ARDL Bound Testing Approach for a Green Low-Carbon Circular Economy in Turkey
Abstract
:1. Introduction
The Contradiction Between Environmental Protection and Economic Growth
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. Unit Root Tests
2.2.2. ARDL Bounds Test
2.2.3. Causality Test
3. Results
3.1. Unit Root Test and Unit Root with Break Test
3.2. ARDL Bounds Test Results
3.3. Diagnostic Tests
3.4. FMOLS and DOLS Test Results
3.5. Granger Causality Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trane, M.; Marelli, L.; Siragusa, A.; Pollo, R.; Lombardi, P. Progress by Research to Achieve the Sustainable Development Goals in the EU: A Systematic Literature Review. Sustainability 2023, 15, 7055. [Google Scholar] [CrossRef]
- Giupponi, C.; Gain, A.K. Integrated spatial assessment of the water, energy and food dimensions of the Sustainable Development Goals. Reg. Environ. Change 2017, 17, 1881–1893. [Google Scholar] [CrossRef]
- Kumar, S.; Darshna, A.; Ranjan, D. A review of literature on the integration of green energy and circular economy. Heliyon 2023, 9, e21091. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef]
- Biglari, S.; Beiglary, S.; Arthanari, T. Achieving sustainable development goals: Fact or Fiction? J. Clean. Prod. 2022, 332, 130032. [Google Scholar] [CrossRef]
- Yamaguchi, N.U.; Bernardino, E.G.; Ferreira, M.E.C.; de Lima, B.P.; Pascotini, M.R.; Yamaguchi, M.U. Sustainable development goals: A bibliometric analysis of literature reviews. Environ. Sci. Pollut. Res. 2023, 30, 5502–5515. [Google Scholar] [CrossRef]
- Alshebami, A.S. Green Innovation, Self-Efficacy, Entrepreneurial Orientation and Economic Performance: Interactions Among Saudi Small Enterprises. Sustainability 2023, 15, 1961. [Google Scholar] [CrossRef]
- Garbol, J.; Ciechan-Kujawa, M. Circular Economy Models in Sustainability Reports of the Polish Electric Power Industry. Energies 2024, 17, 6102. [Google Scholar] [CrossRef]
- Kahia, M.; Jarraya, B.; Kahouli, B.; Omri, A. The Role of Environmental Innovation and Green Energy Deployment in Environmental Protection: Evidence from Saudi Arabia. J. Knowl. Econ. 2022, 15, 337–363. [Google Scholar] [CrossRef]
- Li, Y.; Huang, N.; Zhao, Y. The Impact of Green Innovation on Enterprise Green Economic Efficiency. Int. J. Environ. Res. Public Health 2022, 19, 16464. [Google Scholar] [CrossRef]
- Zhanbayev, R.; Irfan, M. Industrial-Innovative Paradigm of Social Sustainability: Modelling the Assessment of Demo ethical, Demographic, Democratic, and Demo economic Factors. Sustainability 2022, 14, 7280. [Google Scholar] [CrossRef]
- Janik, A.; Ryszko, A.; Szafraniec, M. Greenhouse Gases and Circular Economy Issues in Sustainability Reports from the Energy Sector in the European Union. Energies 2020, 13, 5993. [Google Scholar] [CrossRef]
- Adam, A.; Delis, M.D.; Kammas, P. Fiscal decentralization and public sector efficiency: Evidence from OECD countries. Econ. Gov. 2014, 15, 17–49. [Google Scholar] [CrossRef]
- Shen, Z.; Boussemart, J.P.; Leleu, H. Aggregate green productivity growth in OECD’s countries. Int. J. Prod. Econ. 2017, 189, 30–39. [Google Scholar] [CrossRef]
- Ganda, F. The influence of agricultural policy on carbon emissions in selected OECD countries. Heliyon 2023, 9, e19881. [Google Scholar] [CrossRef]
- Sarkar, B.; Ullah, M.; Sarkar, M. Environmental and economic sustainability through innovative green products by remanufacturing. J. Clean. Prod. 2022, 332, 129813. [Google Scholar] [CrossRef]
- Liobikienė, G.; Butkus, M. Determinants of greenhouse gas emissions: A new multiplicative approach analysing the impact of energy efficiency, renewable energy, and sector mix. J. Clean. Prod. 2021, 309, 127233. [Google Scholar] [CrossRef]
- Zhao, L.; Rasoulinezhad, E. Role of natural resources utilization efficiency in achieving green economic recovery: Evidence from BRICS countries. Resour. Policy 2023, 80, 103164. [Google Scholar] [CrossRef]
- Ma, Z.; Arıcı, M.; Sun, Y.; Singh, S.; Shahsavar, A. Towards net-zero energy/emission buildings for sustainable development. Energy Sustain. Dev. 2024, 6, 101448. [Google Scholar] [CrossRef]
- Schmalensee, R. From a green growth to sound policies: An overview. Energy Econ. 2012, 34, S2–S6. [Google Scholar] [CrossRef]
- Cato, M.S. Green Economics, An Introduction to Theory, Policy and Practice; Earthscan: London, UK, 2009. [Google Scholar]
- Jackson, T.; Victor, P. Productivity and work in the green economy. Environ. Innov. Soc. Transit. 2011, 1, 101–108. [Google Scholar] [CrossRef]
- Ahmed, R.R.; Akbar, W.; Aijaz, M.; Channar, Z.A.; Ahmed, F.; Parmar, V. The role of green innovation on environmental and organizational performance: Moderation of human resource practices and management commitment. Heliyon 2023, 9, e12679. [Google Scholar] [CrossRef] [PubMed]
- Szyja, P. The role of the state in creating green economy. Oeconomia Copernic. 2016, 7, 207–222. [Google Scholar] [CrossRef]
- UNEP. Towards A Green Economy: Pathways to Sustainable Development and Poverty Eradication-A Synthesis for Policy Makers; UNEP Division of Communications and Public Information: Nairobi, Kenya, 2011; Available online: https://wedocs.unep.org/handle/20.500.11822/32245 (accessed on 20 December 2024).
- UNEP. Division of Communications and Public Information. Nairobi, Kenya, 2011. Available online: https://www.unep.org/resources/annual-report/unep-2011-annual-report (accessed on 20 December 2024).
- Alnsour, J.; Arabeyyat, A.R.; Alnsour, A.J.; Almasria, N.A. The Impact of Financial Development, Foreign Direct Investment, and Trade Openness on Carbon Dioxide Emissions in Jordan: An ARDL and VECM Analysis Approach. J. Risk Financial Manag. 2024, 17, 490. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Lyulyov, O.; Pimonenko, T. Interactions between economic growth and environmental degradation toward sustainable development. Systems 2022, 11, 13. [Google Scholar] [CrossRef]
- Dogaru, L. Green Economy and green growth-opportunities for sustainable development. Proceedings 2020, 63, 70. [Google Scholar] [CrossRef]
- Khan, A.; Bibi, S.; Ardito, L.; Lyu, J.; Hayat, H.; Arif, A. Revisiting the dynamics of tourism, economic growth, and environmental pollutants in the emerging economies-sustainable tourism policy implications. Sustainability 2020, 12, 2533. [Google Scholar] [CrossRef]
- Ali, K.; Jianguo, D.; Kirikkaleli, D.; Oláh, J.; Altuntaş, M. Do green technological for innovation, financial development, economic policy uncertainty, and institutional quality matter environmental sustainability? All Earth 2023, 35, 82–101. [Google Scholar] [CrossRef]
- Idris, F.M.; Seraj, M.; Ozdeser, H. Toward a green economy: The nexus between economic and environmental factors in MENA countries, ARDL bounds approach. Environ. Qual. Manag. 2023, 32, 339–349. [Google Scholar] [CrossRef]
- Saleem, H.; Khan, M.B.; Mahdavian, S.M. The role of green growth, green financing, and eco-friendly technology in achieving environmental quality: Evidence from selected Asian economies. Environ. Sci. Pollut. Res. 2022, 29, 57720–57739. [Google Scholar] [CrossRef]
- Ferguson, P. The green economy agenda: Business as usual or transformational discourse? Environ. Politics 2014, 24, 17–37. [Google Scholar] [CrossRef]
- Narayan, P.K. The saving and investment nexus for China: Evidence from cointegration tests. Appl. Econ. 2005, 37, 1979–1990. [Google Scholar] [CrossRef]
- Narayan, S.; Narayan, P.K. An empirical analysis of Fiji’s import demand function. J. Econ. Stud. 2005, 32, 158–168. [Google Scholar] [CrossRef]
- Chandio, A.A.; Akram, W.; Sargani, G.R.; Twumasi, M.A.; Ahmad, F. Assessing the impacts of meteorological factors on soybean production in China: What role can agricultural subsidy play? Ecol. Inform. 2022, 71, 101778. [Google Scholar] [CrossRef]
- Warsame, A.A.; Sheik-Ali, I.A.; Ali, A.O.; Sarkodie, S.A. Climate change and crop production nexus in Somalia: An empirical evidence from ARDL technique. Environ. Sci. Pollut. Res. 2021, 28, 19838–19850. [Google Scholar] [CrossRef] [PubMed]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Anh, D.L.T.; Anh, N.T.; Chandio, A.A. Climate change and its impacts on Vietnam agriculture: A macroeconomic perspective. Ecol. Inform. 2023, 74, 101960. [Google Scholar] [CrossRef]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Toda, H.Y.; Yamamoto, T. Statistical inference in vector auto regressions with possibly integrated processes. J. Econom. 1995, 66, 225–250. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. A simple estimator of cointegrating vectors in higher order integrated systems. Econom. J. Econom. Soc. 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Pedroni, P. Fully-Modified OLS for heterogeneous cointegrated panels. Adv. Econom. 2001, 15, 93–130. [Google Scholar] [CrossRef]
- Doan, T.; Pedroni, P. Purchasing Power Parity Tests in Cointegrated Panels. Rev. Econ. Stat. 2001, 83, 727–731. [Google Scholar] [CrossRef]
- Hansen, B.E.; Phillips, P.C.B. Estimation and Inference in Models of Cointegration: A Simulation Study. Cowles Foundation Discussion Papers. 1988. Available online: https://elischolar.library.yale.edu/cowles-discussion-paper-series/1125 (accessed on 15 January 2024).
- Phillips, P.C.; Hansen, B.E. Statistical inference in instrumental variables regression with I(1) processes. Rev. Econ. Stud. 1990, 57, 99–125. [Google Scholar] [CrossRef]
- Mughal, N.; Arif, A.; Jain, V.; Chupradit, S.; Shabbir, M.S.; Ramos-Meza, C.S.; Zhanbayev, R. The role of technological innovation in environmental pollution, energy consumption and sustainable economic growth: Evidence from South Asian economies. Energy Strategy Rev. 2022, 39, 100745. [Google Scholar] [CrossRef]
- Djellouli, N.; Abdelli, L.; Elheddad, M.; Ahmed, R.; Mahmood, H. The effects of non-renewable energy, renewable energy, economic growth, and foreign direct investment on the sustainability of African countries. Renew. Energy. 2022, 183, 676–686. [Google Scholar] [CrossRef]
- Ahmed, K.; Rehman, M.U.; Ozturk, I. What drives carbon dioxide emissions in the long-run? Evidence from selected south Asian countries. Renew. Sustain. Energy Rev. 2017, 70, 1142–1153. [Google Scholar] [CrossRef]
- Drean, B. Green economy and social welfare in Malaysia: ARDL approach. Tamansiswa Manag. J. Int. 2021, 4, 13–19. [Google Scholar] [CrossRef]
- Gurbuz, I.B.; Nesirov, E.; Ozkan, G. Investigating environmental awareness of citizens of Azerbaijan: A survey on ecological footprint. Environ. Dev. Sustain. 2021, 23, 10378–10396. [Google Scholar] [CrossRef]
- Jahanger, A.; Yu, Y.; Awan, A.; Chishti, M.Z.; Radulescu, M.; Balsalobre-Lorente, D. The impact of hydropower energy in Malaysia under the EKC hypothesis: Evidence from quantile ARDL approach. SAGE Open 2022, 12, 21582440221109580. [Google Scholar] [CrossRef]
- Lin, B.; Ullah, S. Effectiveness of energy depletion, green growth, and technological cooperation grants on CO2 emissions in Pakistan’s perspective. Sci. Total Environ. 2024, 906, 167536. [Google Scholar] [CrossRef]
- Mrabet, Z.; Alsamara, M. Testing the Kuznets Curve hypothesis for Qatar: A comparison between carbon dioxide and ecological footprint. Renew. Sustain. Energy Rev. 2017, 70, 1366–1375. [Google Scholar] [CrossRef]
- Ozturk, S.; Cetin, M.; Demir, H. Income inequality and CO2 emissions: Nonlinear evidence from Turkey. Environ. Dev. Sustain. 2022, 24, 11911–11928. [Google Scholar] [CrossRef]
- Yanto, D.D.G.F. Green economy and sustainable development in Indonesia: ARDL approach. Tamansiswa Account. J. Int. 2021, 4, 9–15. [Google Scholar] [CrossRef]
- Hossain, M.E.; Rej, S.; Saha, S.M.; Onwe, J.C.; Nwulu, N.; Bekun, F.V.; Taha, A. Can Energy Efficiency Help in Achieving Carbon-Neutrality Pledges? A Developing Country Perspective Using Dynamic ARDL Simulations. Sustainability 2022, 14, 7537. [Google Scholar] [CrossRef]
- Mehmood, U. Renewable energy and foreign direct investment: Does the governance matter for CO2 emissions? Application of CS-ARDL. Environ. Sci. Pollut. Res. 2022, 29, 19816–19822. [Google Scholar] [CrossRef]
- Mehmood, U.; Agyekum, E.B.; Uhunamure, S.E.; Shale, K.; Mariam, A. Evaluating the influences of natural resources and ageing people on CO2 emissions in G-11 nations: Application of CS-ARDL approach. Int. J. Environ. Res. Public Health 2022, 19, 1449. [Google Scholar] [CrossRef] [PubMed]
- Noureen, S.; Iqbal, J.; Chishti, M.Z. Exploring the dynamic effects of shocks in monetary and fiscal policies on the environment of developing economies: Evidence from the CS-ARDL approach. Environ. Sci. Pollut. Res. 2022, 29, 45665–45682. [Google Scholar] [CrossRef]
- Wen, M.; Li, M.; Erum, N.; Hussain, A.; Xie, H.; ud din Khan, H.S. Revisiting environmental kuznets curve in relation to economic development and energy carbon emission efficiency: Evidence from Suzhou, China. Energies 2022, 15, 62. [Google Scholar] [CrossRef]
- Cao, X.; Kannaiah, D.; Ye, L.; Khan, J.; Shabbir, M.S.; Bilal, K.; Tabash, M.I. Does sustainable environmental agenda matter in the era of globalization? The relationship among financial development, energy consumption, and sustainable environmental-economic growth. Environ. Sci. Pollut. Res. 2022, 29, 30808–30818. [Google Scholar] [CrossRef]
- Iqbal, S.; Wang, Y.; Ali, S.; Haider, M.A.; Amin, N. Shifting to a green economy: Asymmetric macroeconomic determinants of renewable energy production in Pakistan. Renew. Energy 2023, 202, 234–241. [Google Scholar] [CrossRef]
- Shahid, R.; Shijie, L.; Yifan, N.; Jian, G. Pathway to green growth: A panel-ARDL model of environmental upgrading, environmental regulations, and GVC participation for the Chinese manufacturing industry. Front. Environ. Sci. 2022, 10, 972412. [Google Scholar] [CrossRef]
- Zheng, J.; Assad, U.; Kamal, M.A.; Wang, H. Foreign direct investment and carbon emissions in China: “Pollution Haven” or “Pollution Halo”? Evidence from the NARDL model. J. Environ. Plan. Manag. 2022, 67, 662–687. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, Z.; Rahman, Z.U.; Khattak, S.I.; Khan, Z.U. Can innovation shocks determine CO2 emissions (CO2e) in the OECD economies? A new perspective. Econ. Innov. New Technol. 2021, 30, 89–109. [Google Scholar] [CrossRef]
- Ağaoğlu, N. Sürdürülebilir kalkınma bağlamında büyüme ve yeşil büyüme. Acad. Rev. Humanit. Soc. Sci. 2023, 6, 83–105. [Google Scholar] [CrossRef]
- TURKSTAT. Electricity Production and Shares by Energy Sources. 2024. Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=cevre-ve-enerji-103&dil=1 (accessed on 15 December 2024).
- Kadioglu, I.; Gurbuz, I.B. Formulating eco-friendly strategies: Transition to green economy. Sustainability 2024, 16, 4492. [Google Scholar] [CrossRef]
- Ali, U.; Guo, Q.; Kartal, M.T.; Nurgazina, Z.; Khan, Z.A.; Sharif, A. The impact of renewable and non-renewable energy consumption on carbon emission intensity in China: Fresh evidence from novel dynamic ARDL simulations. J. Environ. Manag. 2022, 320, 115782. [Google Scholar] [CrossRef]
- Kartal, M.T. Production-based disaggregated analysis of energy consumption and CO2 emission nexus: Evidence from the USA by novel dynamic ARDL simulation approach. Environ. Sci. Pollut. Res. 2022, 30, 6864–6874. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. Disaggregating the environmental effects of renewable and non-renewable energy consumption in South Africa: Fresh evidence from the novel dynamic ARDL simulations approach. Econ. Change Restruct. 2022, 55, 1767–1814. [Google Scholar] [CrossRef]
- Mehmood, U. Investigating the linkages of female employer, education expenditures, renewable energy, and CO2 emissions: Application of CS-ARDL. Environ. Sci. Pollut. Res. 2022, 29, 61277–61282. [Google Scholar] [CrossRef]
lnCO2 | lnEG | lnDC | lnFDI | lnEP | |
---|---|---|---|---|---|
Mean | 5.618320 | 8.728089 | 3.394403 | −0.038408 | 11.98654 |
Median | 5.651189 | 8.987674 | 3.269590 | 0.226965 | 12.07994 |
Maximum | 6.120843 | 9.439719 | 4.261222 | 1.287408 | 12.72106 |
Minimum | 5.037866 | 7.714503 | 2.639818 | −1.186175 | 10.96029 |
S.D. | 0.339957 | 0.585697 | 0.584711 | 0.725447 | 0.537133 |
Ske. | −0.139722 | −0.320274 | 0.208735 | −0.032781 | −0.358882 |
Kur. | 1.696908 | 1.438339 | 1.406305 | 1.710706 | 1.937331 |
Jarque–Bera | 2.442190 | 3.917497 | 3.731950 | 2.291544 | 2.261120 |
Sum | 185.4046 | 288.0269 | 112.0153 | −1.267471 | 395.5559 |
Sum Sq. Dev. | 3.698255 | 10.97729 | 10.94037 | 16.84074 | 9.232390 |
Observations | 33 | 33 | 33 | 33 | 33 |
Variables | ADF | PP | ||
---|---|---|---|---|
Level | 1st Difference | Level | 1st Difference | |
lnCO2 | −1.077 | −6.045 *** | −1.568 | −7.123 *** |
lnEG | −1.451 | −5.865 *** | −1.072 | −5.877 *** |
lnDC | 0.568 | −3.618 *** | 1.00 | −3.668 *** |
lnFDI | −2.090 ** | −6.0498 *** | −1.969 ** | −12.076 *** |
lnEP | −3.146 ** | −4.205 *** | −8.415 *** | −4.225 *** |
Variables | Schwarz Information Criterion (SIC) | F-Statistic | ||||
---|---|---|---|---|---|---|
Level | 1st Difference | Break Date | Level | 1st Difference | Break Date | |
lnCO2 | −6.514 *** | 2019 | −6.463 *** | 2007 | ||
lnEG | −6.248 *** | 2001 | −6.248 *** | 2001 | ||
lnDC | −6.064 *** | 2021 | −6.383 *** | 2005 | ||
lnFDI | −4.937 *** | 2004 | −4.937 *** | 2004 | ||
lnEP | −5.527 *** | 2009 | −5.527 *** | 2009 |
Lag | LogL | LR | FPE | AIC | SIC | HQ |
---|---|---|---|---|---|---|
0 | 33.254 | NA | 1.05 × 10−7 | −1.883 | −1.650 | −1.808 |
1 | 173.695 | 224.705 * | 4.89 × 10−11 * | −9.579 | −8.178 * | −9.131 * |
2 | 195.7120 | 27.887 | 6.94 × 10−11 | −9.380 | −6.811 | −8.558 |
3 | 223.871 | 26.281 | 8.69 × 10−11 | −9.591 * | −5.854 | −8396 |
Cointegration | Significance | F-Value | F-Bounds Test | t-Value | T-Bounds Test | ||
---|---|---|---|---|---|---|---|
I(0) | I(1) | I(0) | I(1) | ||||
Yes | 6.344 *** | 10% | 2.45 | 3.52 | −6.576 *** | −2.57 | −3.66 |
5% | 2.86 | 4.01 | −2.86 | −3.99 | |||
1% | 3.74 | 5.06 | −3.43 | −4.60 |
LR Analysis | |||
Var. | Coef. | T | Prob. |
lnEG | −0.054 *** | −2.245 | 0.046 |
lnDC | 0.114 *** | 5.595 | 0.000 |
lnFDI | 0.041 *** | 2.833 | 0.016 |
lnEP | 0.552 *** | 17.657 | 0.000 |
SR Analysis | |||
Var. | Coef. | T | Prob. |
C *** | −1.285 | −6.511 | 0.000 |
D(lnCO2(−1)) * | 0.309 | 2.112 | 0.058 |
D(lnCO2(−2)) * | 0.269 | 1.879 | 0.073 |
D(lnEG) | −0.039 | −1.655 | 0.126 |
D(lnEG(−1)) * | 0.046 | 1.946 | 0.077 |
D(lnEG(−2)) *** | 0.103 | 4.065 | 0.001 |
D(lnDC) | 0.027 | 1.190 | 0.258 |
D(lnDC(−1)) | −0.038 | −1.164 | 0.268 |
D(lnDC(−2)) *** | −0.127 | −4.285 | 0.001 |
D(lnFDI) | 0.002 | 0.340 | 0.739 |
D(lnFDI(−1)) ** | −0.021 | −2.489 | 0.030 |
D(lnEP) *** | 0.774 | 7.023 | 0.000 |
D(lnEP(−1)) | 0.157 | 1.063 | 0.310 |
D(lnEP(−2)) *** | −0.470 | −3.469 | 0.005 |
CointEq(−2) *** | −1.380 *** | −6.576 | 0.000 |
Sensitivity analysis | |||
R2 | 0.948 | ||
Adjusted R2 | 0.900 | ||
F statistic | 19.755 | ||
Prob (F statistic) *** | 0.000000 |
Test | F-Stat | Prob. | Result |
---|---|---|---|
Breusch–Godfrey serial correlation LM test | 0.454 | 0.089 | No problem of serial correlations |
Breusch–Pagan–Godfrey heteroscedasticity test | 1.523 | 1.000 | No problem of serial correlations |
Jarque–Bera test | 0.308 | 0.856 | Estimated residual is normal |
Ramsey test | 0.008 | 0.770 | Model is specified correctly |
Var. | Coef. | S.E. | t | Prob. |
---|---|---|---|---|
EG | −0.093 *** | 0.026 | −3.483 | 0.003 |
DC | 0.172 *** | 0.014 | 11.765 | 0.000 |
FDI | 0.076 *** | 0.018 | 4.239 | 0.000 |
EP | 0.489 *** | 0.020 | 24.406 | 0.000 |
Var. | Coef. | S.E. | t | Prob. |
---|---|---|---|---|
EG | −0.412 | 0.027 | −1.509 | 0.142 |
DC | 0.150 *** | 0.013 | 10.870 | 0.000 |
FDI | 0.080 *** | 0.010 | 7.802 | 0.000 |
EP | 0.456 *** | 0.019 | 23.686 | 0.000 |
Variables | lnCO2 | lnEG | lnDC | lnFDI | lnEP |
---|---|---|---|---|---|
lnCO2 | - | - | 20.155 (0.000) *** | - | 19.566 (0.000) *** |
LnEG | - | - | - | - | - |
LnDC | - | - | - | - | - |
LnFDI | - | 1.014 (0.000) *** | 5.635 (0.059) * | - | - |
lnEP | - | - | 6.876 (0.032) ** | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadioglu, I.; Turan, O.; Gurbuz, I.B. ARDL Bound Testing Approach for a Green Low-Carbon Circular Economy in Turkey. Sustainability 2025, 17, 2714. https://doi.org/10.3390/su17062714
Kadioglu I, Turan O, Gurbuz IB. ARDL Bound Testing Approach for a Green Low-Carbon Circular Economy in Turkey. Sustainability. 2025; 17(6):2714. https://doi.org/10.3390/su17062714
Chicago/Turabian StyleKadioglu, Irfan, Ozlem Turan, and Ismail Bulent Gurbuz. 2025. "ARDL Bound Testing Approach for a Green Low-Carbon Circular Economy in Turkey" Sustainability 17, no. 6: 2714. https://doi.org/10.3390/su17062714
APA StyleKadioglu, I., Turan, O., & Gurbuz, I. B. (2025). ARDL Bound Testing Approach for a Green Low-Carbon Circular Economy in Turkey. Sustainability, 17(6), 2714. https://doi.org/10.3390/su17062714