Impact of Coal Waste Rock on Biological and Physicochemical Properties of Soils with Different Agricultural Uses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection Site
- A_bu_in—field with buckwheat, influenced (>10 years) by waste rock, Andrzejów
- A_bu_win—field with buckwheat, without influence of waste rock, Andrzejów
- Ch_oat_in—field with oats, influenced (2 years) by waste rock, Chojeniec
- Ch_oat_win—field with oats, without influence of waste rock. Chojeniec
- WW_wa_in—wasteland, influenced (>10 years) by waste rock, Wola Wereszczyńka
- WW_wa_win—wasteland, without influence of waste rock, Wola Wereszczyńka
2.2. Determination of Dry Weight and pH Value
2.3. Total Organic Carbon Content and Humus Content
2.4. Determination of Soil Microbial Abundance
2.4.1. Fungal Abundance
2.4.2. Copiotrophs and Oligotrophs Abundance
2.4.3. Abundance of Cellulolytic Microorganisms
2.4.4. Abundance of Amylolytic Microorganisms
2.4.5. Abundance of Proteolytic Microorganisms
2.4.6. Abundance of Microorganisms Capable of Solubilizing Phosphates
2.4.7. Microorganisms Resistant to Heavy Metals
2.4.8. Microorganisms Capable of Synthesizing Siderophores
2.5. Dehydrogenase Activity
2.6. Phosphatase Activity
2.7. Community Level Physiological Profiling—EcoPlate Biolog®
2.8. Bacterial Community
2.9. Statistical Analysis
3. Results
3.1. Soil pH Variability and Organic Carbon and Humus Content in Soil
3.2. Abundance of Soil Microorganisms
3.3. Soil Enzyme Activity
3.4. Community Level Physiological Profiling (CLPP)—EcoPlate Biolog®
3.5. Bacterial Community
4. Discussion
4.1. Coal Mining Waste Rock and the Problem of Its Management
4.2. Acid Mine Drainage (AMD) and pH-Decreasing Effect of Waste Rock
4.3. Need to Monitor Biotic and Abiotic Parameters of Soils Treated with Waste Rock
4.4. Soil and Plant Microbiota as an Indicator of the Impact of Waste Rock
4.5. Enzyme Activity as a Reflection of the Influence of Bedrock on Overall Soil Activity
4.6. Changes in Ecophysiological Parameters as Marker of the Influence of Waste Rock
4.7. Soil Organic Matter and Humic Acids as a Marker of Waste Rock Impact on Soil
4.8. Microbiome Diversity as a Marker of Waste Rock Impact on Soil
5. Conclusions
- (1)
- When monitoring the impact of waste rock on the formation, changes, and disturbances of the composition of the microbiome, it is worth combining the indicators of catabolic, ecophysiological (Biolog EcoPlate), and genetic fingerprinting with the determination of physicochemical parameters and indicators of biological activity of soil determined on the basis of determining the activity of soil enzymes and the abundance of various groups of microorganisms cultivated in soils to obtain data on multidirectional changes occurring in the environment, soil structure, and quality, as well as the physiological state, yield, and elemental composition of plants.
- (2)
- The influence of waste rock on physical parameters, biological and biochemical activity, and the composition of the soil microbiota depended mainly on the method of agricultural use (wastelands, cultivated fields), the type of vegetation cover (monocotyledonous plants, dicotyledonous plants), and, to a much lesser extent, on the duration of waste rock impact. In agriculturally used soil, there is most likely a strong influence of bioremediation processes combining phytoremediation mechanisms supported by the activity of rhizosphere microorganisms, which are characterized by high metabolic activity.
- (3)
- The introduction of waste rock to soils had a significant effect on pH. The use of these rocks in buckwheat cultivation caused soil alkalization, reaching pHH2O levels in the range of ~7.5–8.0. These soils were also characterized by the highest pHH2O and pH1MKCl values compared to the other soil samples tested.
- (4)
- Research has shown that long-term cultivation (buckwheat) contributed to the elimination (leveling out) of microbiological and biochemical differences. The addition of waste rock did not significantly affect the abundance of microorganisms in buckwheat cultivation (~5.5 log10/gDW for fungi and 7.5–7.7 log10/gDW for copiotrophs and oligotrophs). In the soil from oat cultivation, a decrease in the abundance of microorganisms by 1–1.5 log10/gDW was observed. On wasteland, the influence of waste rock reduced the abundance of copiotrophs and oligotrophs to 6.2 log10/gDW, while the abundance of fungi remained unchanged.
- (5)
- The abundance of microorganisms resistant to heavy metals, as well as microorganisms capable of producing specific Fe-binding ligands—siderophores—decreased under the influence of waste rock. The greatest decrease in the number of microorganisms capable of synthesizing siderophores was observed on wastelands (1.5 log10/gDW). The combined analysis revealed an abundance of 94 unique bacterial ASVs, most of which were present in oat cultivation samples, and the core microbiome was represented by 70 ASVs.
- (6)
- Dehydrogenase activity in long-term cultivation both with and without the influence of waste rock was at a similar level, whereas in the soil from short-term cultivation (oats), it was significantly lower with waste rock (~0.02 µg TPF/h/gDW) than in the soil without its influence (~2 µg TPF/h/gDW). However, in all soil samples tested, a decrease in the activity of both acid phosphatase and alkaline phosphatase was observed due to the addition of waste rock. The most significant decrease in the activity of both enzyme groups was noted in oat cultivation, where the activity of these enzymes decreased more than 4-fold.
- (7)
- These results allow for the formulation of a recommendation for the introduction of agricultural cultivation in areas under the influence of waste rock. It is recommended to use pre-crop plants, which are intended to supply the soils mainly with elements such as nitrogen and phosphorus, such as phacelia, clover, or other plants entering symbiosis with diazotrophs, that is, plants from the Fabaceae family, but also crops such as mustard or buckwheat.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keeley, A.T.; Beier, P.; Creech, T.; Jones, K.; Jongman, R.H.; Stonecipher, G.; Tabor, G.M. Thirty Years of Connectivity Conservation Planning: An Assessment of Factors Influencing Plan Implementation. Environ. Res. Lett. 2019, 14, 103001. [Google Scholar] [CrossRef]
- Jongman, R.H. Homogenisation and Fragmentation of the European Landscape: Ecological Consequences and Solutions. Landsc. Urban Plan. 2002, 58, 211–221. [Google Scholar] [CrossRef]
- Watson, J.E.; Shanahan, D.F.; Di Marco, M.; Allan, J.; Laurance, W.F.; Sanderson, E.W.; Mackey, B.; Venter, O. Catastrophic Declines in Wilderness Areas Undermine Global Environment Targets. Curr. Biol. 2016, 26, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Skórka, P.; Lenda, M.; Moroń, D.; Tryjanowski, P. New Methods of Crop Production and Farmland Birds: Effects of Plastic Mulches on Species Richness and Abundance. J. Appl. Ecol. 2013, 50, 1387–1396. [Google Scholar] [CrossRef]
- Clough, Y.; Kirchweger, S.; Kantelhardt, J. Field Sizes and the Future of Farmland Biodiversity in European Landscapes. Conserv. Lett. 2020, 13, e12752. [Google Scholar] [CrossRef] [PubMed]
- Pietruczuk, J.; Dobrowolski, R.; Pidek, I.A.; Urban, D. Palaeoecological Evolution of a Spring-Fed Fen in Pawłów (Eastern Poland). Grana 2018, 57, 345–363. [Google Scholar] [CrossRef]
- Pietruczuk, J.; Dobrowolski, R.; Suchora, M.; Apolinarska, K.; Bieganowski, A.; Trembaczowski, A.; Polakowski, C.; Bober, A. From a Periglacial Lake to an Alkaline Fen–Late Glacial/Early Holocene Evolution of Lublin Chalkland Tracked in Biogenic Sediments of Bagno Staw (Western Polesie Lowland, E Poland). Catena 2022, 209, 105813. [Google Scholar] [CrossRef]
- Weston, P. The Race to Save Polesia, Europe’s Secret Amazon. Available online: https://www.theguardian.com/world/2020/mar/06/the-race-to-save-polesia-europes-secret-amazon-aoe (accessed on 4 January 2024).
- Kitowski, I.; Grzywaczewski, G. Eastern Europe’s Fraught Water Way Plans. Science 2021, 373, 752. [Google Scholar] [CrossRef] [PubMed]
- Jeznach, J.; Urban, D.; Michalczyk, Z.; Kulik, M.; Sugier, P.; Grzywaczewski, G. Characteristic Features of the Polish Part of Polesie. In Handbook of Research on Improving the Natural and Ecological Conditions of the Polesie Zone; Rokochinskiy, A., Kuzmych, L., Volk, P., Eds.; IGI Global: Hershey, PA, USA, 2023; pp. 21–29. [Google Scholar]
- Grzywaczewski, G.; Kitowski, I. Coal Mining Threatens the Vulnerable Aquatic Warbler Acrocephalus paludicola. Oryx 2018, 52, 14. [Google Scholar] [CrossRef]
- Grzywaczewski, G.; Kitowski, I. Poland’s Conflicting Environmental Laws. Science 2019, 365, 134. [Google Scholar] [CrossRef]
- Bzowski, Z.; Dawidowski, A. Monitoring Właściwości Fizykochemicznych Odpadów Wydobywczych Pochodzących z Kopalni Węgla Kamiennego LW “Bogdanka”. Zesz. Nauk. Inżynieria Sr. Uniw. Zielonogórski 2013, 149, 87–96. [Google Scholar]
- Gorczyca, K. Rekultywacje Wyrobisk z Wykorzystaniem Odpadów z Wydobycia Węgla Kamiennego w Województwie Lubelskim; Towarzystwo dla Natury i Człowieka: Lublin, Poland, 2015. [Google Scholar]
- Garbacz, A. Zagrożenia Siedlisk Przyrodniczych Polesia Przyczyną Powstania Zagrożenia Produkcji Żywności o Podwyższonych Walorach Prozdrowotnych. In Lokalne Rasy Zwierząt w Ochronie Bioróżnorodności i Zachowaniu Tradycji Regionów; Chabuz, W., Sawicka-Zugaj, W., Eds.; Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie: Lublin, Poland, 2023; pp. 11–24. [Google Scholar]
- Baran, S.; Turski, R.; Flis-Bujak, M.; Martyn, W.; Kwiecień, J.; Uzar, C. Możliwość Zwiększenia Walorów Produkcyjnych Gleb Lekkich Przy Zastosowaniu Płonych Skał Górniczych. Zeszysty Probl. Postępów Nauk. Rol. 1993, 409, 83–88. [Google Scholar]
- Gaćina, R.J.; Dimitrijević, B. Reducing Environmental Impact Caused by Mining Activities in Limestone Mines. Podzemn. Rad. 2022, 40, 37–44. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Y.; Cao, Y.; Zhang, Z. A Novel Method for the Desulfurization of Medium–High Sulfur Coking Coal. Fuel 2023, 335, 126988. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Q.; Xu, H.; Wang, Y.; Tang, L. Influences of Different Modifiers on the Disintegration of Improved Granite Residual Soil under Wet and Dry Cycles. Int. J. Min. Sci. Technol. 2022, 32, 831–845. [Google Scholar] [CrossRef]
- Sekerin, V.; Dudin, M.; Gorokhova, A.; Bank, S.; Bank, O. Mineral Resources and National Economic Security: Current Features. Min. Miner. Depos. 2019, 13, 72–79. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Firozjaei, H.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Makki, M.; Naimi, B.; Alavipanah, S.K. A Historical and Future Impact Assessment of Mining Activities on Surface Biophysical Characteristics Change: A Remote Sensing-Based Approach. Ecol. Indic. 2021, 122, 107264. [Google Scholar] [CrossRef]
- Barančok, P.; Barančoková, M. Evaluation of Changes in Land Use and Their Influence on Ecological Stability of a Selected Area of the Dolný Spiš Region (Slovakia). Sustainability 2024, 16, 10167. [Google Scholar] [CrossRef]
- Badera, J.; Kocoń, P. Local Community Opinions Regarding the Socio-Environmental Aspects of Lignite Surface Mining: Experiences from Central Poland. Energy Policy 2014, 66, 507–516. [Google Scholar] [CrossRef]
- Nikas, A.; Neofytou, H.; Karamaneas, A.; Koasidis, K.; Psarras, J. Sustainable and Socially Just Transition to a Post-Lignite Era in Greece: A Multi-Level Perspective. Energy Sources Part B Econ. Plan. Policy 2020, 15, 513–544. [Google Scholar] [CrossRef]
- Corrigan, C.C.; Ikonnikova, S.A. A Review of the Use of AI in the Mining Industry: Insights and Ethical Considerations for Multi-Objective Optimization. Extr. Ind. Soc. 2024, 17, 101440. [Google Scholar] [CrossRef]
- Farghali, M.; Osman, A.I.; Chen, Z.; Abdelhaleem, A.; Ihara, I.; Mohamed, I.M.; Yap, P.-S.; Rooney, D.W. Social, Environmental, and Economic Consequences of Integrating Renewable Energies in the Electricity Sector: A Review. Environ. Chem. Lett. 2023, 21, 1381–1418. [Google Scholar] [CrossRef]
- Azarpour, A.; Mohammadzadeh, O.; Rezaei, N.; Zendehboudi, S. Current Status and Future Prospects of Renewable and Sustainable Energy in North America: Progress and Challenges. Energy Convers. Manag. 2022, 269, 115945. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Guzmán, V.; Catriñir, P. Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review. Energies 2024, 17, 5532. [Google Scholar] [CrossRef]
- Bennagi, A.; AlHousrya, O.; Cotfas, D.T.; Cotfas, P.A. Comprehensive Study of the Artificial Intelligence Applied in Renewable Energy. Energy Strateg. Rev. 2024, 54, 101446. [Google Scholar] [CrossRef]
- Ocetkiewicz, I.; Tomaszewska, B.; Mróz, A. Renewable Energy in Education for Sustainable Development. The Polish Experience. Renew. Sustain. Energy Rev. 2017, 80, 92–97. [Google Scholar] [CrossRef]
- Robaina, M.; Rodrigues, S.; Madaleno, M. Is There a Trade-off between Human Well-Being and Ecological Footprint in European Countries? Ecol. Econ. 2024, 224, 108296. [Google Scholar] [CrossRef]
- Papagiannis, A.; Roussos, D.; Menegaki, M.; Damigos, D. Externalities from Lignite Mining-Related Dust Emissions. Energy Policy 2014, 74, 414–424. [Google Scholar] [CrossRef]
- Srivathsa, A.; Vasudev, D.; Nair, T.; Chakrabarti, S.; Chanchani, P.; DeFries, R.; Deomurari, A.; Dutta, S.; Ghose, D.; Goswami, V.R.; et al. Prioritizing India’s Landscapes for Biodiversity, Ecosystem Services and Human Well-Being. Nat. Sustain. 2023, 6, 568–577. [Google Scholar] [CrossRef]
- Kivinen, S.; Kotilainen, J.; Kumpula, T. Mining Conflicts in the European Union: Environmental and Political Perspectives. Fenn.-Int. J. Geogr. 2020, 198, 163–179. [Google Scholar] [CrossRef]
- Goldan, T.; Nistor, C.M.; Matei, A.; Maru, D. Reducing Environmental Degradation Caused by the Open-Cast Coal Mining Activities. Inżynieria Miner. 2020, 2, 41–44. [Google Scholar] [CrossRef]
- Truyens, S.; Beckers, B.; Thijs, S.; Weyens, N.; Cuypers, A.; Vangronsveld, J. Cadmium-induced and Trans-generational Changes in the Cultivable and Total Seed Endophytic Community of Arabidopsis thaliana. Plant Biol. 2016, 18, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Boshoff, M.; De Jonge, M.; Dardenne, F.; Blust, R.; Bervoets, L. The Impact of Metal Pollution on Soil Faunal and Microbial Activity in Two Grassland Ecosystems. Environ. Res. 2014, 134, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.O.; De Vallejuelo, S.F.O.; Martinez-Arkarazo, I.; Castro, K.; Oliveira, M.L.; Sampaio, C.H.; De Brum, I.A.S.; De Leão, F.B.; Taffarel, S.R.; Madariaga, J.M. Study of Environmental Pollution and Mineralogical Characterization of Sediment Rivers from Brazilian Coal Mining Acid Drainage. Sci. Total Environ. 2013, 447, 169–178. [Google Scholar] [CrossRef]
- Rocha-Nicoleite, E.; Overbeck, G.E.; Müller, S.C. Degradation by Coal Mining Should Be Priority in Restoration Planning. Perspect. Ecol. Conserv. 2017, 15, 202–205. [Google Scholar] [CrossRef]
- Smoliński, A.; Dombek, V.; Pertile, E.; Drobek, L.; Gogola, K.; Żechowska, S.W.; Magdziarczyk, M. An Analysis of Self-Ignition of Mine Waste Dumps in Terms of Environmental Protection in Industrial Areas in Poland. Sci. Rep. 2021, 11, 8851. [Google Scholar] [CrossRef] [PubMed]
- Parelho, C.; Rodrigues, A.S.; Cruz, J.V.; Garcia, P. Linking Trace Metals and Agricultural Land Use in Volcanic Soils—A Multivariate Approach. Sci. Total Environ. 2014, 496, 241–247. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M. Free-Living Bacterial Communities Are Mostly Dominated by Oligotrophs. bioRxiv 2018, 350348. [Google Scholar] [CrossRef]
- Kumar, P.; Tarafdar, J.C. 2, 3, 5-Triphenyltetrazolium Chloride (TTC) as Electron Acceptor of Culturable Soil Bacteria, Fungi and Actinomycetes. Biol. Fertil. Soils 2003, 38, 186–189. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, L.; Gao, Y.; Tan, X.; Sun, Y.; Chen, W. Effects of Coal Mining Activities on the Changes in Microbial Community and Geochemical Characteristics in Different Functional Zones of a Deep Underground Coal Mine. Water 2024, 16, 1836. [Google Scholar] [CrossRef]
- Kachel, M.; Nowak, A.; Jaroszuk-Ściseł, J.; Tyśkiewicz, R.; Parafiniuk, S.; Rabier, F. Influence of Inorganic Metal (Ag, Cu) Nanoparticles on Biological Activity and Biochemical Properties of Brassica napus Rhizosphere Soil. Agriculture 2021, 11, 1215. [Google Scholar] [CrossRef]
- Lin, Q.; Yang, P.; Zhang, Y.; Zhang, W.; Wu, H. Metagenomic Insights into Coal Slag Remediation Effects on Soil and Microbial Health in Qinghai’s Muli Coal Mine. Microorganisms 2024, 12, 2222. [Google Scholar] [CrossRef] [PubMed]
- Oyetibo, G.O.; Enahoro, J.A.; Ikwubuzo, C.A.; Ukwuoma, C.S. Microbiome of Highly Polluted Coal Mine Drainage from Onyeama, Nigeria, and Its Potential for Sequestrating Toxic Heavy Metals. Sci. Rep. 2021, 11, 17496. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Qi, T.; Zhang, G.; Lin, X.; Li, X.; Wu, Z.; Men, S.; Liu, H.; Zhang, S.; Huang, Z. Responses of Soil Microbial Community Activities and Soil Physicochemical Properties to Coal Fly Ash Soil Amendment. Ann. Microbiol. 2024, 74, 16. [Google Scholar] [CrossRef]
- Kompała-Bąba, A.; Bierza, W.; Sierka, E.; Błońska, A.; Besenyei, L.; Woźniak, G. The Role of Plants and Soil Properties in the Enzyme Activities of Substrates on Hard Coal Mine Spoil Heaps. Sci. Rep. 2021, 11, 5155. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Han, Y.; Meng, Z.; Gao, Y.; Wu, Z. Soil Physicochemical Properties and Carbon Storage Reserve Distribution Characteristics of Plantation Restoration in a Coal Mining Area. Forests 2024, 15, 1876. [Google Scholar] [CrossRef]
- Alef, K.; Nannipier, P. Methods in Applied Soil Microbiology and Biochemistry; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 1995; p. 425. [Google Scholar] [CrossRef]
- Martin, J.P. Use of Acid, Rose Bengal, and Streptomycin in the Plate Method for Estimating Soil Fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Mahdi, S.; Mohd, N.; Arbakariya, A.; Rosfarizan, M. Screening, Isolation and Selection of Cellulolytic Fungi from Oil Palm Empty Fruit Bunch Fibre. Biotechnology 2011, 10, 108–113. [Google Scholar] [CrossRef]
- Khokhar, I.; Mukhtar, I.; Mushtaq, S. Isolation and Screening of Amylolytic Filamentous Fungio. J. Appl. Sci. Environ. Manag. 2011, 15, 126–129. [Google Scholar] [CrossRef]
- Chandran, M.A.S.I.; Ahmed, M.F.; Parthasarathi, N. A Comparative Study on the Protease Producing Bacteria Isolated from Dairy Effluents of Chennai Region, Identification, Characterization, and Application of Enzyme in Detergent Formulation. Asian J. Microbiol. Biotechnol. Environ. Sci. Pap. 2014, 16, 41–46. [Google Scholar]
- Kurek, E.; Niedźwiedzki, E.; Protasowicki, M.; Słomka, A.; Ozimek, E. The Effects of Biofertilizer “Juwei” CBI Produced in China on Growth and Yield of Maize Cultivated on Sandy Soils in Western Pomerania. Soil Sci. Annu. 2004, 55, 121–128. [Google Scholar]
- Schlegel, H.G.; Cosson, J.P.; Baker, A.J.M. Nickel-hyperaccumulating Plants Provide a Niche for Nickel-resistant Bacteria. Bot. Acta 1991, 104, 18–25. [Google Scholar] [CrossRef]
- Schwyn, B.; Neilands, J.B. Universal Chemical Assay for the Detection and Determination of Siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Casida, L.E.J.; Klein, D.A.; Santoro, T. Soil Dehydrogenase Activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of P-Nitrophenyl Phosphate for Assay of Soil Phosphatase Activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Németh, I.; Molnár, S.; Vaszita, E.; Molnár, M. The Biolog EcoPlateTM Technique for Assessing the Effect of Metal Oxide Nanoparticles on Freshwater Microbial Communities. Nanomaterials 2021, 11, 1777. [Google Scholar] [CrossRef]
- Wolinska, A.; Frąc, M.; Oszust, K.; Szafranek-Nakonieczna, A.; Zielenkiewicz, U.; Stępniewska, Z. Microbial Biodiversity of Meadows under Different Modes of Land Use: Catabolic and Genetic Fingerprinting. World J. Microbiol. Biotechnol. 2017, 33, 154. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org (accessed on 20 January 2024).
- Murali, A.; Bhargava, A.; Wright, E.S. IDTAXA: A Novel Approach for Accurate Taxonomic Classification of Microbiome Sequences. Microbiome 2018, 6, 140. [Google Scholar] [CrossRef]
- Kowalska, A.; Kondracka, M.; Mendecki, M.J. VLF Mapping and Resistivity Imaging of Contaminated Quaternary Formations near to “Panewniki” Coal Waste Disposal (Southern Poland). Acta Geodyn. Geomater. 2012, 9, 473–480. [Google Scholar]
- Kujawska, J. Skała Płonna Jako Potencjalne Źródło Składników Pokarmowych. In Współczesne Problemy z Zakresu Inżynierii Środowiska Oraz Architektury; Czyż, Z., Maciąg, K., Eds.; Wydawnictwo Naukowe Tygiel: Lublin, Poland, 2018; pp. 14–24. [Google Scholar]
- Yong, M.T.; Babla, M.; Karan, S.; Katwal, U.; Jahandari, S.; Matta, P.; Zhong-Hua, C.; Tao, Z. Coal Tailings as a Soil Conditioner: Evaluation of Tailing Properties and Effect on Tomato Plants. Plant Growth Regul. 2022, 98, 439–450. [Google Scholar] [CrossRef]
- Dziennik Ustaw Rzeczypospolitej Polskiej Poz. 2856 Rozporządzenie Ministra Klimatu i Środowiska z Dnia 23 Grudnia 2022 r. w Sprawie Wymagań Jakościowych Dla Paliw Stałych; Poland. 2022; pp. 1–4. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20220002856/O/D20222856.pdf (accessed on 20 January 2024).
- Acharya, B.S.; Kharel, G. Acid Mine Drainage from Coal Mining in the United States–An Overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Gałuszka, A.; Dołęgowska, S. Extreme Enrichment of Arsenic and Rare Earth Elements in Acid Mine Drainage: Case Study of Wiśniówka Mining Area (South-Central Poland). Environ. Pollut. 2019, 244, 898–906. [Google Scholar] [CrossRef]
- Russell, M.D.; Heckman, K.A.; Pan, L.; Ye, X.; Zalesny, R.S., Jr.; Kane, E.S. Mine Waste Rock as a Soil Amendment for Enhanced Weathering, Ecosystem Services, and Bioenergy Production. Front. Earth Sci. 2024, 12, 1414437. [Google Scholar] [CrossRef]
- Dove, D.C.; Daniels, W.; Parrish, D. Importance of Indigenious VAM Fungi for the Reclamation of Coal Refuse Piles. J. Am. Soc. Min. Reclam. 1990, 1, 463–468. [Google Scholar] [CrossRef]
- Berg, G.; Köberl, M.; Rybakova, D.; Müller, H.; Grosch, R.; Smalla, K. Plant Microbial Diversity Is Suggested as the Key to Future Biocontrol and Health Trends. FEMS Microbiol. Ecol. 2017, 93, fix050. [Google Scholar] [CrossRef]
- Kasana, R.C.; Salwan, R.; Dhar, H.; Dutt, S.; Gulati, A. A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine. Curr. Microbiol. 2008, 57, 503–507. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil Enzyme Activity: A Brief History and Biochemistry as a Basis for Appropriate Interpretations and Meta-Analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Giovannetti, M.; Salvioli di Fossalunga, A.; Stringlis, I.A.; Proietti, S.; Fiorilli, V. Unearthing Soil-Plant-Microbiota Crosstalk: Looking Back to Move Forward. Front. Plant Sci. 2023, 13, 1082752. [Google Scholar] [CrossRef]
- Partida-Martínez, L.P.; Heil, M. The Microbe-Free Plant: Fact or Artifact? Front. Plant Sci. 2011, 2, 100. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C.; Lal, S.; Ghai, R.; Mandal, M.; Chauhan, A. Mining Genomic Databases to Identify Novel Hydrogen Producers. TRENDS Biotechnol. 2003, 21, 152–156. [Google Scholar] [CrossRef]
- Jaroszuk-Ściseł, J.; Kurek, E. Hydrolysis of Fungal and Plant Cell Walls by Enzymatic Complexes from Cultures of Fusarium Isolates with Different Aggressiveness to Rye (Secale cereale). Arch. Microbiol. 2012, 194, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.; Jaroszuk-Ściseł, J. Mobilization of Cadmium from Festuca ovina Roots and Its Simultaneous Immobilization by Soil in a Root-Soil-Extractant System (in vitro Test). Int. J. Phytoremediation 2017, 19, 701–708. [Google Scholar] [CrossRef]
- Woźniak, M.; Gałązka, A.; Tyśkiewicz, R.; Jaroszuk-Ściseł, J. Endophytic Bacteria Potentially Promote Plant Growth by Synthesizing Different Metabolites and Their Phenotypic/Physiological Profiles in the Biolog GEN III MicroPlateTM Test. Int. J. Mol. Sci. 2019, 20, 5283. [Google Scholar] [CrossRef]
- Woźniak, M.; Tyśkiewicz, R.; Siebielec, S.; Gałązka, A.; Jaroszuk-Ściseł, J. Metabolic Profiling of Endophytic Bacteria in Relation to Their Potential Application as Components of Multi-Task Biopreparations. Microb. Ecol. 2023, 86, 2527–2540. [Google Scholar] [CrossRef]
- Wolińska, A.; Kuźniar, A.; Gałązka, A. Biodiversity in the Rhizosphere of Selected Winter Wheat (Triticum aestivum L.) Cultivars—Genetic and Catabolic Fingerprinting. Agronomy 2020, 10, 953. [Google Scholar] [CrossRef]
- Jaroszuk-Ściseł, J.; Kurek, E.; Rodzik, B.; Winiarczyk, K. Interactions between Rye (Secale cereale) Root Border Cells (RBCs) and Pathogenic and Nonpathogenic Rhizosphere Strains of Fusarium culmorum. Mycol. Res. 2009, 113, 1053–1061. [Google Scholar] [CrossRef]
- Hueso-González, P.; Muñoz-Rojas, M.; Martínez-Murillo, J.F. The Role of Organic Amendments in Drylands Restoration. Curr. Opin. Environ. Sci. Health 2018, 5, 1–6. [Google Scholar] [CrossRef]
- Méndez-García, C.; Peláez, A.I.; Mesa, V.; Sánchez, J.; Golyshina, O.V.; Ferrer, M. Microbial Diversity and Metabolic Networks in Acid Mine Drainage Habitats. Front. Microbiol. 2015, 6, 475. [Google Scholar] [CrossRef]
- Tan, G.L.; Shu, W.S.; Zhou, W.H.; Li, X.L.; Lan, C.Y.; Huang, L.N. Seasonal and Spatial Variations in Microbial Community Structure and Diversity in the Acid Stream Draining across an Ongoing Surface Mining Site. FEMS Microbiol. Ecol. 2009, 70, 277–285. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, L.; Tian, D.; Du, L.; Yang, F. Coal Mining Activities Driving the Changes in Bacterial Community. Sci. Rep. 2024, 14, 25615. [Google Scholar] [CrossRef]
- Langill, T.; Jorissen, L.P.; Oleńska, E.; Wójcik, M.; Vangronsveld, J.; Thijs, S. Community Profiling of Seed Endophytes from the Pb-Zn Hyperaccumulator Noccaea caerulescens and Their Plant Growth Promotion Potential. Plants 2023, 12, 643. [Google Scholar] [CrossRef] [PubMed]
- Thijs, S.; Langill, T.; Vangronsveld, J. The Bacterial and Fungal Microbiota of Hyperaccumulator Plants: Small Organisms, Large Influence. In Phytoremediation; Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2017; pp. 43–86. [Google Scholar]
- Pandey, V.C.; Bauddh, K. Market Opportunities in Sustainable Phytoremediation. In Phytomanagement of Polluted Sites; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gałązka, A.; Grządziel, J. Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques. Front. Microbiol. 2018, 9, 76. [Google Scholar] [CrossRef]
- Gałązka, A.; Grządziel, J.; Gałązka, R.; Ukalska-Jaruga, A.; Strzelecka, J.; Smreczak, B. Genetic and Functional Diversity of Bacterial Microbiome in Soils with Long Term Impacts of Petroleum Hydrocarbons. Front. Microbiol. 2018, 9, 1923. [Google Scholar] [CrossRef]
- Gałązka, A.; Niedźwiecki, J.; Grządziel, J.; Gawryjołek, K. Evaluation of Changes in Glomalin-Related Soil Proteins (GRSP) Content, Microbial Diversity and Physical Properties Depending on the Type of Soil as the Important Biotic Determinants of Soil Quality. Agronomy 2020, 10, 1279. [Google Scholar] [CrossRef]
- Kim, H.; Nishiyama, M.; Kunito, T.; Senoo, K.; Kawahara, K.; Murakami, K.; Oyaizu, H. High Population of Sphingomonas species on Plant Surface. J. Appl. Microbiol. 1998, 85, 731–736. [Google Scholar] [CrossRef]
- Asaf, S.; Numan, M.; Khan, A.L.; Al-Harrasi, A. Sphingomonas: From Diversity and Genomics to Functional Role in Environmental Remediation and Plant Growth. Crit. Rev. Biotechnol. 2020, 40, 138–152. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, M.Y.; Khan, N.; Tan, L.L.; Yang, S. Potentials, Utilization, and Bioengineering of Plant Growth-Promoting Methylobacterium for Sustainable Agriculture. Sustainability 2021, 13, 3941. [Google Scholar] [CrossRef]
- Palberg, D.; Kisiała, A.; Jorge, G.L.; Emery, R.N. A Survey of Methylobacterium species and Strains Reveals Widespread Production and Varying Profiles of Cytokinin Phytohormones. BMC Microbiol. 2022, 22, 49. [Google Scholar] [CrossRef] [PubMed]
- Vaddavalli, R.; Gaddam, B.; Linga, V.R. Streptosporangium terrae sp. nov., a Novel Actinomycete Isolated from the Rhizosphere of Callistemon citrinus (Curtis), India. J. Antibiot. 2015, 68, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, E.; Joniec, J.; Kwiatkowski, C.A. Involvement of Soil Microorganisms in C, N and P Transformations and Phytotoxicity in Soil from Post-Industrial Areas Treated with Chemical Industry Waste. Minerals 2023, 13, 12. [Google Scholar] [CrossRef]
Location | Type of Development/Cultivation | Predominant Microbial Groups/ Enzymatic Activity | Literature |
---|---|---|---|
Muli coal mine site in Qinghai, China | Grasslands | Proteobacteria (~32%), Actinobacteria (~28%), Acidobacteria (~15%) | [46] |
Coal mine drainage from Onyeama, Nigeria | Derelict coal fields | Proteobacteria (50.8%) and Bacteroidetes (18.9%) dominate the bacterial community, Ascomycota fungi (60.8%) and Ciliophora (12.6%) dominate the eukaryotic community | [47] |
Coal fly ash soil amendment in Hebei province, China | Corn | Acidobacteria (77.05%), Sphingomonas (25.60%), Nitrospira (20.78%), Streptomyces (11.32%), Gaiella (10.20%) | [48] |
Coal mine spoil heaps in the Silesian Uplands, Poland | Grasses (Poa compressa, Calamagrostis epigejos) | pH, dehydrogenase, and alkaline phosphatase higher than in bulk soil; acid phosphatase lower than in bulk soil | [49] |
Coal mine spoil heaps in the Silesian Uplands, Poland | Forbs (Daucus carota, Tussilago farfara) | pH, dehydrogenase, alkaline phosphatase, and acid phosphatase higher than in bulk soil | [49] |
Bulianta coal mine in Yijin Horo Banner, China | Pinus sylvestris, Prunus sibirica, and Hippophae rhamnoides forests | Soil organic carbon content higher after 15 years of vegetation restoration than after 5 and 10 years | [50] |
Methodology | Soil Sample | Main Information | Literature |
---|---|---|---|
Soil dry matter | 10 g FW | Dry in a laboratory dryer to constant dry mass: 3 cycles, 105 °C after 8 h | - |
pH | 1 g FW | Preparation of soil suspensions at a ratio of 1:2.5 dH2O or 1M KCl * and pH determination/measured potentiometrically by glass electrode (with CP-505, Elmetron, Poland pH meter) | - |
Humic acid content | 100 g FW | Humic acids extracted from the soil with 0.5M NaOH are precipitated from the solution with 6M HCl | [51] |
Total organic carbon | 0.5 g DW | 0.2 g of AgSO4 and 10 mL of 0.4N potassium dichromate were added to the soil sample and boiled for 5 min. After cooling, the mixture was titrated with 0.2N Mohr’s salt until bottle green | [51] |
Fungal abundance | 1 g FW | The soil suspension was cultivated on Martin’s substrate, with the incorporation of 1% Rose Bengal dye and 1% streptomycin | [52] |
Copiotroph and oligotroph abundance | 1 g FW | Determined on a PYS medium containing soil extract. For oligotrophic abundance, the PYS substrate was diluted 100 times | [51] |
Abundance of cellulolytic microorganisms | 1 g FW | Determined on CMC supplemented medium. Abundance was determined after inducing zones with 0.1% Congo Red and 1M NaCl. | [53] |
Abundance of amylolytic microorganisms | 1 g FW | Determined on starch-supplemented medium. Abundance was determined after inducing zones with Lugol’s liquid | [54] |
Abundance of proteolytic microorganisms | 1 g FW | Determined on skimmed milk-supplemented medium. After incubation, the zones were visible as translucencies | [55] |
Abundance of microorganisms capable of solubilizing phosphates | 1 g FW | Abundance was determined on Na3PO4 + CaCl2 supplemented medium. After incubation, the zones were visible as translucencies | [56] |
Microorganisms resistant to heavy metals | 1 g FW | Determined on Schlegel 284 medium supplemented with heavy metal solutions: CdSO4, NiCl2, CuSO4, ZnSO4 | [36,57] |
Microorganisms capable of synthesizing siderophores | 1 g FW | Determined on “blue” agar medium supplemented with CAS-Fe(III)-HDTMA complex | [58] |
Dehydrogenase activity | 3 g FW | Determined spectrophotometrically (485 nm) based on the conversion of TTC to formazan after 48 h incubation at 37 °C | [59] |
Phosphatase activity | 1 g FW | Determined spectrophotometrically (410 nm) based on the concentration of p-nitrophenol released from p-nitrophenyl phosphate at pH 5.5 for ACP and 11.0 for ALP | [60] |
Community level physiological profiling | 1 g FW | The soil suspension was applied to an EcoPlate Biolog plate and incubated at 20 °C. Spectrophotometric measurements at 590 nm were performed every 24 h for 8 days; coefficients were calculated from the results: AWCD, substrate richness (R), and Shannon index (H) | [61,62] |
Bacterial community | 0.5 g FW | DNA was isolated with FastDNA™ SPIN Kit for Soil; results obtained were then subjected to bioinformatic and statistical analysis, obtaining a picture of the microbial population in the soil | [63,64,65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbacz, A.; Nowak, A.; Marzec-Grządziel, A.; Przybyś, M.; Gałązka, A.; Jaroszuk-Ściseł, J.; Grzywaczewski, G. Impact of Coal Waste Rock on Biological and Physicochemical Properties of Soils with Different Agricultural Uses. Sustainability 2025, 17, 2603. https://doi.org/10.3390/su17062603
Garbacz A, Nowak A, Marzec-Grządziel A, Przybyś M, Gałązka A, Jaroszuk-Ściseł J, Grzywaczewski G. Impact of Coal Waste Rock on Biological and Physicochemical Properties of Soils with Different Agricultural Uses. Sustainability. 2025; 17(6):2603. https://doi.org/10.3390/su17062603
Chicago/Turabian StyleGarbacz, Aleksandra, Artur Nowak, Anna Marzec-Grządziel, Marcin Przybyś, Anna Gałązka, Jolanta Jaroszuk-Ściseł, and Grzegorz Grzywaczewski. 2025. "Impact of Coal Waste Rock on Biological and Physicochemical Properties of Soils with Different Agricultural Uses" Sustainability 17, no. 6: 2603. https://doi.org/10.3390/su17062603
APA StyleGarbacz, A., Nowak, A., Marzec-Grządziel, A., Przybyś, M., Gałązka, A., Jaroszuk-Ściseł, J., & Grzywaczewski, G. (2025). Impact of Coal Waste Rock on Biological and Physicochemical Properties of Soils with Different Agricultural Uses. Sustainability, 17(6), 2603. https://doi.org/10.3390/su17062603