Spillover Effects and Influencing Factors of Forest Carbon Storage in the Context of Regional Coordinated Development: A Case Study in Guangdong Province
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Methods
2.2.1. Forest Accumulation Expansion Method
2.2.2. ESDA
2.2.3. Estimation Models
2.3. Theoretical Mechanism
2.3.1. Spatial Spillover Effects of Forest Carbon Storage in Urban Area
2.3.2. Impact Mechanisms of Forest Carbon Storage
2.4. Variable Selection and Description
2.5. Data Sources
3. Results
3.1. Spatial and Temporal Distribution of Forest Carbon Storage
3.2. Spatial Agglomeration Analysis of Forest Carbon Storage
3.3. Regression Analysis
3.3.1. Results of OLS Analysis
3.3.2. The Results of the Model Selection Test
3.3.3. Spatial Econometric Model Results
3.3.4. Decomposition of Spillover Effects
3.3.5. Robustness Test
4. Discussion
4.1. Spatial and Temporal Distribution Characteristics of Forest Carbon Storage
4.2. Spatial Spillover Effects and Driving Factors of Forest Carbon Storage
4.3. Limitations and Further Research
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geng, A.; Chen, J.; Yang, H. Assessing the Greenhouse Gas Mitigation Potential of Harvested Wood Products Substitution in China. Environ. Sci. Technol. 2019, 53, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jia, J.; Huang, H.; Chen, D.; Zhong, Y.; Zhou, Y. China’s CO2 Emissions: A Thorough Analysis of Spatiotemporal Characteristics and Sustainable Policy from the Agricultural Land-Use Perspective during 1995–2020. Land 2023, 12, 1220. [Google Scholar] [CrossRef]
- Jia, J. China’s CO2 Emissions: A Systematical Decomposition Concurrently from Multi-Sectors and Multi-Stages since 1980 by an Extended Logarithmic Mean Divisia Index. Energy Strat. Rev. 2023, 49, 101141. [Google Scholar] [CrossRef]
- Fang, J. Ecological perspectives of carbon neutrality. Chin. J. Plant Ecol. 2021, 45, 1173–1176. [Google Scholar] [CrossRef]
- Mallapaty, S. How China Could Be Carbon Neutral by Mid-Century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef]
- Wei, J.; Shen, M. Analysis of the Efficiency of Forest Carbon Sinks and Its Influencing Factors—Evidence from China. Sustainability 2022, 14, 11155. [Google Scholar] [CrossRef]
- Payne, N.J.; Allan Cameron, D.; Leblanc, J.-D.; Morrison, I.K. Carbon Storage and Net Primary Productivity in Canadian Boreal Mixedwood Stands. J. For. Res. 2019, 30, 1667–1678. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Han, N.; Xu, X.; Liu, Y.; Zhu, D.; Zheng, J.; Dong, L.; et al. Assimilating Spatiotemporal MODIS LAI Data with a Particle Filter Algorithm for Improving Carbon Cycle Simulations for Bamboo Forest Ecosystems. Sci. Total Environ. 2019, 694, 133803. [Google Scholar] [CrossRef]
- Zhu, H.; Cai, Y.; Lin, H.; Tian, Y. Impacts of Cross-Sectoral Climate Policy on Forest Carbon Sinks and Their Spatial Spillover: Evidence from Chinese Provincial Panel Data. Int. J. Environ. Res. Public Health 2022, 19, 14334. [Google Scholar] [CrossRef]
- Cook-Patton, S.C.; Leavitt, S.M.; Gibbs, D.; Harris, N.L.; Lister, K.; Anderson-Teixeira, K.J.; Briggs, R.D.; Chazdon, R.L.; Crowther, T.W.; Ellis, P.W.; et al. Mapping Carbon Accumulation Potential from Global Natural Forest Regrowth. Nature 2020, 585, 545–550. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Jiang, X.; Long, G.; Wang, J.; Hong, Y.; Pan, J.; Liu, S. The Talks on Paper of the Study of the Spirit of the 20th National Congress of the Communist Party of China. China Ind. Econ. 2022, 11, 5–25. [Google Scholar] [CrossRef]
- Yue, W.; Liu, Z.; Su, M.; Gu, Z.; Xu, C. The Impacts of Multi-Dimension Urbanization on Energy-Environmental Efficiency: Empirical Evidence from Guangdong Province, China. J. Clean. Prod. 2021, 296, 126513. [Google Scholar] [CrossRef]
- Cheng, B.; Dai, H.; Wang, P.; Xie, Y.; Chen, L.; Zhao, D.; Masui, T. Impacts of Low-Carbon Power Policy on Carbon Mitigation in Guangdong Province. China Energy Policy 2016, 88, 515–527. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, J.; Devlin, A.T.; Zhou, Y.; Xie, D.; Ju, M. Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China. Energies 2020, 13, 4461. [Google Scholar] [CrossRef]
- Xue, L.; Luo, X.; Li, Z.; Wu, R. Spatial spillover effect and influencing factors of forest carbon sinks in China—Spatial econometric analysis based on forest resources inventory data in 31 provinces of the Mainland of China. J. Nat. Resour. 2017, 32, 1744–1754. [Google Scholar] [CrossRef]
- Schroeder, P. Can Intensive Management Increase Carbon Storage in Forests? Environ. Manag. 1991, 15, 475–481. [Google Scholar] [CrossRef]
- Rajashekar, G.; Fararoda, R.; Reddy, R.S.; Jha, C.S.; Ganeshaiah, K.N.; Singh, J.S.; Dadhwal, V.K. Spatial Distribution of Forest Biomass Carbon (Above and below Ground) in Indian Forests. Ecol. Indic. 2018, 85, 742–752. [Google Scholar] [CrossRef]
- Li, M. Carbon Stock and Sink Economic Values of Forest Ecosystem in the Forest Industry Region of Heilongjiang Province, China. J. For. Res. 2022, 33, 875–882. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The Enduring World Forest Carbon Sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Qiu, Z.; Feng, Z.; Song, Y.; Li, M.; Zhang, P. Carbon Sequestration Potential of Forest Vegetation in China from 2003 to 2050: Predicting Forest Vegetation Growth Based on Climate and the Environment. J. Clean. Prod. 2020, 252, 119715. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, K.; Yuan, Y. Toward the Carbon Neutrality: Forest Carbon Sinks and Its Spatial Spillover Effect in China. Ecol. Econ. 2023, 209, 107837. [Google Scholar] [CrossRef]
- Du, Z.; Su, T.; Ge, J.; Wang, X. Towards the Carbon Neutrality: The Role of Carbon Sink and Its Spatial Spillover Effects. Econ. Res. J. 2021, 56, 187–202. Available online: https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ202112011.htm (accessed on 11 January 2023).
- Lü, J.; Qiao, Y.; Wang, Y.; Lü, X. Spatial spillover effect and threshold effect of forest carbon storage in China. J. Agro-For. Econ. Manag. 2024, 23, 79–90. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, C.; Liu, S.; Zhang, J. Carbon Sequestration Costs and Spatial Spillover Effects in China’s Collective Forests. Carbon Balance Manag. 2024, 19, 14. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Zhou, Y.; Yao, S. Spatiotemporal Evolution and Influencing Factors of Carbon Sink Dynamics at County Scale: A Case Study of Shaanxi Province, China. Int. J. Environ. Res. Public Health 2021, 18, 13081. [Google Scholar] [CrossRef]
- Dai, W.; Fu, W.; Jiang, P.; Zhao, K.; Li, Y.; Tao, J. Spatial Pattern of Carbon Stocks in Forest Ecosystems of a Typical Subtropical Region of Southeastern China. For. Ecol. Manag. 2018, 409, 288–297. [Google Scholar] [CrossRef]
- Alongi, D.M. Impacts of Climate Change on Blue Carbon Stocks and Fluxes in Mangrove Forests. Forests 2022, 13, 149. [Google Scholar] [CrossRef]
- Meng, Y.; Gou, R.; Bai, J.; Moreno-Mateos, D.; Davis, C.C.; Wan, L.; Song, S.; Zhang, H.; Zhu, X.; Lin, G. Spatial Patterns and Driving Factors of Carbon Stocks in Mangrove Forests on Hainan Island, China. Glob. Ecol. Biogeogr. 2022, 31, 1692–1706. [Google Scholar] [CrossRef]
- Yang, J.; Ji, X.; Deane, D.C.; Wu, L.; Chen, S. Spatiotemporal Distribution and Driving Factors of Forest Biomass Carbon Storage in China: 1977–2013. Forests 2017, 8, 263. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Zhou, W.; Lewis, B.J.; Yu, D.; Zhou, L.; Jiang, L.; Dai, L. A Statistical Analysis of Spatiotemporal Variations and Determinant Factors of Forest Carbon Storage under China’s Natural Forest Protection Program. J. For. Res. 2018, 29, 415–424. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ma, J.; Liu, H.; Song, L.; Cao, W.; Ren, Y. Spatial Heterogeneity analysis of urban forest ecosystem services in Zhengzhou City. PLoS ONE 2023, 18, e0286800. [Google Scholar] [CrossRef]
- Wang, P.; Dai, H.; Ren, S.; Zhao, D.; Masui, T. Achieving Copenhagen Target through Carbon Emission Trading: Economic Impacts Assessment in Guangdong Province of China. Energy 2015, 79, 212–227. [Google Scholar] [CrossRef]
- Xu, X. China’s Multi-Year Municipal Administrative Division Boundary Data. Resource and Environment Science and Data Center, 2023. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=121 (accessed on 11 January 2023).
- Fang, J.; Chen, A. Dynamic Forest Biomass Carbon Pools in China and Their Significance. J. Integr. Plant Biol. 2001, 09, 967–973. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q. Study on Economic Value Assessment of Forest Carbon Sequestration—Taking Fujian Province as an Example. J. Southwest Univ. (Nat. Sci. Ed.) 2021, 43, 121–128. [Google Scholar] [CrossRef]
- Ren, Y.; Wen, Z.; Wang, M.; Li, F.; Jia, Z. Evaluation of forest carbon sequestration capacity in Beijing. J. Beijing For. Univ. 2023, 45, 108–119. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Carbon sink potential of Beijing’s forest under carbon peak and carbon neutrality. Resour. Ind. 2022, 24, 15–25. [Google Scholar] [CrossRef]
- Shuang, H.; Luo, J.; Gan, X.; Xiang, S. LEED Certification System for Green Buildings in China: Examining Spatial Differences, Temporal Evolution, and Spatial Overflow. J. Clean. Prod. 2024, 458, 142479. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Feng, R.; Liu, S.; Wang, F.; Wang, K.; Gao, P.; Xu, L. Quantifying the Environmental Synergistic Effect of Cooling-Air Purification-Carbon Sequestration from Urban Forest in China. J. Clean. Prod. 2024, 448, 141514. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, Y.; Wang, Y. Spatio-Temporal Pattern, Evolution and Influencing Factors of Forest Carbon Sinks in Zhejiang Province, China. Forests 2023, 14, 445. [Google Scholar] [CrossRef]
- Dong, Z.; Jia, Y.; Shang, Y.; Zhang, J. Prediction of Economic Value of Forest Carbon Sinks in Hebei Province and Analysis of Influencing Factors. J. Hebei GEO Univ. 2022, 45, 87–96. [Google Scholar] [CrossRef]
- Long, F.; Shen, Y.; Wu, W.; Qi, H.; Zhu, Z.; Zhang, Z. Measurement and optimum design of carbon sequestration efficiency of regional forestland use process. Trans. Chin. Soc. Agric. Eng. 2013, 29, 251–261. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Yu, D.; Zhou, L.; Zhou, W.; Guo, Y.; Wang, X.; Dai, L. Analysis of factors that influence forest vegetation carbon storage by using the VAR model: A case study in Shanxi Province. Acta Ecol. Sin. 2015, 35, 196–203. [Google Scholar] [CrossRef]
- Garten, C. Soil Carbon Storage beneath Recently Established Tree Plantations in Tennessee and South Carolina, USA. Biomass Bioenergy 2002, 23, 93–102. [Google Scholar] [CrossRef]
- Fu, W.; Li, L.; Luo, M.; Chen, J.; Wang, F. Spatial spillover effects and influencing factors of forest carbon sink in China from provincial perspective. Acta Ecol. Sin. 2023, 43, 4074–4085. [Google Scholar] [CrossRef]
- Braga, C.I.; Petrea, S.; Radu, G.R.; Cucu, A.B.; Serban, T.; Zaharia, A.; Leca, S. Carbon Sequestration Dynamics in Peri-Urban Forests: Comparing Secondary Succession and Mature Stands under Varied Forest Management Practices. Land 2024, 13, 492. [Google Scholar] [CrossRef]
- Pinard, M.A.; Cropper, W.P. Simulated Effects of Logging on Carbon Storage in Dipterocarp Forest. J. Appl. Ecol. 2000, 37, 267–283. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R. The Biggest Myth in Spatial Econometrics. Econometrics 2014, 2, 217–249. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Zhen, Z. Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model. Chin. J. Appl. Ecol. 2014, 25, 2779–2786. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, Y.; Yang, R.; Zha, L.-S.; Lin, Z.-Q.; Shang, S.-H. Spatial Trade-Offs and Synergies between Ecosystem Services in Guangdong Province, China. Land 2023, 13, 32. [Google Scholar] [CrossRef]
- Li, T.; Li, M.-Y.; Tian, L. Dynamics of Carbon Storage and Its Drivers in Guangdong Province from 1979 to 2012. Forests 2021, 12, 1482. [Google Scholar] [CrossRef]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower Land-Use Emissions Responsible for Increased Net Land Carbon Sink during the Slow Warming Period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef]
- Ma, X.; Xiong, K.; Zhang, Y.; Lai, J.; Zhang, S.; Ji, C. Research Progresses and Prospects of Carbon Storage in Forest Ecosystems. J. Northwest For. Univ. 2019, 34, 62–72. [Google Scholar] [CrossRef]
Variable | Symbol | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|
Explained variables | Forest carbon storage | - | 30.8667 | 30.3953 | 2.0252 | 116.6280 |
Explanatory variables | Precipitation | Pre | 1828 | 333.9 | 1078.4 | 2743.3 |
Temperature | Tem | 22.9298 | 0.8953 | 20.0818 | 24.6513 | |
Gross regional product | Grp | 42.8782 | 60.2863 | 5.2428 | 306.6485 | |
Labor | Lab | 11.0765 | 8.2672 | 0.66 | 36.66 | |
Afforestation | Aff | 6.9603 | 6.7429 | 0.211 | 32.543 | |
Forest management | Mgt | 5.0340 | 5.3435 | 0.012 | 27.339 | |
Harvesting | Harv | 39.6981 | 44.6671 | 0.0027 | 221.3387 |
Index | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|---|---|
Moran’s I | 0.260 | 0.255 | 0.247 | 0.239 | 0.240 | 0.243 | 0.244 | 0.242 | 0.242 | 0.242 |
Z value | 2.59 | 2.55 | 2.49 | 2.42 | 2.43 | 2.45 | 2.46 | 2.44 | 2.44 | 2.44 |
p value | 0.005 | 0.005 | 0.007 | 0.008 | 0.008 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 |
Variable | Coefficient |
---|---|
Pre | −4.3809 (−1.4318) |
Tem | −7.6485 *** (−5.4835) |
Grp | −0.0399 ** (−2.1911) |
Lab | 1.5673 *** (9.7427) |
Aff | 1.0739 *** (5.5437) |
Mgt | −0.0399 (−0.2031) |
Harv | 0.1495 *** (5.0853) |
Intercept | 185.3934 *** (5.5461) |
R2 | 0.7834 |
Testing Method | Coefficient |
---|---|
LM test (no spatial lag) | 7.7058 *** |
Robust test (no spatial lag) | 2.8207 * |
LM test (no spatial error) | 30.0383 *** |
Robust test (no spatial error) | 25.1533 *** |
Wald test spatial lag | 14.7427 ** |
LR test spatial lag | 16.6606 ** |
Wald test spatial error | 16.0446 ** |
LR test spatial error | 15.8275 ** |
Variable | Model (1) | Model (2) | Model (3) | Model (4) | Model (5) |
---|---|---|---|---|---|
Pre | 2.1216 (1.4968) | 2.2601 (1.4924) | 5.9689 (1.4141) | 0.7631 (0.4462) | 2.6084 (1.5687) |
Tem | 0.4621 (0.5116) | 0.5784 (0.6079) | −17.3415 *** (−12.0314) | 2.1082 ** (2.147) | 0.8906 (0.9127) |
Grp | −0.0301 ** (−1.9819) | −0.033 ** (−2.1773) | −0.0703 *** (−4.8678) | −0.0299 * (−1.865) | −0.0304 ** (−2.0047) |
Lab | 0.1471 *** (2.6986) | 0.1314 ** (2.4908) | 1.0804 *** (8.443) | 0.1172 ** (2.1132) | 0.1516 *** (2.8191) |
Aff | 0.14 ** (2.4206) | 0.1206 ** (2.1189) | 0.7406 *** (5.0451) | 0.1273 ** (2.2088) | 0.1278 ** (2.2683) |
Mgt | 0.0316 (0.6394) | 0.0358 (0.7483) | 0.0739 (0.5008) | 0.0506 (1.0173) | 0.0069 (0.1408) |
Harv | −0.0128 *** (−1.5262) | −0.0132 (−1.5714) | 0.0647 *** (2.8483) | −0.0086 (−0.9493) | −0.011 (−1.2894) |
W × Pre | - | - | 16.4867 ** (2.4289) | 0.6988 (0.3506) | −1.001 (−0.3815) |
W × Tem | - | - | −2.5154 *** (−4.4466) | −1.3171 (−1.0834) | −4.8733 ** (−2.4311) |
W × Grp | - | - | 0.0588 (1.159) | 0.1258 *** (3.5754) | 0.013 (0.27) |
W × Lab | - | - | 0.724 * (1.6702) | −0.0404 (−0.2844) | 0.2561 (1.6383) |
W × Aff | - | - | 1.1655 ** (2.367) | 0.2253 (1.4882) | 0.386 ** (2.0824) |
W × Mgt | - | - | −0.6902 (−1.6205) | −0.0966 (−0.6747) | −0.1807 (−1.2121) |
W × Harv | - | - | 0.0071 (0.0893) | −0.0028 (−0.0868) | −0.0146 (−0.4452) |
ρ | 0.2851 *** (2.9319) | - | −0.123 (−1.2249) | 0.468 *** (5.839) | 0.2394 ** (2.4054) |
λ | - | 0.42 *** (4.8518) | - | - | - |
R2 | 0.9915 | 0.9914 | 0.8944 | 0.9908 | 0.9922 |
Variable | Direct | Indirect | Total |
---|---|---|---|
Pre | 2.5656 (1.5624) | −0.4856 (−0.1544) | 2.08 (0.7064) |
Tem | 0.7026 (0.706) | −6.0466 ** (−2.4713) | −5.344 ** (−2.1591) |
Grp | −0.0296 * (−1.9994) | 0.008 (0.1308) | −0.0216 ** (−0.3454) |
Lab | 0.1665 *** (2.9724) | 0.3762 * (1.8397) | 0.5427 ** (2.3765) |
Aff | 0.1496 ** (2.5828) | 0.542 ** (2.204) | 0.6916 ** (2.6334) |
Mgt | −0.0032 (−0.0608) | −0.2385 (−1.1989) | −0.2417 (−1.0847) |
Harv | −0.0122 (−1.4751) | −0.0235 (−0.5563) | −0.0356 (−0.8411) |
Variable | Direct | Indirect | Total |
---|---|---|---|
Pre | 2.3391 (1.3242) | 2.0646 (0.7321) | 4.4037 * (1.8355) |
Tem | −0.488 (−0.3783) | 0.8406 (0.2983) | 0.3526 (0.1589) |
Grp | 0.0301 * (−1.9598) | 0.0071 (0.2305) | −0.023 (−0.6797) |
Lab | 0.1836 * (3.5093) | 0.1726 (1.254) | 0.3562 ** (2.2553) |
Aff | 0.1496 ** (2.7139) | 0.5409 *** (4.2411) | 0.69 *** (4.6339) |
Mgt | −0.0011 (−0.0218) | −0.2989 ** (−2.2593) | −0.3 * (−1.8936) |
Harv | −0.011 ** (−1.3454) | −0.002 (−0.1092) | −0.013 (−0.6728) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Ma, L.; Xie, J.; Tian, T.; Yu, Y. Spillover Effects and Influencing Factors of Forest Carbon Storage in the Context of Regional Coordinated Development: A Case Study in Guangdong Province. Sustainability 2025, 17, 2499. https://doi.org/10.3390/su17062499
Sun J, Ma L, Xie J, Tian T, Yu Y. Spillover Effects and Influencing Factors of Forest Carbon Storage in the Context of Regional Coordinated Development: A Case Study in Guangdong Province. Sustainability. 2025; 17(6):2499. https://doi.org/10.3390/su17062499
Chicago/Turabian StyleSun, Jiaxin, Liyu Ma, Jiaqi Xie, Tongxi Tian, and Yina Yu. 2025. "Spillover Effects and Influencing Factors of Forest Carbon Storage in the Context of Regional Coordinated Development: A Case Study in Guangdong Province" Sustainability 17, no. 6: 2499. https://doi.org/10.3390/su17062499
APA StyleSun, J., Ma, L., Xie, J., Tian, T., & Yu, Y. (2025). Spillover Effects and Influencing Factors of Forest Carbon Storage in the Context of Regional Coordinated Development: A Case Study in Guangdong Province. Sustainability, 17(6), 2499. https://doi.org/10.3390/su17062499