Decarbonization of Shipping and Progressing Towards Reducing Greenhouse Gas Emissions to Net Zero: A Bibliometric Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Vessel Design and Operational Optimization
2.2. Alternative Fuels
2.3. Technological Innovations
2.4. Policy and Regulatory Frameworks
2.5. Barriers to Decarbonization
2.6. Life Cycle Assessment and Environmental Impact
2.7. Technological Trends and Advancements
2.8. Eco-Friendly Alternatives
2.9. Economic Implications
3. Methodology
4. Results
4.1. Main Information About Data
4.2. Keywords Used in This Research
4.3. Co-Authorship and Countries
4.4. Maximum Citations and Corresponding Authors
4.5. Bibliographic Coupling of Selected
4.6. Identification of Core Resources by Using Bradford’s Law in Bibliometrix
4.7. Trending Topics of Reduction in GHG Emissions from Ships
5. Key Findings
6. Discussion
7. Conclusions and Future Prospects
- Advanced Fuel Technologies: As we transition to low-carbon and zero-emission fuels, further research into hydrogen fuel cells, ammonia combustion, and the development of synthetic fuels will be crucial. The efficiency of these fuels, coupled with innovations in storage and distribution infrastructure, will determine their viability for large-scale adoption.
- Digitalization and Smart Shipping: The increasing integration of digital technologies, such as IoT, artificial intelligence, and machine learning, holds great potential for optimizing shipping operations. Real-time monitoring systems for energy consumption, predictive maintenance, and automated routing could reduce fuel consumption, improve safety, and enhance the overall environmental performance of vessels.
- Regulatory and Policy Frameworks: Continued advancements in the regulation of emissions and the implementation of economic incentives (e.g., carbon tax subsidies for clean technologies) will play a pivotal role in driving industry-wide change. Future research should explore the impact of policy measures on the adoption of green technologies and assess the role of international collaborations in creating a unified global approach to maritime decarbonization.
- Lifecycle Analysis and Sustainability: Research on the lifecycle emissions of shipping technologies, including shipbuilding, operation, and decommissioning, will help ensure that sustainability is achieved at every stage of the industry’s supply chain. The development of metrics for evaluating the environmental impact of various solutions will guide decision-making and support the transition to truly sustainable maritime practices.
- Public–Private Partnerships and Investment: Collaborative efforts between governments, research institutions, and industry stakeholders will be essential in accelerating the development and implementation of decarbonization technologies. Strategic investments, particularly in infrastructure for clean fuels and retrofitting existing fleets, will be key to meeting the 2050 emissions target.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lister, J. Green Shipping: Governing Sustainable Maritime Transport. Glob. Policy 2015, 6, 118–129. [Google Scholar] [CrossRef]
- Oberthür, S. Institutional Interaction to Address Greenhouse Gas Emissions from International Transport: ICAO, IMO and the Kyoto Protocol. Clim. Policy 2003, 3, 191–205. [Google Scholar] [CrossRef]
- Aakko-Saksa, P.T.; Lehtoranta, K.; Kuittinen, N.; Järvinen, A.; Jalkanen, J.P.; Johnson, K.; Jung, H.; Ntziachristos, L.; Gagné, S.; Takahashi, C.; et al. Reduction in Greenhouse Gas and Other Emissions from Ship Engines: Current Trends and Future Options. Prog. Energy Combust. Sci. 2023, 94, 101055. [Google Scholar] [CrossRef]
- Hansen, J.E.; Sato, M.; Simons, L.; Nazarenko, L.S.; Sangha, I.; Kharecha, P.; Zachos, J.C.; von Schuckmann, K.; Loeb, N.G.; Osman, M.B.; et al. Global Warming in the Pipeline. Oxf. Open Clim. Change 2023, 3, kgad008. [Google Scholar] [CrossRef]
- Matemilola, S.; Fadeyi, O.; Sijuade, T. Paris Agreement. In Encyclopedia Sustainable Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ezinna, P.C.; Nwanmuoh, E.; Ozumba, B.U.I. Decarbonization and Sustainable Development Goal 13: A Reflection of the Maritime Sector. J. Int. Marit. Saf. Environ. Aff. Shipp. 2021, 5, 98–105. [Google Scholar] [CrossRef]
- Tracker, C.A. The World Is Not on Track to Meet 1.5 °C; Climate Analytics and New Climate Institute: Berlin, Germany, 2021. [Google Scholar]
- Joung, T.H.; Kang, S.G.; Lee, J.K.; Ahn, J. The IMO Initial Strategy for Reducing Greenhouse Gas(GHG) Emissions, and Its Follow-up Actions towards 2050. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Bilgili, L.; Ölçer, A.I. IMO 2023 Strategy-Where Are We and What’s next? Mar. Policy 2024, 160, 105953. [Google Scholar] [CrossRef]
- Bao, J.; Hu, S.; Fei, J.; Reza, H.; Motlagh, S.; Behbood, S.; Zadeh, I.; Garay-Rondero, C.L. Towards International Maritime Organization Carbon Targets: A Multi-Criteria Decision-Making Analysis for Sustainable Container Shipping. Sustainability 2023, 15, 16834. [Google Scholar] [CrossRef]
- Cumming, A.; Paul Butler, R.; Marcy, G.W.; Deng, X.-F.; He, J.-Z.; Jun, S.; Perrin, M.D.; Graham, J.R.; Lloyd, J.P. Just in Time Port Call Optimisation: Preliminary Regulatory Compliance Evaluation and Environmental Performance Assessment. J. Phys. Conf. Ser. 2024, 2867, 012010. [Google Scholar] [CrossRef]
- Agarwala, N. Is Hydrogen a Decarbonizing Fuel for Maritime Shipping? Marit. Technol. Res. 2024, 6, 271244. [Google Scholar] [CrossRef]
- Yadav, D. Green Hydrogen for a Sustainable and ‘Aatmanirbhar’ India. Curr. Sci. 2023, 124, 143–144. [Google Scholar] [CrossRef]
- Verschuur, J.; Salmon, N.; Hall, J.; Bañares-Alcántara, R. Optimal Fuel Supply of Green Ammonia to Decarbonise Global Shipping. Environ. Res. Infrastruct. Sustain. 2024, 4, 015001. [Google Scholar] [CrossRef]
- Karvounis, P.; Tsoumpris, C.; Boulougouris, E.; Theotokatos, G. Recent Advances in Sustainable and Safe Marine Engine Operation with Alternative Fuels. Front. Mech. Eng. 2022, 8, 994942. [Google Scholar] [CrossRef]
- Trivyza, N.L.; Cheliotis, M.; Boulougouris, E.; Theotokatos, G. Safety and Reliability Analysis of an Ammonia-Powered Fuel-Cell System. Safety 2021, 7, 80. [Google Scholar] [CrossRef]
- Taghavifar, H.; Perera, L.P. Life Cycle Emission and Cost Assessment for LNG-Retrofitted Vessels: The Risk and Sensitivity Analyses under Fuel Property and Load Variations. Ocean Eng. 2023, 282, 114940. [Google Scholar] [CrossRef]
- Christodoulou, A.; Cullinane, K. The Prospects for, and Implications of, Emissions Trading in Shipping. Marit. Econ. Logist. 2024, 26, 168–184. [Google Scholar] [CrossRef]
- Mannarini, G.; Salinas, M.L.; Carelli, L.; Fassò, A. How COVID-19 Affected GHG Emissions of Ferries in Europe. Sustainability 2022, 14, 5287. [Google Scholar] [CrossRef]
- Liu, S.; Kee, Y.H.; Shang, B.; Papanikolaou, A. Assessment of the Economic, Environmental and Safety Impact of Biofouling on a Ship’s Hull and Propeller. Ocean. Eng. 2023, 285, 115481. [Google Scholar] [CrossRef]
- Yfantis, E.; Ioannou, C.; Paradeisiotis, A. Integrated Ship Energy Flowchart: A Digital Twin to Mitigate GHG Emissions. In Proceedings of the SNAME 8th International Symposium on Ship Operations, Management and Economics, Athens, Greece, 1–7 March 2023. [Google Scholar] [CrossRef]
- Grosso, M.; Dos Santos, F.L.M.; Gkoumas, K.; Stępniak, M.; Pekár, F. The Role of Research and Innovation in Europe for the Decarbonisation of Waterborne Transport. Sustainability 2021, 13, 10447. [Google Scholar] [CrossRef]
- Coimbatore Meenakshi Sundaram, A.; Karimi, I.A. Sustainability Analysis of an LNG Bunkering Protocol. ACS Sustain. Chem. Eng. 2023, 11, 13584–13593. [Google Scholar] [CrossRef]
- Hermann, R.R. Drivers for Environmental Technologies Selection in the Shipping Industry: A Case Study of the North European Sulphur Emission Control Area. Int. J. Environ. Technol. Manag. 2017, 20, 139–162. [Google Scholar] [CrossRef]
- Taghavifar, H.; Perera, L.P. The Effect of LNG and Diesel Fuel Emissions of Marine Engines on GHG-Reduction Revenue Policies Under Life-Cycle Costing Analysis in Shipping. In Proceedings of the ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering, Melbourne, Australia, 11–16 June 2023; p. 5. [Google Scholar] [CrossRef]
- Sogihara, N.; Kume, K. Lifecycle Assessment of Fuel Saving in Bulk Carrier With a Flettner Rotor. In Proceedings of the ASME 2023 42nd International Conference on Ocean, Offshore and Arctic Engineering, Melbourne, Australia, 11–16 June 2023; p. 5. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, J.H. A Study on Analysis of Green House Gaseous Emitted from Ships through Operation Information. J. Int. Marit. Saf. Environ. Aff. Shipp. 2023, 7, 2–3. [Google Scholar] [CrossRef]
- Åström, S.; Yaramenka, K.; Winnes, H.; Fridell, E.; Holland, M. The Costs and Benefits of a Nitrogen Emission Control Area in the Baltic and North Seas. Transp. Res. D Transp. Environ. 2018, 59, 223–236. [Google Scholar] [CrossRef]
- Topic, T.; Murphy, A.J.; Pazouki, K.; Norman, R. NOx Emissions Control Area (NECA) Scenario for Ports in the North Adriatic Sea. J. Environ. Manag. 2023, 344, 118712. [Google Scholar] [CrossRef]
- Kim, K.; Park, K.; Roh, G.; Choung, C.; Kwag, K.; Kim, W. Proposal of Zero-Emission Tug in South Korea Using Fuel Cell/Energy Storage System: Economic and Environmental Long-Term Impacts. J. Mar. Sci. Eng. 2023, 11, 540. [Google Scholar] [CrossRef]
- Voniati, G.; Dimaratos, A.; Kyklis, S.; Koltsakis, G.; Ntziachristos, L. The Potential of Methanol and Ammonia to Decarbonize Shipping: Impact on GHG and Other Pollutants. In Proceedings of the SNAME 8th International Symposium on Ship Operations, Management and Economics, Athens, Greece, 1–7 March 2023. [Google Scholar] [CrossRef]
- Thiaucourt, J.; Horel, B.; Tauzia, X.; Ncobo, C. Numerical Investigation to Increase Ship Efficiency in Regular Head Waves Using an Alternative Engine Control Strategy. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2022, 237, 436–454. [Google Scholar] [CrossRef]
- Martínez-Vázquez, R.M.; Milán-García, J.; Pires Manso, J.R.; De Pablo Valenciano, J. Impact of Blue Economy Sectors Using Causality, Correlation and Panel Data Models. Front. Mar. Sci. 2023, 10, 1034054. [Google Scholar] [CrossRef]
- Gucma, M.; Deja, A.; Szymonowicz, J. Environmental Solutions for Maritime Ships: Challenges and Needs. Prod. Eng. Arch. 2023, 29, 216–224. [Google Scholar] [CrossRef]
- Khurmy, A.M.; Harbi, A.A.; Jameel, A.G.A.; Ahmad, N.; Ahmed, U. Conversion of Vacuum Residue from Refinery Waste to Cleaner Fuel: Technical and Economic Assessment. Sustainability 2023, 15, 15362. [Google Scholar] [CrossRef]
- Balcombe, P.; Staffell, I.; Kerdan, I.G.; Speirs, J.F.; Brandon, N.P.; Hawkes, A.D. How Can LNG-Fuelled Ships Meet Decarbonisation Targets? An Environmental and Economic Analysis. Energy 2021, 227, 120462. [Google Scholar] [CrossRef]
- Livaniou, S.; Papadopoulos, G.A. Liquefied Natural Gas (LNG) as a Transitional Choice Replacing Marine Conventional Fuels (Heavy Fuel Oil/Marine Diesel Oil), towards the Era of Decarbonisation. Sustainability 2022, 14, 16364. [Google Scholar] [CrossRef]
- Li, C.; Liu, P.; Li, Z.A.; Li, C.; Liu, P.; Li, Z. A Long-Term Decarbonisation Modelling and Optimisation Approach for Transport Sector Planning Considering Modal Shift and Infrastructure Construction: A Case Study of China. Processes 2022, 10, 1371. [Google Scholar] [CrossRef]
- Meng, B.; Chen, S.; Haralambides, H.; Kuang, H.; Fan, L. Information Spillovers between Carbon Emissions Trading Prices and Shipping Markets: A Time-Frequency Analysis. Energy Econ. 2023, 120, 106604. [Google Scholar] [CrossRef]
- González, C. Evaluating the Economic Implications of the EU Emissions Trading System (EU-ETS) on the Energy Supply Chain through Maritime Transport. J. Marit. Res. 2023, 20, 141–147. [Google Scholar]
- Vakili, S.; Ballini, F.; Schönborn, A.; Christodoulou, A.; Dalaklis, D.; Ölçer, A.I. Assessing the Macroeconomic and Social Impacts of Slow Steaming in Shipping: A Literature Review on Small Island Developing States and Least Developed Countries. J. Shipp. Trade 2023, 8, 2. [Google Scholar] [CrossRef]
- Grifoll, M.; Martínez de Osés, F.X.; Castells, M. Potential Economic Benefits of Using a Weather Ship Routing System at Short Sea Shipping. WMU J. Marit. Aff. 2018, 17, 195–211. [Google Scholar] [CrossRef]
- Yiyun, Z. Exploring the Economic Significance of Arctic Routes in the Supply Chain Field by Contrasting with Traditional Route. Adv. Econ. Manag. Political Sci. 2023, 49, 157–165. [Google Scholar] [CrossRef]
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to Decarbonise International Shipping: Options for Fuels, Technologies and Policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Lightburn, K.D. Can a Symbolic Mega-Unit of Radiative Forcing (RF) Improve Understanding and Assessment of Global Warming and of Mitigation Methods Using Albedo Enhancement from Algae, Cloud, and Land (AEfACL)? Climate 2023, 11, 62. [Google Scholar] [CrossRef]
- Alola, A.A.; Adebayo, T.S. Analysing the Waste Management, Industrial and Agriculture Greenhouse Gas Emissions of Biomass, Fossil Fuel, and Metallic Ores Utilization in Iceland. Sci. Total Environ. 2023, 887, 164115. [Google Scholar] [CrossRef]
- Shah, A.A.; Soomro, T.A.; Akbar, N.; Iqbal, A.; Abubakar, I.R. Adaptive Reuse of Historic Buildings: An Ecological Indicator. In Urban Metabolism and Climate Change: Perspective for Sustainable Cities; Springer International Publishing: Cham, Switzerland, 2023; pp. 111–134. [Google Scholar] [CrossRef]
- Ma, G.; Tian, H.; Xiao, Y.; Lu, X.; Zhang, L.; Liu, X. Environmental Assessment of Recycling Waste Corrugated Cartons from Online Shopping of Chinese University Students. J. Environ. Manag. 2022, 319, 115625. [Google Scholar] [CrossRef] [PubMed]
- Kołakowski, P.; Gil, M.; Wróbel, K.; Ho, Y.S. State of Play in Technology and Legal Framework of Alternative Marine Fuels and Renewable Energy Systems: A Bibliometric Analysis. Marit. Policy Manag. 2022, 49, 236–260. [Google Scholar] [CrossRef]
- Lindstad, H.; Asbjørnslett, B.E.; Strømman, A.H. Reductions in Greenhouse Gas Emissions and Cost by Shipping at Lower Speeds. Energy Policy 2011, 39, 3456–3464. [Google Scholar] [CrossRef]
- Wan, Z.; el Makhloufi, A.; Chen, Y.; Tang, J. Decarbonizing the International Shipping Industry: Solutions and Policy Recommendations. Mar. Pollut. Bull. 2018, 126, 428–435. [Google Scholar] [CrossRef]
- Borgohain, D.J.; Verma, M.K.; Nazim, M.; Sarkar, M. Application of Bradford’s Law of Scattering and Leimkuhler Model to Information Science Literature. COLLNET J. Scientometr. Inf. Manag. 2021, 15, 197–212. [Google Scholar] [CrossRef]
- Dwivedi, A.; Shardeo, V.; Gupta, A.; Kumar, A.; Pratap, S.; Lyu, J.; Zhou, F.; He, Y. Digital Technique-Enabled Container Logistics Supply Chain Sustainability Achievement. Sustainability 2023, 15, 16014. [Google Scholar] [CrossRef]
- Alamoush, A.S.; Ballini, F.; Ölçer, A.I. Revisiting Port Sustainability as a Foundation for the Implementation of the United Nations Sustainable Development Goals (UN SDGs). J. Shipp. Trade 2021, 6, 19. [Google Scholar] [CrossRef]
- Zulfiqar, K.; Chang, Y.-C. Climate Change and Maritime Law: A Review of IMO Governance Mechanism. J. Atmos. Oceanogr. Environ. 2023, 11, 9511. [Google Scholar] [CrossRef]
- Razmjooei, D.; Alimohammadlou, M.; Ranaei Kordshouli, H.A.; Askarifar, K. A Bibliometric Analysis of the Literature on Circular Economy and Sustainability in Maritime Studies. Environ. Dev. Sustain. 2024, 26, 5509–5536. [Google Scholar] [CrossRef]
- Melnyk, O.; Onishchenko, O.; Onyshchenko, S. Renewable Energy Concept Development and Application in Shipping Industry. Lex Portus 2023, 9, 15–24. [Google Scholar] [CrossRef]
- Parhamfar, M.; Sadeghkhani, I.; Adeli, A.M. Towards the Application of Renewable Energy Technologies in Green Ports: Technical and Economic Perspectives. IET Renew. Power Gener. 2023, 17, 3120–3132. [Google Scholar] [CrossRef]
- De Smet, M.; Stuyts, J.; Battery, J.; Energy, H.; Novák, T.; Kacor, P.; Moldřík, P.; Akbarzadeh, M.; De Smet, J.; Stuyts, J. Battery Hybrid Energy Storage Systems for Full-Electric Marine Applications. Processes 2022, 10, 2418. [Google Scholar] [CrossRef]
- Wang, L.; Yao, J.; Zhang, H.; Pang, Q.; Fang, M. A Sustainable Shipping Management Framework in the Marine Environment: Institutional Pressure, Eco-Design, and Cross-Functional Perspectives. Front. Mar. Sci. 2023, 9, 1070078. [Google Scholar] [CrossRef]
- Dagkinis, I.; Psomas, P.M.; Platis, A.N. Enhanced Ships Operation Using Integrated Automation Systems. Interdiscip. J. Res. Dev. 2022, 9, 54. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Li, F.; Wang, S. Sustainable Maritime Transportation Operations with Emission Trading. J. Mar. Sci. Eng. 2023, 11, 1647. [Google Scholar] [CrossRef]
- Raza, Z.; Woxenius, J. Customer-Driven Sustainable Business Practices and Their Relationships with Environmental and Business Performance—Insights from the European Shipping Industry. Bus. Strategy Environ. 2023, 32, 6138–6153. [Google Scholar] [CrossRef]
- Christodoulou, A.; Cullinane, K. Potential for, and Drivers of, Private Voluntary Initiatives for the Decarbonisation of Short Sea Shipping: Evidence from a Swedish Ferry Line. Marit. Econ. Logist. 2021, 23, 632–654. [Google Scholar] [CrossRef]
- Fontoura, P.; Coelho, A. How to Boost Green Innovation and Performance through Collaboration in the Supply Chain: Insights into a More Sustainable Economy. J. Clean. Prod. 2022, 359, 132005. [Google Scholar] [CrossRef]
- Ashrafi, M.; Walker, T.R.; Magnan, G.M.; Adams, M.; Acciaro, M. A Review of Corporate Sustainability Drivers in Maritime Ports: A Multi-Stakeholder Perspective. Marit. Policy Manag. 2020, 47, 1027–1044. [Google Scholar] [CrossRef]
- Cerveny, L.K.; Miller, A.; Gende, S. Sustainable Cruise Tourism in Marine World Heritage Sites. Sustainability 2020, 12, 611. [Google Scholar] [CrossRef]
- Schwartz, H.; Solakivi, T.; Gustafsson, M. Is There Business Potential for Sustainable Shipping? Price Premiums Needed to Cover Decarbonized Transportation. Sustainability 2022, 14, 5888. [Google Scholar] [CrossRef]
- Sinnandavar, C.M.; Wong, W.P.; Soh, K.L. Dynamics of Supply Environment and Information System: Integration, Green Economy and Performance. Transp. Res. D Transp. Environ. 2018, 62, 536–550. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wang, X.; Wong, Y.D.; Zhou, Q. The Effect of Sustainable Shipping Practices on Shippers’ Loyalty: The Mediating Role of Perceived Value, Trust and Transaction Cost. Transp. Res. E Logist. Transp. Rev. 2018, 116, 123–135. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, J.; Wang, S. How Digitalization and Sustainability Promote Digital Green Innovation for Industry 5.0 through Capability Reconfiguration: Strategically Oriented Insights. Systems 2024, 12, 341. [Google Scholar] [CrossRef]
- Stalmokaitė, I.; Larsson Segerlind, T.; Yliskylä-Peuralahti, J. Revival of Wind-Powered Shipping: Comparing the Early-Stage Innovation Process of an Incumbent and a Newcomer Firm. Bus. Strategy Environ. 2023, 32, 958–975. [Google Scholar] [CrossRef]
- Olaniyi, E.O.; Atari, S.; Prause, G. Maritime Energy Contracting for Clean Shipping. Transp. Telecommun. 2018, 19, 31–44. [Google Scholar] [CrossRef]
- Fasoulis, I.; Kurt, R.E. Determinants to the Implementation of Corporate Social Responsibility in the Maritime Industry: A Quantitative Study. J. Int. Marit. Saf. Environ. Aff. Shipp. 2019, 3, 10–20. [Google Scholar] [CrossRef]
Description | Results |
---|---|
Timespan | 2008:2023 |
Sources (Journals, Books, etc.) | 272 |
Documents | 531 |
Annual Growth Rate % | 25.99 |
Document Average Age | 4.8 |
Average citations per doc | 22.69 |
References | 0 |
Document Contents | |
Keywords Plus (ID) | 3077 |
Author’s Keywords (DE) | 1458 |
Authors | |
Authors | 1531 |
Authors of single-authored docs | 54 |
Authors Collaboration | |
Single-authored docs | 73 |
Co-authors per Doc | 3.69 |
International co-authorships % | 25.8 |
Document Types | |
article | 297 |
article | 2 |
book | 1 |
book chapter | 30 |
conference paper | 162 |
conference paper article | 1 |
conference paper conference paper | 1 |
conference review | 4 |
editorial | 1 |
erratum | 1 |
note | 2 |
review | 28 |
review article | 1 |
Most Relevant Words | Occurrences |
---|---|
greenhouse gases | 344 |
ships | 286 |
gas emissions | 162 |
emission control | 127 |
energy efficiency | 127 |
greenhouse gas | 113 |
carbon dioxide | 97 |
ship propulsion | 81 |
shipping | 72 |
GHG emission | 57 |
climate change | 52 |
greenhouse gas emissions | 51 |
international maritime organizations | 51 |
S. No | Country | Documents | Citations | Total Link Strength |
---|---|---|---|---|
1 | Australia | 14 | 397 | 2573 |
2 | Belgium | 6 | 103 | 617 |
3 | Brazil | 8 | 60 | 1636 |
4 | Canada | 22 | 590 | 2813 |
5 | China | 69 | 1611 | 8070 |
6 | Croatia | 10 | 84 | 563 |
7 | Denmark | 34 | 183 | 6149 |
8 | Egypt | 11 | 296 | 1466 |
9 | Finland | 12 | 290 | 2418 |
10 | France | 14 | 376 | 4043 |
11 | Germany | 21 | 488 | 2281 |
12 | Greece | 35 | 1340 | 4680 |
13 | Hong Kong | 7 | 167 | 1487 |
14 | India | 11 | 152 | 4309 |
15 | Indonesia | 10 | 63 | 747 |
16 | Italy | 34 | 634 | 3124 |
17 | Japan | 24 | 304 | 4287 |
18 | Malaysia | 9 | 218 | 1504 |
19 | Morocco | 7 | 30 | 77 |
20 | Netherlands | 13 | 302 | 4373 |
21 | Norway | 50 | 1849 | 8063 |
22 | Poland | 5 | 71 | 1503 |
23 | Portugal | 8 | 81 | 3345 |
24 | Saudi Arabia | 5 | 117 | 1069 |
25 | Singapore | 30 | 922 | 4716 |
26 | South Korea | 27 | 763 | 2983 |
27 | Spain | 23 | 469 | 5596 |
28 | Sweden | 36 | 1357 | 8763 |
28 | Taiwan | 7 | 139 | 1736 |
30 | Türkiye | 15 | 159 | 2498 |
31 | United Kingdom | 60 | 1920 | 9232 |
32 | United States | 37 | 1637 | 8243 |
Journal | Rank | Pubs | Impact Factor |
---|---|---|---|
Transportation research part d: transport and environment | 1 | 25 | 7.4 |
Ocean engineering | 2 | 23 | 4.6 |
Sustainability (Switzerland) | 3 | 20 | 3.3 |
Journal of marine science and engineering | 4 | 19 | 2.7 |
Energies | 5 | 11 | 3.0 |
Proceedings of the international conference on offshore mechanics and arctic engineering—OAME | 6 | 11 | - |
Advances in intelligent systems and computing | 7 | 9 | 6.8 |
Energy policy | 8 | 7 | 9.3 |
IOP conference series: earth and environmental science | 9 | 7 | - |
Maritime policy and management | 10 | 7 | 3.7 |
Motor ship | 11 | 7 | - |
Applied energy | 12 | 6 | 10.1 |
Journal of cleaner production | 13 | 6 | 9.8 |
Proceedings of the international offshore and polar engineering conference | 14 | 6 | - |
Progress in marine science and technology | 15 | 6 | - |
Energy | 16 | 5 | 9.0 |
Journal of physics: conference series | 17 | 5 | - |
Marine pollution bulletin | 18 | 5 | 5.3 |
Transactions-society of naval architects and marine engineers | 19 | 5 | - |
Computer-aided chemical engineering | 20 | 4 | 3.9 |
E3s web of conferences | 21 | 4 | - |
Environmental science and technology | 22 | 4 | 10.9 |
IEEE electrification magazine | 23 | 4 | 2.5 |
Marine policy | 24 | 4 | 3.5 |
Maritime economics and logistics | 25 | 4 | 4.1 |
Renewable and sustainable energy reviews | 26 | 4 | 16.3 |
SNAME 8th international symposium on ship operations, management, and economics, some 2023 | 27 | 4 | - |
WMU journal of maritime affairs | 28 | 4 | 2.4 |
Brodigan | 29 | 3 | - |
Cleaner logistics and supply chain | 30 | 3 | 6.9 |
Item | Frequency | Year q1 | Year-Median | Year q2 |
---|---|---|---|---|
cost-benefit analysis | 7 | 2010 | 2011 | 2015 |
ship speed | 5 | 2010 | 2011 | 2012 |
Kyoto protocol | 6 | 2012 | 2012 | 2014 |
speed reduction | 6 | 2011 | 2012 | 2018 |
oil tankers | 5 | 2011 | 2013 | 2018 |
profitability | 5 | 2012 | 2013 | 2013 |
marine engines | 12 | 2013 | 2014 | 2016 |
design | 5 | 2013 | 2014 | 2015 |
marine engineering | 14 | 2011 | 2015 | 2019 |
biomass | 10 | 2014 | 2015 | 2015 |
biofuel | 8 | 2014 | 2015 | 2019 |
transportation | 10 | 2014 | 2016 | 2017 |
united states | 10 | 2014 | 2016 | 2021 |
methane | 9 | 2015 | 2016 | 2020 |
energy efficiency design indices (EEDI) | 13 | 2015 | 2017 | 2019 |
speed | 9 | 2012 | 2017 | 2018 |
energy use | 7 | 2014 | 2017 | 2019 |
fuels | 40 | 2015 | 2018 | 2020 |
air pollution | 19 | 2016 | 2018 | 2019 |
shipbuilding | 19 | 2014 | 2018 | 2020 |
ship propulsion | 81 | 2017 | 2019 | 2022 |
GHG emission | 58 | 2013 | 2019 | 2021 |
global warming | 51 | 2016 | 2019 | 2022 |
greenhouse gases | 350 | 2017 | 2020 | 2022 |
ships | 290 | 2017 | 2020 | 2022 |
gas emissions | 165 | 2017 | 2020 | 2022 |
maritime transportation | 50 | 2019 | 2021 | 2022 |
life cycle | 44 | 2018 | 2021 | 2022 |
environmental impact | 34 | 2017 | 2021 | 2022 |
greenhouse gas emissions | 51 | 2021 | 2022 | 2023 |
Carbon | 34 | 2019 | 2022 | 2022 |
alternative fuels | 31 | 2020 | 2022 | 2023 |
case-studies | 7 | 2023 | 2023 | 2023 |
integer programming | 7 | 2020 | 2023 | 2023 |
intensity indicators | 6 | 2022 | 2023 | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anantharaman, M.; Sardar, A.; Islam, R. Decarbonization of Shipping and Progressing Towards Reducing Greenhouse Gas Emissions to Net Zero: A Bibliometric Analysis. Sustainability 2025, 17, 2936. https://doi.org/10.3390/su17072936
Anantharaman M, Sardar A, Islam R. Decarbonization of Shipping and Progressing Towards Reducing Greenhouse Gas Emissions to Net Zero: A Bibliometric Analysis. Sustainability. 2025; 17(7):2936. https://doi.org/10.3390/su17072936
Chicago/Turabian StyleAnantharaman, Mohan, Abdullah Sardar, and Rabiul Islam. 2025. "Decarbonization of Shipping and Progressing Towards Reducing Greenhouse Gas Emissions to Net Zero: A Bibliometric Analysis" Sustainability 17, no. 7: 2936. https://doi.org/10.3390/su17072936
APA StyleAnantharaman, M., Sardar, A., & Islam, R. (2025). Decarbonization of Shipping and Progressing Towards Reducing Greenhouse Gas Emissions to Net Zero: A Bibliometric Analysis. Sustainability, 17(7), 2936. https://doi.org/10.3390/su17072936