef]
- Qiao, Y.; Niels, H.; Saminathan, V.; Steffanie, S. Assessing the social and economic benefits of organic and fair trade tea production for small-scale farmers in Asia: A comparative case study of China and Sri Lanka. Renew. Agric. Food Syst. 2016, 31, 246–257. [Google Scholar] [CrossRef]
- Rahmah, U.I.L.; Somanjaya, R. The correlation between farmers characteristics and level of dairy management. J. Ilmu Pertan. Dan Peternak. 2019, 7, 102–107. [Google Scholar]
- Andarwati, S.; Haryadi, T.; Guntoro, B.; Sulastri, E.; Putra, R.A.R.S.; Gunawan, G. Relationship between farmer’s characteristics with the motivation of goat milking in the Girikerto Village Turi District Sleman Regency. Bul. Peternak. 2018, 42, 256–261. [Google Scholar] [CrossRef]
- Naik, M.H.; Srivastava, S.R.; Godara, A.K.; Yadav, V.P.S. Knowledge level about organic farming in Haryana. Indian Res. J. Ext. Educ. 2009, 9, 50–53. [Google Scholar]
- Hidayah, N.; Artdita, C.A.; Lestari, F.B. Pengaruh karakteristik peternak terhadap adopsi teknologi pemeliharaan pada peternak kambing Peranakan Ettawa di Desa Hargotirto Kabupaten Kulon Progo. J. Bisnis Manaj. 2019, 19, 1–10. [Google Scholar]
- Ibrahim, A.; Wibowo, D.S.; Budisatria, I.G.S.; Widayanti, R.; Artama, W.T. Relationship between sheep farmer’s characteristics with the animal and environmental health management practices in Batur Village, Banjarnegara, Indonesia. BIO Web Conf. 2021, 33, 04010. [Google Scholar] [CrossRef]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Pfiffner, L.; Stöckli, S.; Balmer, O. Organic Agriculture and Biodiversity; Fact Sheet; Research Institute of Organic Agriculture (FiBL): Frankfurt am Main, Germany, 2011; ISBN 978-3-03736-195-5. [Google Scholar]
- Fraser, M.; Vallin, H.; Roberts, B. Animal board invited review: Grassland-based livestock farming and biodiversity. Animal 2022, 16, 100671. [Google Scholar] [CrossRef]
- Hamdi, J.; Bamouh, Z.; Jazouli, M.; Boumart, Z.; Tadlaoui, K.O.; Fihri, O.F.; El Harrak, M. Experimental Evaluation of the Cross-Protection between Sheeppox and Bovine Lumpy Skin Vaccines. Sci. Rep. 2020, 10, 8888. [Google Scholar] [CrossRef]
- García-Dios, D.; Panadero, R.; Díaz, P.; Viña, M.; Remesar, S.; Prieto, A.; López-Lorenzo, G.; Martínez-Calabuig, N.; Díez-Baños, P.; Morrondo, P.; et al. The Goat as a Risk Factor for Parasitic Infections in Ovine Flocks. Animals 2021, 11, 2077. [Google Scholar] [CrossRef]
- Townsend, R.; Kirsten, J.; Vink, N. Farm size, productivity and returns to scale in agriculture revisited: A case study of wine producers in South Africa. Agric. Econ. 1998, 19, 175–180. [Google Scholar] [CrossRef]
- Chander, M.; Subrahmanyeswari, B.; Mukherjee, R.; Kumar, S. Organic livestock production: An emerging opportunity with new challenges for producers in tropical countries. OIE Rev. Sci. Technol. 2011, 30, 969–983. [Google Scholar] [CrossRef]
- Aksoy, A.; Yavuz, F. Analysis on the Reasons for Quitting Sheep and Goat Rearing of Farmers: A Case of East Anatolia Region. Anadolu J. Agric. Sci. 2012, 27, 76–79. [Google Scholar] [CrossRef]
- EC. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007 PE/62/2017/REV/1. Off. J. Eur. Union 2018, 150, 1–92. Available online: http://data.europa.eu/eli/reg/2018/2848/oj (accessed on 13 August 2024).
- Pehlivan, E.; Aksakal, V.; Öztürk, A.K.; Önal, A.R.; Polat, M.; Dellal, G. Current status and future of organic animal production in the world, EU and Turkey. In Proceedings of the IXth Technical Congress of Turkish Agricultural Engineering, Book of Proceedings-2, Ankara, Türkiye, 13–17 January 2020; pp. 229–259. [Google Scholar]
- Tully, K.L.; McAskill, C. Promoting soil health in organically managed systems: A review. Org. Agric. 2020, 10, 339–358. [Google Scholar] [CrossRef]
- Mäder, P.; Fließbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef]
- Yakan, A. Milk Recording Methods and Calculation of Lactation Milk Production in Sheep and Goats. J. Adana Vet. Cont. Inst. 2012, 2, 18–23. [Google Scholar]
- Wadhwani, K.N.; Modi, R.J.; Islam, M.M.; Patel, Y.G. Role of Housing in Welfare of Small Ruminants. Indian J. Anim. Prod. Mgmt. 2016, 32, 130–139. [Google Scholar]
- Baytar, İ.; Doğan, M. Agriculture and Animal Husbandry Activities in Muş Province. Int. J. Manag. Acad. 2021, 4, 302–320. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef]
- Rinehart, L.; Baier, A. Pasture for Organic Ruminant Livestock. Available online: http://enpleinegueule.com/francais/lire/pasturerule.pdf (accessed on 13 August 2024).
- Assing, A.C.B.B. Agroecology: A Proposal for Livelihood, Ecosystem Services Provision and Biodiversity Conservation for Small Dairy Farms in Santa Catarina. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2018. [Google Scholar] [CrossRef]
- Cabral, J.P.; Faria, D.; Morante-Filho, J.C. Landscape composition is more important than local vegetation structure for understory birds in cocoa agroforestry systems. For. Ecol. Manag. 2021, 481, 118704. [Google Scholar] [CrossRef]
- Scohier, A.; Ouin, A.; Farruggia, A.; Dumont, B. Is there a benefit of excluding sheep from pastures at flowering peak on flower-visiting insect diversity? J. Insect Conserv. 2013, 17, 287–294. [Google Scholar] [CrossRef]
- Steinfeld, H.; Wassenaar, T. The Role of Livestock Production in Carbon and Nitrogen Cycles. Annu. Rev. Environ. Resour. 2007, 32, 271–294. [Google Scholar] [CrossRef]
- Teague, R.; Provenza, F.; Kreuter, U.; Steffens, T.; Barnes, M. Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? J. Environ. Manag. 2013, 128, 699–717. [Google Scholar] [CrossRef]
- Wang, T.; Jin, H.; Kreuter, U.; Teague, R. Understanding producers’ perspectives on rotational grazing benefits across US Great Plains. Renew. Agric. Food Syst. 2022, 37, 24–35. [Google Scholar] [CrossRef]
- Di Virgilio, A.; Lambertucci, S.A.; Morales, J.M. Sustainable grazing management in rangelands: Over a century searching for a silver bullet. Agric. Ecosyst. Environ. 2019, 283, 106561. [Google Scholar] [CrossRef]
- Provenza, F.; Pringle, H.; Revell, D.; Bray, N.; Hines, C.; Teague, R.; Steffens, T.; Barnes, M. Complex creative systems: Principles, processes, and practices of transformation. Rangelands 2013, 35, 6–13. [Google Scholar] [CrossRef]
- Martin, G.; Barth, K.; Benoit, M.; Brock, C.; Destruel, M.; Dumont, B.; Grillot, M.; Hübner, S.; Magne, M.-A.; Moerman, M. Potential of multi-species livestock farming to improve the sustainability of livestock farms: A review. Agric. Syst. 2020, 181, 102821. [Google Scholar] [CrossRef]
- Gliessman, S. Animals in agroecosystems. In Agroecology: The Ecology of Sustainable Food Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 269–285. [Google Scholar] [CrossRef]
- Patel, S.J.; Upesh Kumar, U.K.; Chaudhari, R.P.; Darji, S.S. Organic farming in animal husbandry practices. Indian J. Hill Farming 2017, 83, 55–60. [Google Scholar]
- Anim-Jnr, A.S.; Sasu, P.; Bosch, C.; Mabiki, F.P.; Frimpong, Y.O.; Emmambux, M.N.; Greathead, H.M.R. Sustainable Small Ruminant Production in Low- and Middle-Income African Countries: Harnessing the Potential of Agroecology. Sustainability 2023, 15, 15326. [Google Scholar] [CrossRef]
- van Zanten, H.H.E.; Van Ittersum, M.K.; De Boer, I.J.M. The role of farm animals in a circular food system. Glob. Food Secur. 2019, 21, 18–22. [Google Scholar] [CrossRef]
- Hermansen, J.E. Organic livestock production systems and appropriate development in relation to public expectations. Livest. Prod. Sci. 2003, 80, 3–15. [Google Scholar] [CrossRef]
- Charles, R.; Munishi, P.; Nzunda, E. Agroforestry as Adaptation Strategy under Climate Change in Mwanga District, Kilimanjaro, Tanzania. Int. J. Environ. Prot. 2013, 3, 29–38. [Google Scholar]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and organic agriculture. Agrofor. Syst. 2021, 95, 805–821. [Google Scholar] [CrossRef]
- Hernández-Castellano, L.E.; Suárez-Trujillo, A.; Martell-Jaizme, D.; Cugno, G.; Argüello, A.; Castro, N. The effect of colostrum period management on BW and immune system in lambs: From birth to weaning. Animal 2015, 9, 1672–1679. [Google Scholar] [CrossRef]
- EC. Commission Implementing Regulation (EU) 2020/464 of 26 March 2020 Laying Down Certain Rules for the Application of Regulation (EU) 2018/848 of the European Parliament and of the Council as Regards the Documents Needed for the Retroactive Recognition of Periods for the Purpose of Conversion, the Production of Organic Products and Information to Be Provided by Member States. Off. J. Eur. Union 2020, 98, 2–25. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32020R0464 (accessed on 13 August 2024).
- Liu, T.; Li, F.; Wang, W.; Wang, X.; Ma, Z.; Li, C.; Weng, X.; Zheng, C. Early feeding strategies in lambs affect rumen development and growth performance, with advantages persisting for two weeks after the transition to fattening diets. Front. Vet. Sci. 2022, 9, 925649. [Google Scholar] [CrossRef]
- Aksoy, Y.; Çiçek, Ü.; ¸Sen, U.; ¸Sirin, E.; Ugurlu, M.; Önenç, A.; Kuran, M.; Ulutas, Z. Meat production characteristics of Turkish native breeds: II. meat quality, fatty acid, and cholesterol profile of lambs. Arch. Anim. Breed. 2019, 62, 41–48. [Google Scholar] [CrossRef]
- Lu, C.D. Nutritionally related strategies for organic goat production. Small Rumin. Res. 2011, 98, 73–82. [Google Scholar] [CrossRef]
- Jakobsen, K.; Hermansen, J.E. Organic farming-a challenge to nutritionists. J. Anim. Feed Sci. 2001, 10, 29–42. [Google Scholar] [CrossRef]
- Smigic, N.; Djekic, I.; Tomasevic, I.; Stanisic, N.; Nedeljkovic, A.; Lukovic, V.; Miocinovic, J. Organic and conventional milk–insight on potential differences. Br. Food J. 2017, 119, 366–376. [Google Scholar] [CrossRef]
- Escribano, A.J. Organic feed: A bottleneck for the development of the livestock sector and its transition to sustainability? Sustainability 2018, 10, 2393. [Google Scholar] [CrossRef]
- Fthenakis, G.C.; Papadopoulos, E. Impact of parasitism in goat productions. Small Rumin. Res. 2018, 163, 21–23. [Google Scholar] [CrossRef]
- Cabaret, J.; Bouilhol, M.; Mage, C. Managing helminths of ruminants in organic farming. Vet. Res. 2002, 33, 625–640. [Google Scholar] [CrossRef]
- Orjales, I.; Mezo, M.; Miranda, M.; González-Warleta, M.; Rey-Crespo, F.; Vaarst, M.; Thamsborg, S.; Diéguez, F.J.; Castro-Hermida, J.A.; López-Alonso, M. Helminth Infections on Organic Dairy Farms in Spain. Vet. Parasitol. 2017, 243, 115–118. [Google Scholar] [CrossRef]
- Cabaret, J. Practical recommendations on the control of helminth parasites in organic sheep production systems. CABI Rev. 2007, 2007, 6. [Google Scholar] [CrossRef]
- Mahieu, M. Effects of stocking rates on gastrointestinal nematode infection levels in a goat/cattle rotational stocking system. Vet. Parasitol. 2013, 198, 136–144. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D.; Shaw, R. Sheep self-medicate when challenged with illness-inducing foods. Anim. Behav. 2006, 71, 1131–1139. [Google Scholar] [CrossRef]
- Gradé, J.T.; Tabuti, J.R.S.; Van Damme, P. Four Footed Pharmacists: Indications of Self-Medicating Livestock in Karamoja, Uganda. Econ. Bot. 2009, 63, 29–42. [Google Scholar] [CrossRef]
- Kidane, A.; Houdijk, J.G.M.; Athanasiadou, S.; Tolkamp, B.J.; Kyriazakis, I. Effects of maternal protein nutrition and subsequent grazing on chicory (Cichorium intybus) on parasitism and performance of lambs. J. Anim. Sci. 2010, 88, 1513–1521. [Google Scholar] [CrossRef]
- Marie-Magdeleine, C.; Mahieu, M.; Philibert, L.; Despois, P.; Archimède, H. Effect of cassava (Manihot esculenta) foliage on nutrition, parasite infection and growth of lambs. Small Rumin. Res. 2010, 93, 10–18. [Google Scholar] [CrossRef]
- Waghorn, G.; McNabb, W. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc. Nutr. Soc. 2003, 62, 383–392. [Google Scholar] [CrossRef]
- Provenza, F.D.; Villalba, J.J. The role of natural plant products in modulating the immune system: An adaptable approach for combating disease in grazing animals. Small Rumin. Res. 2010, 89, 131–139. [Google Scholar] [CrossRef]
- Hoste, H.; Athanasiadou, S.; Paolini, V.; Jackson, F.; Coop, R.L.; Kyriazakis, I.; Barrau, E.; Fouraste, I.; Valderrabano, F.; Uriarte, J.; et al. Nutritional aspects of bioactive forages for worm control in organic sheep and goats. In Proceedings of the 2nd Sustaining Animal Health and Food Safety in Organic Farming Workshop, Witzenhausen, Germany, 25–27 March 2004; pp. 123–128. [Google Scholar]
- Jesse, F.F.A.; Peter, I.D.; Abba, Y.; Bitrus, A.A.; Hambali, I.U.; Chung, E.L.T.; Haron, W. Clinical management of hoof abscess in a goat. Int. J. Vet. Sci. Anim. Husb. 2018, 3, 62–65. [Google Scholar]
Variables | Response | Count | Percentage |
---|---|---|---|
Gender | Female | 31 | 8.5 |
Male | 333 | 91.5 | |
Age | ≤30 | 29 | 8.0 |
31–44 | 103 | 28.3 | |
45–60 | 192 | 52.7 | |
≥61 | 40 | 11.0 | |
Number of family members | ≤3 | 8 | 2.2 |
4–6 | 94 | 25.8 | |
7–10 | 187 | 51.4 | |
≥11 | 75 | 20.6 | |
Education level | Illiterate | 40 | 11.0 |
Literate (no diploma) | 91 | 25.0 | |
Primary school | 179 | 49.2 | |
High school | 44 | 12.1 | |
University | 10 | 2.7 | |
Farming experience (year) | ≤10 | 77 | 21.2 |
11–20 | 112 | 30.8 | |
21–30 | 81 | 22.3 | |
31–40 | 46 | 12.6 | |
≥41 | 48 | 13.1 | |
Purpose of small ruminant farming | Main source of income | 352 | 96.7 |
Enjoyment | 8 | 2.2 | |
Additional income | 4 | 1.1 | |
Other livestock activities | Yes | 138 | 37.9 |
No | 226 | 62.1 | |
Membership in producer organization | Yes | 236 | 64.8 |
No | 128 | 35.2 | |
Level of knowledge about organic farming | Knowledgeable | 134 | 36.8 |
Not knowledgeable | 230 | 63.2 |
Variables | Response | Count | Percentage |
---|---|---|---|
Animal species on the farm | Sheep | 123 | 33.8 |
Sheep + Goat | 183 | 50.3 | |
Sheep + Cattle | 34 | 9.3 | |
Sheep + Goat + Cattle | 24 | 6.6 | |
Sheep stock (head) | ≤100 | 93 | 25.5 |
101–300 | 184 | 50.5 | |
301–500 | 57 | 15.7 | |
501–1000 | 30 | 8.3 | |
Goat stock (head) | ≤25 | 75 | 36.2 |
26–50 | 83 | 40.1 | |
51–75 | 25 | 12.1 | |
76–100 | 24 | 11.6 | |
Change in animal stock over the last five years | Increased | 75 | 20.6 |
Decreased | 289 | 79.4 | |
Reason for decrease in animal stock | Lack of shepherds | 78 | 27.0 |
Decreased income | 166 | 57.4 | |
Insufficient support | 45 | 15.6 | |
Sheep genotypes raised | Morkaraman | 196 | 53.8 |
Akkaraman | 75 | 20.7 | |
Morkaraman + Akkaraman | 93 | 25.5 | |
Goat genotypes raised | Hair goat | 207 | 100.0 |
Breeding system | Transhumance | 23 | 6.3 |
Sedentary farming | 108 | 29.7 | |
Sedentary farming + Transhumance | 233 | 64.0 | |
Mating/insemination method applied | Free mating | 332 | 91.2 |
Hand mating | 32 | 8.8 | |
Milking duration in sheep (months) | No milking | 47 | 12.9 |
1–2 months | 50 | 13.7 | |
3–5 months | 267 | 73.4 | |
Milking duration in goats (months) | No milking | 22 | 10.6 |
1–2 months | 28 | 13.5 | |
3–5 months | 157 | 75.9 | |
Castration in lambs | Performed | 7 | 1.9 |
Not performed | 357 | 98.1 | |
Castration in goats | Performed | 7 | 3.4 |
Not performed | 200 | 96.6 | |
Tail docking in lambs | Performed | 24 | 6.6 |
Not performed | 340 | 93.4 | |
Tail docking in goats | Performed | 5 | 2.4 |
Not performed | 202 | 97.6 | |
Dehorning in lambs | Performed | 41 | 11.3 |
Not performed | 323 | 88.7 | |
Dehorning in goats | Performed | 18 | 8.7 |
Not performed | 189 | 91.3 | |
Record-keeping in farms | Performed | 107 | 29.4 |
Not performed | 257 | 70.6 |
Variables | Response | Count | Percentage |
---|---|---|---|
Shelter’s location | Under the house | 34 | 9.4 |
Courtyard | 39 | 10.7 | |
Independent | 291 | 79.9 | |
Shelter type | Open | 0 | 0.0 |
Semi-open | 26 | 7.1 | |
Closed | 338 | 92.9 | |
Shelter with chimney/windows | Present | 324 | 89.0 |
Absent | 40 | 11.0 | |
Shelter ventilation | Adequate | 51 | 86.0 |
Inadequate | 313 | 14.0 | |
Shelter roof material | Tile | 19 | 5.2 |
Metal Sheet | 184 | 50.5 | |
Wood | 25 | 6.9 | |
Nylon | 10 | 2.7 | |
Earthen roof | 126 | 34.6 | |
Shelter floor | Earth | 254 | 69.8 |
Stone | 24 | 6.6 | |
Concrete | 86 | 23.6 | |
Bedding use | Yes | 116 | 31.9 |
No | 248 | 68.1 |
Variables | Response | Count | Percentage |
---|---|---|---|
Grazing duration within the year (months) | ≤4 | 79 | 21.7 |
5–8 | 269 | 73.9 | |
≥9 | 16 | 4.4 | |
Daily grazing duration (hours) | ≤8 | 24 | 6.6 |
9–16 | 219 | 60.2 | |
≥17 | 121 | 33.2 | |
Use of the same pasture continuously | Yes | 318 | 87.4 |
No | 46 | 12.6 | |
Species of animals grazing in the same pasture | Sheep | 46 | 12.6 |
Sheep + goat | 30 | 8.3 | |
Sheep + cattle | 15 | 4.1 | |
Sheep + goat + cattle | 273 | 75.0 | |
Pasture quality | Poor | 106 | 29.2 |
Medium | 192 | 52.7 | |
Good | 66 | 18.1 | |
Supplementary feeding during grazing period | Provided | 74 | 20.3 |
Not provided | 290 | 79.7 | |
Cultivation of field crops | Yes | 174 | 47.8 |
No | 190 | 52.2 | |
Use of chemical fertilizers and pesticides | Yes | 44 | 25.3 |
No | 130 | 74.7 | |
Forage production | Producing | 95 | 26.1 |
Not producing | 269 | 73.9 | |
Most produced forage | Grass hay | 36 | 37.9 |
Cereal straw | 30 | 31.9 | |
Alfalfa | 16 | 16.5 | |
Other | 13 | 13.7 | |
Concentrate feed production | Producing | 79 | 21,7 |
Not producing | 285 | 78.3 | |
Most produced concentrate feed | Barley | 43 | 54.4 |
Wheat | 25 | 31.9 | |
Other | 11 | 13.7 |
Variables | Response | Count | Percentage |
---|---|---|---|
Duration of colostrum feeding for lambs (days) | <3 | 56 | 15.4 |
3 | 278 | 76.4 | |
>3 | 30 | 8.2 | |
Duration of colostrum feeding for kids (days) | <3 | 91 | 44.0 |
3 | 77 | 37.2 | |
>3 | 39 | 18.8 | |
Duration of milk suckling for lambs (weeks) | ≤2 | 56 | 15.4 |
3–5 | 264 | 72.5 | |
≥6 | 44 | 12.1 | |
Duration of milk suckling for kids (weeks) | ≤2 | 26 | 12.6 |
3–5 | 169 | 81.6 | |
≥6 | 12 | 5.8 | |
Supplementary feeding during milk suckling for lambs | Not feeding | 140 | 38.5 |
Feeding from first week | 174 | 47.8 | |
Feeding from second week | 22 | 6.0 | |
Feeding from third week | 21 | 5.8 | |
Feeding from fourth week | 7 | 1.9 | |
Supplementary feeding during milk suckling for kids | Not feeding | 77 | 37.2 |
Feeding from first week | 94 | 45.4 | |
Feeding from second week | 25 | 12.1 | |
Feeding from third week | 9 | 4.3 | |
Feeding from fourth week | 2 | 1.0 | |
Supplementary concentrate feed for ewes | Not feeding | 224 | 61.5 |
Feeding after birth | 140 | 38.5 | |
Supplementary concentrate feed for goats | Not feeding | 116 | 56.0 |
Feeding after birth | 91 | 44.0 | |
Use of mixed feed | Using | 51 | 14.0 |
Not using | 313 | 86.0 | |
Use of feed additives | Using | 0 | 0.0 |
Not using | 364 | 100.0 |
Variables | Response | Count | Percentage |
---|---|---|---|
Compliance with vaccination schedule | Compliant | 291 | 79.9 |
Non-compliant | 73 | 20.1 | |
Foot bath in the farms | Available | 63 | 17.3 |
Not available | 301 | 82.7 | |
Animals receiving foot baths | For the entire herd | 38 | 60.3 |
For sick animals | 25 | 39.7 | |
Bath time for animals | Not performed | 256 | 70.3 |
Before shearing | 56 | 15.4 | |
After shearing | 52 | 14.3 | |
Internal and external parasite control | Performed | 303 | 83.2 |
Not performed | 61 | 16.8 | |
Season of parasite control | Spring | 131 | 43.2 |
Summer | 16 | 5.3 | |
Autumn | 77 | 25.4 | |
Winter | 24 | 7.9 | |
Spring + autumn | 55 | 18.2 | |
Method of parasite control | Medication | 83 | 27.4 |
Injection | 13 | 4.3 | |
Medication + injection | 207 | 68.3 | |
Disinfection practice in shelter | Performed | 206 | 56.6 |
Not performed | 158 | 43.4 | |
Frequency of disinfection per year | Once | 76 | 36.9 |
Twice | 130 | 63.1 | |
Hoof inspection for the herd | Performed | 202 | 55.5 |
Not performed | 162 | 44.5 | |
Lameness problem in the herd | Occurs | 299 | 82.1 |
Does not occur | 65 | 17.9 | |
Animals most affected by lameness | Adults | 179 | 59.8 |
Young animals | 25 | 8.4 | |
Adults + young animals | 95 | 31.8 | |
Season lameness occurs most | Spring | 130 | 43.5 |
Summer | 56 | 18.7 | |
Autumn | 36 | 12.0 | |
Winter | 44 | 14.7 | |
Spring + autumn | 33 | 11.1 | |
Removal of lame animals from the herd | Not removed | 203 | 67.9 |
Removed immediately | 96 | 32.1 | |
Treatment method for foot problems | Antibiotics | 135 | 45.2 |
Vaccine | 91 | 30.4 | |
Antibiotics + vaccine | 73 | 24.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanoğlu Oral, H.; Yıldız, F. Structural Characteristics of Small Ruminant Production in Muş, Türkiye: A Model for Organic Livestock on the Basis of Sustainability. Sustainability 2025, 17, 3019. https://doi.org/10.3390/su17073019
Hanoğlu Oral H, Yıldız F. Structural Characteristics of Small Ruminant Production in Muş, Türkiye: A Model for Organic Livestock on the Basis of Sustainability. Sustainability. 2025; 17(7):3019. https://doi.org/10.3390/su17073019
Chicago/Turabian StyleHanoğlu Oral, Hülya, and Ferit Yıldız. 2025. "Structural Characteristics of Small Ruminant Production in Muş, Türkiye: A Model for Organic Livestock on the Basis of Sustainability" Sustainability 17, no. 7: 3019. https://doi.org/10.3390/su17073019
APA StyleHanoğlu Oral, H., & Yıldız, F. (2025). Structural Characteristics of Small Ruminant Production in Muş, Türkiye: A Model for Organic Livestock on the Basis of Sustainability. Sustainability, 17(7), 3019. https://doi.org/10.3390/su17073019