Modeling of Water Inflow Zones in a Swedish Open-Pit Mine with ModelMuse and MODFLOW
Abstract
:1. Introduction
2. Study Area
2.1. Geographical Location and Short History
2.2. Geological Setting
2.3. Hydrological Setting
3. Research Workflow
3.1. Conceptual Model
Governing Equation
3.2. Model Design
3.2.1. Elevation Data and Grid System
3.2.2. Boundary Conditions
3.2.3. Hydrogeological Unit
3.2.4. Monitoring Zone
4. Results and Discussion
4.1. Calibration and Sensitivity Analysis
4.2. Evaluation of Different Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMSL | above mean sea level |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
BC | boundary condition |
DEM | digital elevation model |
IOCG | iron oxide–copper–gold |
GDEM | Global Digital Elevation Model |
NSI | north shear inflow |
PAF | potentially acid-forming |
RMS | root mean square |
WHWI | western hanging wall inflow |
WRSF | waste rock storage facility |
TMF | tailing mining facility |
References
- Wu, Q.; Dong, S.; Li, B.; Zhou, W. Mine water inrush. In Encyclopedia of Sustainability Science and Technology; Springer: New York City, NY, USA, 2018. [Google Scholar]
- Skousen, J.G.; Ziemkiewicz, P.F.; McDonald, L.M. Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Ind. Soc. 2019, 6, 241–249. [Google Scholar] [CrossRef]
- Sakellari, C.; Roumpos, C.; Louloudis, G.; Vasileiou, E. A Review about the Sustainability of Pit Lakes as a Rehabilitation Factor after Mine Closure. Mater. Proc. 2021, 5, 52. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Atencio, E. In-Pit Disposal of Mine Tailings for a Sustainable Mine Closure: A Responsible Alternative to Develop Long-Term Green Mining Solutions. Sustainability 2023, 15, 6481. [Google Scholar] [CrossRef]
- Lemos, M.; Valente, T.; Reis, P.M.; Fonseca, R.; Delbem, I.; Ventura, J.; Magalhães, M. Mineralogical and Geochemical Characterization of Gold Mining Tailings and Their Potential to Generate Acid Mine Drainage (Minas Gerais, Brazil). Minerals 2021, 11, 39. [Google Scholar] [CrossRef]
- Atkinson, L.; Keeping, P.; Wright, J.; Liu, H. The challenges of dewatering at the Victor Diamond Mine in northern Ontario, Canada. Mine Water Environ. 2010, 29, 99–107. [Google Scholar] [CrossRef]
- Rapantova, N.; Grmela, A.; Vojtek, D.; Halir, J.; Michalek, B. Ground water flow modelling applications in mining hydrogeology. Mine Water Environ. 2007, 26, 264–270. [Google Scholar] [CrossRef]
- Surinaidu, L.; Gurunadha Rao, V.; Srinivasa Rao, N.; Srinu, S. Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India. Water Resour. Ind. 2014, 7–8, 49–65. [Google Scholar] [CrossRef]
- Bozic, M.; Nikolic, G.; Milosev, D.; Rudic, Z.; Tomovic, S. Assessment of groundwater management using modflow and benefit–cost analysis. Irrig. Drain. 2014, 63, 550–557. [Google Scholar] [CrossRef]
- Myers, T. Groundwater management and coal bed methane development in the Powder River Basin of Montana. J. Hydrol. 2009, 368, 178–193. [Google Scholar] [CrossRef]
- Brown, K.; Trott, S. Groundwater flow models in open pit mining: Can we do better? Mine Water Environ. 2014, 33, 187–190. [Google Scholar] [CrossRef]
- Leaf, A.T.; Fienen, M.N. Modflow-setup: Robust automation of groundwater model construction. Front. Earth Sci. 2022, 10, 903965. [Google Scholar] [CrossRef]
- Winston, R.B. ModelMuse: A Graphical User Interface for MODFLOW-2005 and PHAST; US Geological Survey: Reston, VA, USA, 2009.
- McDonald, M.G.; Harbaugh, A.W. The history of MODFLOW. Ground Water 2003, 41, 280. [Google Scholar] [CrossRef] [PubMed]
- Malmqvist, D.; Parasnis, D.S. Aitik: Geophysical documentation of a third-generation copper deposit in north Sweden. Geoexploration 1972, 10, 149–200. [Google Scholar] [CrossRef]
- Zweifel, H. Aitik—geological documentation of a disseminated copper deposit. Sver. Geol. Unders. C 1976, 720, 79. [Google Scholar]
- Wanhainen, C.; Billström, K.; Martinsson, O.; Stein, H.; Nordin, R. 160 Ma of magmatic/hydrothermal and metamorphic activity in the Gällivare area: Re–Os dating of molybdenite and U–Pb dating of titanite from the Aitik Cu–Au–Ag deposit, northern Sweden. Miner. Depos. 2005, 40, 435–447. [Google Scholar] [CrossRef]
- Öhlander, B.; Mellqvist, C.; Skiöld, T. Sm–Nd isotope evidence of a collisional event in the Precambrian of northern Sweden. Precambrian Res. 1999, 93, 105–117. [Google Scholar] [CrossRef]
- Wanhainen, C.; Billström, K.; Martinsson, O. Age, petrology and geochemistry of the porphyritic Aitik intrusion, and its relation to the disseminated Aitik Cu-Au-Ag deposit, northern Sweden. Gff 2006, 128, 273–286. [Google Scholar] [CrossRef]
- Witschard, F. Bedrock Berggrundskartan 28K Gällivare. 1:50,000. Geol. Surv. Swed. Ai 1996, 98–101. [Google Scholar]
- Wanhainen, C.; Broman, C.; Martinsson, O.; Magnor, B. Modification of a Palaeoproterozoic porphyry-like system: Integration of structural, geochemical, petrographic, and fluid inclusion data from the Aitik Cu–Au–Ag deposit, northern Sweden. Ore Geol. Rev. 2012, 48, 306–331. [Google Scholar] [CrossRef]
- Drake, B. Aitik copper mine. Geologi 1992, 2, 19–23. [Google Scholar]
- Martin, A.; Fraser, C.; Dunbar, D.; Mueller, S.; Eriksson, N. Pit Lake Modelling at the Aitik Mine(Northern Sweden): Importance of Site-Specific Model Inputs and Implications for Closure Planning. Mine Water Circ. Econ. 2017, 1, 154–160. [Google Scholar]
- Fraile del Río, J. Hydrogeological Model of Aitik Mine Using Leapforg Geo Software. Master’s Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 2015. [Google Scholar]
- Åkerman, H.J.; Johansson, M. Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr. Periglac. Process. 2008, 19, 279–292. [Google Scholar] [CrossRef]
- Johansson, M.; Akerman, H.; Jonasson, C.; Christensen, T.R.; Callaghan, T.V. Increasing permafrost temperatures in subarctic Sweden. In Ninth International Conference on Permafrost; Institute of Northern Engineering, University of Alaska Fairbanks: Fairbanks, Alaska, 2008; Volume 1, pp. 851–856. [Google Scholar]
- Hoth, N.; Hagedorn, D.; Simon, A. Aitik Water Project-Project Report TU Freiberg. Projectnumber 031002084, 2018. [Google Scholar]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Eriksson, N.; Mueller, S.; Forsgren, A.; Sjöblom, A.; Martin, A.; OKane, M.; Eary, L.; Aronsson, A. Developing closure plans using performance based closure objectives: Aitik Mine (Northern Sweden). Mine Water Circ. Econ. 2017, 2, 822–829. [Google Scholar]
- Lindvall, M. Strategies for Remediation of Very Large Deposits of Mine Waste: The Aitik mine, Northern Sweden. Ph.D. Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 2005. [Google Scholar]
- Worthington, S.R.; Davies, G.J.; Alexander, E.C. Enhancement of bedrock permeability by weathering. Earth-Sci. Rev. 2016, 160, 188–202. [Google Scholar] [CrossRef]
- Hussain, Y.; Campos, J.E.G.; Borges, W.R.; Uagoda, R.E.S.; Hamza, O.; Havenith, H.B. Hydrogeophysical Characterization of Fractured Aquifers for Groundwater Exploration in the Federal District of Brazil. Appl. Sci. 2022, 12, 2509. [Google Scholar] [CrossRef]
- Istok, J.D. Groundwater Modeling by the Finite Element Method; Wiley Online Library: Hoboken, NJ, USA, 1989; Volume 13. [Google Scholar]
- Şen, Z. Practical and Applied Hydrogeology; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Hughes, J.D.; White, J.T. Use of general purpose graphics processing units with MODFLOW. Groundwater 2013, 51, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.; Simmons, C.T.; Cook, P.G.; Therrien, R. Modeling surface water-groundwater interaction with MODFLOW: Some considerations. Groundwater 2010, 48, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Harbaugh, A.W. A Computer Program for Calculating Subregional Water Budgets Using Results from the US Geological Survey Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; US Geological Survey: Reston, VA, USA, 1990; Volume 90.
- Banta, E.R. ModelMate—A graphical user interface for model analysis. In US Geological Survey Techniques and Methods; U.S. Geological Survey: Reston, VA, USA, 2011; 31p. [Google Scholar]
Research Area | 75 km2 |
---|---|
Open-pit length | 3 km |
Open-pit width | 930 m |
Open-pit depth | 450 m |
Average annual precipitation | 600 mm [23] |
Pit pumping rate | 10,000–15,000 m3/day |
Scenario | Fracture Zone | Thickness (m) |
---|---|---|
1 | no | - |
2 | yes | 50 |
3 | yes | 100 |
Hydrogeological Unit | Zone (Parameter Number) | [m/s] | |
---|---|---|---|
Before | After | ||
Distal tailings | 1 | ||
Environmental waste rocks 1 | 2 | ||
Environmental waste rocks 2 | 3 | ||
Ground moraine | 4 | ||
Moraine 1 | 5 | ||
Moraine 2 | 6 | ||
PAF waste rocks | 7 | ||
Peat | 8 | ||
Proximal tailings | 9 | ||
Rife waste rocks | 10 | ||
Sandy moraine | 11 | ||
Sub-moraine 1 | 12 | ||
Sub-moraine 2 | 13 | ||
Subtailings | 14 | ||
Weathered bedrock | 15 | ||
Unweathered bedrock | 16 |
Input in m3day−1 | Output in m3day−1 | ||
---|---|---|---|
Scenario 1 | |||
Constant head | 3593 | Constant head | 5543 |
River and Lake | 13,302 | Drains | 10,153 |
Recharge | 10,557 | River and Lake | 11,739 |
Total | 27,452 | Total | 27,436 |
Total In - Total Out | 16 | ||
Discrepancy | 0.06 | ||
Scenario 2 | |||
Constant head | 3673 | Constant head | 5441 |
River and Lake | 13,472 | Drains | 12,073 |
Recharge | 10,557 | River and Lake | 10,188 |
Total | 27,702 | Total | 27,671 |
Total In - Total Out | 31 | ||
Discrepancy | 0.11 | ||
Scenario 3 | |||
Constant head | 3669 | Constant head | 5432 |
River and Lake | 13,498 | Drains | 12,393 |
Recharge | 10,557 | River and Lake | 9899 |
Total | 27,724 | Total | 27,689 |
Total In - Total Out | 35 | ||
Discrepancy | 0.13 |
Scenario | Monitoring Zone | Input in m3day−1 | Output in m3day−1 | ||
---|---|---|---|---|---|
1 | Upper NSI | Lateral flow | 251 | Vertical flow | 63 |
Recharge | 125 | Lateral flow | 107 | ||
Toward pit hole | 206 | ||||
Lower NSI | Vertical flow | 63 | Lateral flow | 123 | |
Lateral flow | 613 | Toward pit hole | 553 | ||
Upper WHWI | Lateral flow | 364 | Vertical flow | 93 | |
Recharge | 151 | Lateral flow | 74 | ||
Toward pit hole | 348 | ||||
Lower WHWI | Vertical flow | 93 | Lateral flow | 308 | |
Lateral flow | 423 | Toward pit hole | 208 | ||
2 | Upper NSI | Lateral flow | 265 | Vertical flow | 257 |
Recharge | 125 | Lateral flow | 28 | ||
Toward pit hole | 105 | ||||
Lower NSI | Vertical flow | 257 | Lateral flow | 111 | |
Lateral flow | 1231 | Toward pit hole | 1377 | ||
Upper WHWI | Lateral flow | 499 | Vertical flow | 413 | |
Recharge | 151 | Lateral flow | 36 | ||
Toward pit hole | 201 | ||||
Lower WHWI | Vertical flow | 413 | Lateral flow | 503 | |
Lateral flow | 523 | Toward pit hole | 433 | ||
3 | Upper NSI | Lateral flow | 274 | Vertical flow | 289 |
Recharge | 125 | Lateral flow | 39 | ||
Toward pit hole | 71 | ||||
Lower NSI | Vertical flow | 289 | Lateral flow | 176 | |
Lateral flow | 1429 | Toward pit hole | 1542 | ||
Upper WHWI | Lateral flow | 512 | Vertical flow | 496 | |
Recharge | 151 | Lateral flow | 35 | ||
Toward pit hole | 132 | ||||
Lower WHWI | Vertical flow | 496 | Lateral flow | 579 | |
Lateral flow | 612 | Toward pit hole | 529 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vianney, J.M.; Hoth, N.; Moro, K.; Wardani, D.N.W.; Drebenstedt, C. Modeling of Water Inflow Zones in a Swedish Open-Pit Mine with ModelMuse and MODFLOW. Sustainability 2025, 17, 2466. https://doi.org/10.3390/su17062466
Vianney JM, Hoth N, Moro K, Wardani DNW, Drebenstedt C. Modeling of Water Inflow Zones in a Swedish Open-Pit Mine with ModelMuse and MODFLOW. Sustainability. 2025; 17(6):2466. https://doi.org/10.3390/su17062466
Chicago/Turabian StyleVianney, Johanes Maria, Nils Hoth, Kofi Moro, Donata Nariswari Wahyu Wardani, and Carsten Drebenstedt. 2025. "Modeling of Water Inflow Zones in a Swedish Open-Pit Mine with ModelMuse and MODFLOW" Sustainability 17, no. 6: 2466. https://doi.org/10.3390/su17062466
APA StyleVianney, J. M., Hoth, N., Moro, K., Wardani, D. N. W., & Drebenstedt, C. (2025). Modeling of Water Inflow Zones in a Swedish Open-Pit Mine with ModelMuse and MODFLOW. Sustainability, 17(6), 2466. https://doi.org/10.3390/su17062466