Selection of Sol-Gel Coatings by the Analytic Hierarchy Process and Life Cycle Assessment for Concentrated Solar Power Plants
Abstract
:1. Introduction
1.1. CSP Plant Protective Coatings
1.2. Background
1.3. Novelty and Objectives of the Research
2. Materials and Methods
2.1. Analytic Hierarchy Process
2.2. Life Cycle Assessment
2.2.1. LCA Approach and Functional Unit
2.2.2. Impact Categories
3. Results
3.1. Results of Life Cycle Assessment
3.1.1. Results According to Midpoint Approach
3.1.2. Results According Endpoint Approach
3.2. Multidimensional Hierarchical Analysis
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanmohammadi, S.; Genceli, H.; Pakseresht, A.; Bellotti, D. Optimal Design of a Solar-Driven Kalina System for Combined Power and Desalination Purposes. Sol. Energy 2024, 268, 112277. [Google Scholar] [CrossRef]
- Obalalu, A.M.; Memon, M.A.; Olayemi, O.A.; Olilima, J.; Fenta, A. Enhancing Heat Transfer in Solar-Powered Ships: A Study on Hybrid Nanofluids with Carbon Nanotubes and Their Application in Parabolic Trough Solar Collectors with Electromagnetic Controls. Sci. Rep. 2023, 13, 9476. [Google Scholar] [CrossRef] [PubMed]
- Pineda, F.; Rosenkranz, A.; Pérez, F.J. Perspectives on Solar Salt-Based Nanofluids Used in Concentrated Solar Power Plants. Sol. RRL 2024, 8, 2400110. [Google Scholar] [CrossRef]
- Saddouri, I.; Rejeb, O.; Semmar, D.; Jemni, A. A Comparative Analysis of Parabolic Trough Collector (PTC) Using a Hybrid Nanofluid. J. Therm. Anal. Calorim. 2023, 148, 9701–9721. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, H.; Kwan, T.H.; Wang, Q.; Pei, G. Thermal Performance Analysis of Eccentric Double-Selective-Coated Parabolic Trough Receivers with Flat Upper Surface. Renew. Energy 2024, 220, 119613. [Google Scholar] [CrossRef]
- Golzar, A.; Aghaei, A.; Mohsenimonfared, H.; Joshaghani, A.H. Numerical Simulation of a Parabolic Through Solar Collector with a Novel Geometric Design Equipped with an Elliptical Absorber Tube Under the Influence of Magnetic Field. Arab. J. Sci. Eng. 2024, 1–21. [Google Scholar] [CrossRef]
- Castro-Quijada, M.; Jullian, D.; Walczak, M.; Pineda, F.; Videla, Á. Quaternary Nitrate and Chloride Molten Salts for the next Concentrating Solar Power Plants: Corrosion Considerations for the Use of AISI 304L Steel. Sol. Energy Mater. Sol. Cells 2024, 274, 112971. [Google Scholar] [CrossRef]
- Starke, A.R.; Cardemil, J.M.; Bonini, V.R.B.; Escobar, R.; Castro-Quijada, M.; Videla, Á. Assessing the Performance of Novel Molten Salt Mixtures on CSP Applications. Appl. Energy 2024, 359, 122689. [Google Scholar] [CrossRef]
- Abir, F.M.; Altwarah, Q.; Rana, M.T.; Shin, D. Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review. Materials 2024, 17, 955. [Google Scholar] [CrossRef]
- Carbajales, R.; Sobrino, C.; Alvaredo, P. Multi-Principal Element Alloys for Concentrating Solar Power Based on Molten Salt. Sol. Energy Mater. Sol. Cells 2024, 271, 112861. [Google Scholar] [CrossRef]
- Yang, P.; Deng, Z.; Chen, B.; Wang, Y. High-Temperature Dynamic Corrosion Mechanisms of Austenitic Stainless and Carbon Steels in Nitrates for Concentrating Solar Power. Sol. Energy Mater. Sol. Cells 2024, 266, 112690. [Google Scholar] [CrossRef]
- Pantoja-Pertegal, J.L.; Díaz-Parralejo, A.; Macías-García, A.; Sánchez-González, J.; Cuerda-Correa, E.M. Design, Preparation, and Characterization of Yttria-Stabilized Zirconia (YSZ) Coatings Obtained by Electrophoretic Deposition (EPD). Ceram. Int. 2021, 47, 13312–13321. [Google Scholar] [CrossRef]
- Won Kim, D.; Kim, E.-J.; Lee, C.-L.; Moon, K.-S. Spontaneous Adsorption Effect of Graphitic Carbon Nitride Nanosheets to Improve Sintering Behavior of Yttria-Stabilized Zirconia Microbeads. Appl. Surf. Sci. 2024, 654, 159447. [Google Scholar] [CrossRef]
- Papadopoulos, N.D.; Vourna, P.; Milidonis, K.; Eliades, A.; Falaras, P. Fostering Wider Application of Anti-Soiling Strategies in Existing Solar Power Plants: A Comparative Study of Novel Quaternarized Silica Hybrids with Commercial Self-Cleaning Coatings. Mater. Chem. Phys. 2024, 315, 129046. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; Batuecas, E.; Macías-García, A.; Mayo, C.; Díaz, R.; Pérez, F.J. Corrosion Resistance of Protective Coatings against Molten Nitrate Salts for Thermal Energy Storage and Their Environmental Impact in CSP Technology. Sol. Energy 2018, 176, 688–697. [Google Scholar] [CrossRef]
- Cao, F.; Kraemer, D.; Tang, L.; Li, Y.; Litvinchuk, A.P.; Bao, J.; Chen, G.; Ren, Z. A High-Performance Spectrally-Selective Solar Absorber Based on a Yttria-Stabilized Zirconia Cermet with High-Temperature Stability. Energy Environ. Sci. 2015, 8, 3040–3048. [Google Scholar] [CrossRef]
- Dosta, S.; Betancor, L.; Barreneche, C. Overview of Surface Engineering Technology to Improve the Energy Efficiency in Concentrated Solar Power (CSP) Plants. Sol. Energy Mater. Sol. Cells 2024, 277, 113090. [Google Scholar] [CrossRef]
- Encinas-Sánchez, V.; Macías-García, A.; de Miguel, M.T.; Pérez, F.J.; Rodríguez-Rego, J.M. Electrochemical Impedance Analysis for Corrosion Rate Monitoring of Sol–Gel Protective Coatings in Contact with Nitrate Molten Salts for CSP Applications. Materials 2023, 16, 546. [Google Scholar] [CrossRef]
- Pérez, F.J.; Encinas-Sánchez, V.; Lasanta, M.I.; de Miguel, M.T.; García-Martín, G. Dip-Coated ZrO2-Y2O3 Coatings Tested in Molten Salts for CSP Applications. In Proceedings of the 22nd SolarPACES 2016 International Conference, Abu Dhabi, UAE, 11–14 October 2017; p. 120002. [Google Scholar]
- Gamarra, A.R.; Banacloche, S.; Lechon, Y.; del Río, P. Assessing the Sustainability Impacts of Concentrated Solar Power Deployment in Europe in the Context of Global Value Chains. Renew. Sustain. Energy Rev. 2023, 171, 113004. [Google Scholar] [CrossRef]
- Roper, R.; Harkema, M.; Sabharwall, P.; Riddle, C.; Chisholm, B.; Day, B.; Marotta, P. Molten Salt for Advanced Energy Applications: A Review. Ann. Nucl. Energy 2022, 169, 108924. [Google Scholar] [CrossRef]
- Soleimani Dorcheh, A.; Galetz, M.C. Slurry Aluminizing: A Solution for Molten Nitrate Salt Corrosion in Concentrated Solar Power Plants. Sol. Energy Mater. Sol. Cells 2016, 146, 8–15. [Google Scholar] [CrossRef]
- Gomes, A.; Paiva Luís, T.; Figueira, I.; Diamantino, T.C. Corrosion Behavior of Stainless Steel Alloys in Molten Solar Salt. In Proceedings of the EuroSun 2016 Conference, Palma de Mallorca, Spain, 11–14 October 2016; International Solar Energy Society: Freiburg, Germany, 2016; pp. 1–8. [Google Scholar]
- Gomez-Vidal, J.C.; Morton, E. Castable Cements to Prevent Corrosion of Metals in Molten Salts. Sol. Energy Mater. Sol. Cells 2016, 153, 44–51. [Google Scholar] [CrossRef]
- Audigié, P.; Bizien, N.; Baráibar, I.; Rodríguez, S.; Pastor, A.; Hernández, M.; Agüero, A. Aluminide Slurry Coatings for Protection of Ferritic Steel in Molten Nitrate Corrosion for Concentrated Solar Power Technology. In Proceedings of the 22nd SolarPACES 2016 International Conference, Abu Dhabi, UAE, 11–14 October 2016; p. 70002. [Google Scholar]
- Tsuda, K.; Murakami, Y.; Torres, J.F.; Coventry, J. Development of High Absorption, High Durability Coatings for Solar Receivers in CSP Plants. In Proceedings of the SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems, Santiago, Chile, 26–29 September 2017; p. 40039. [Google Scholar]
- Fähsing, D.; Oskay, C.; Meißner, T.M.; Galetz, M.C. Corrosion Testing of Diffusion-Coated Steel in Molten Salt for Concentrated Solar Power Tower Systems. Surf. Coat. Technol. 2018, 354, 46–55. [Google Scholar] [CrossRef]
- Fernández, A.G.; Cabeza, L.F. Anodic Protection Assessment Using Alumina-Forming Alloys in Chloride Molten Salt for CSP Plants. Coatings 2020, 10, 138. [Google Scholar] [CrossRef]
- Luo, J.; Liu, H.H.; Li, N.; Zhao, L.J.; Cui, X.Y.; Xiong, T.Y. Robust Corrosion Performance of Cold Sprayed Aluminide Coating in Ternary Molten Carbonate Salt for Concentrated Solar Power Plants. Sol. Energy Mater. Sol. Cells 2022, 237, 111573. [Google Scholar] [CrossRef]
- Siripongsakul, T.; Kettrakul, P.; Kanjanaprayut, N.; Promdirek, P. Effect of Si Addition in NiCrAl Coating on Corrosion in Molten Nitrate Salt. Metals 2024, 14, 902. [Google Scholar] [CrossRef]
- Mihelčič, M.; Francetič, V.; Kovač, J.; Šurca Vuk, A.; Orel, B.; Kunič, R.; Peros, D. Novel Sol–Gel Based Selective Coatings: From Coil Absorber Coating to High Power Coating. Sol. Energy Mater. Sol. Cells 2015, 140, 232–248. [Google Scholar] [CrossRef]
- Joly, M.; Bouvard, O.; Gascou, T.; Antonetti, Y.; Python, M.; González Lazo, M.A.; Loesch, P.; Hessler-Wyser, A.; Schüler, A. Optical and Structural Analysis of Sol–Gel Derived Cu–Co–Mn–Si Oxides for Black Selective Solar Nanocomposite Multilayered Coatings. Sol. Energy Mater. Sol. Cells 2015, 143, 573–580. [Google Scholar] [CrossRef]
- Rossi, G.; D’Angelo, A.; Diletto, C.; Esposito, S.; Guglielmo, A.; Lanchi, M. New Spectrally Selective Coatings for CSP Linear Receivers Operating in Air at High Temperature. Appl. Res. 2024, 3, e202200117. [Google Scholar] [CrossRef]
- Nishath Tharanum, S.; Parveez Ahmed, H.M.; Shabanabanu Beena, P.; Jambaladinni, S.; Prasanna, B.M.; Santhosh Kumar, M.V.; Jagadeesh, M.R. A Novel Approach for the Synthesis of V2O5 Thin Films Coating by Sol–Gel Technique for Anti-Corrosive Applications. Iran. J. Sci. 2025, 1–11. [Google Scholar] [CrossRef]
- Sibin, K.P.; Pitchumani, R. Multiscale Textured Solar Absorber Coatings for Next-Generation Concentrating Solar Power. Renew. Sustain. Energy Rev. 2025, 207, 114959. [Google Scholar] [CrossRef]
- Asl, R.M.; Yousefpour, M.; Shanaghi, A. The Investigation of Corrosion Behavior of ZrO2–Al2O3-Inhibitor/AA2024 Nanocomposite Thin Film Using Sol-Gel and AHP-TOPSIS Method. Mater. Chem. Phys. 2021, 262, 124220. [Google Scholar] [CrossRef]
- Lagopati, N.; Trachanas, G.P.; Doukas, H. Multi-Criteria Decision-Making Approach for Pre-Synthesis Selection of the Optimal Physicochemical Properties of TiO2 Photocatalytic Nanoparticles for Biomedical and Environmental Applications. Molecules 2024, 29, 3726. [Google Scholar] [CrossRef] [PubMed]
- Botejara-Antúnez, M.; González-Domínguez, J.; Rebollo-Castillo, F.J.; García-Sanz-Calcedo, J. Life Cycle and Environmental Impact Assessment of Heat Transfer Fluids in Parabolic Trough CSP Plants. Sustain. Energy Technol. Assess. 2025, 74, 104188. [Google Scholar] [CrossRef]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Borgaonkar, A.; McNamara, G. Environmental Impact Assessment of Anti-Corrosion Coating Life Cycle Processes for Marine Applications. Sustainability 2024, 16, 5627. [Google Scholar] [CrossRef]
- Botejara-Antúnez, M.; González-Domínguez, J.; García-Sanz-Calcedo, J. Comparative Analysis of Flat Roof Systems Using Life Cycle Assessment Methodology: Application to Healthcare Buildings. Case Stud. Constr. Mater. 2022, 17, e01212. [Google Scholar] [CrossRef]
- Kelly, P.M.; Francis Rose, L.R. The Martensitic Transformation in Ceramics—Its Role in Transformation Toughening. Prog. Mater. Sci. 2002, 47, 463–557. [Google Scholar] [CrossRef]
- Zarinejad, M.; White, T.; Tong, Y.; Rimaz, S. Martensitic Transformation Temperatures of Ceramics. Adv. Eng. Mater. 2022, 24, 2200606. [Google Scholar] [CrossRef]
- Díaz-Parralejo, A.; Díaz-Díez, M.Á.; Sánchez-González, J.; Macías-García, A.; Carrasco-Amador, J.P. Mechanical Properties and Thermal Shock in Thin ZrO2–Y2O3–Al2O3 Films Obtained by the Sol-Gel Method. Ceram. Int. 2021, 47, 80–86. [Google Scholar] [CrossRef]
- ISO 12944-2:2017; International Organization for Standarization Paints and Varnishes—Corrosion Protection of Steel Structures by Protective Paint Systems—Part 2: Classification of Environments. International Organization for Standarization: Geneva, Switzerland, 2017.
- Vargas, L.G. An Overview of the Analytic Hierarchy Process and Its Applications. Eur. J. Oper. Res. 1990, 48, 2–8. [Google Scholar] [CrossRef]
- Lipovetsky, S. Understanding the Analytic Hierarchy Process. Technometrics 2021, 63, 278–279. [Google Scholar] [CrossRef]
- Baghaei Oskouei, S.; Frate, G.F.; Christodoulaki, R.; Bayer, Ö.; Akmandor, İ.S.; Desideri, U.; Ferrari, L.; Drosou, V.; Tarı, İ. Solar-Powered Hybrid Energy Storage System with Phase Change Materials. Energy Convers. Manag. 2024, 302, 118117. [Google Scholar] [CrossRef]
- Mohanty, R.P.; Deshmukh, S.G. Use of Analytic Hierarchic Process for Evaluating Sources of Supply. Int. J. Phys. Distrib. Logist. Manag. 1993, 23, 22–28. [Google Scholar] [CrossRef]
- Tavana, M.; Soltanifar, M.; Santos-Arteaga, F.J. Analytical Hierarchy Process: Revolution and Evolution. Ann. Oper. Res. 2023, 326, 879–907. [Google Scholar] [CrossRef]
- Curran, M.A. Life Cycle Assessment: An International Experience. Environ. Prog. 2000, 19, 65–71. [Google Scholar] [CrossRef]
- ISO 14040:2006/Amd1:2021; International Organization for Standardization Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standarization: Geneva, Switzerland, 2021.
- ISO 14044:2006/Amd1:2021; International Organization for Standardization Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standarization: Geneva, Switzerland, 2021.
- PRé Sustainability, B.V. SimaPro 9.6; PRé Sustainability: Amersfoort, The Netherlands, 2024. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Tzeng, G.-H.; Huang, J.-J. Multiple Attribute Decision Making; Chapman and Hall: Londond, UK; CRC: Boca Raton, FL, USA, 2011; ISBN 9781439861585. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; International Series in Operations Research & Management Science; Springer US: Boston, MA, USA, 2012; Volume 175, ISBN 978-1-4614-3596-9. [Google Scholar]
- Çolak, H.E.; Memişoğlu Baykal, T.; Genç, N. Multicriteria Decision and Sensitivity Analysis Support for Optimal Airport Site Locations in Ordu Province, Turkey. Ann. GIS 2023, 29, 441–468. [Google Scholar] [CrossRef]
- Ecoinvent Association. Ecoinvent 3.11; Ecoinvent Association: Zurich, Switzerland, 2024. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Pré Sustainability, B.V. Simapro Database Manual; Pré Sustainability: Amersfoort, The Netherlands, 2020. [Google Scholar]
- Chang, C.-W.; Wu, C.-R.; Lin, C.-T.; Chen, H.-C. An Application of AHP and Sensitivity Analysis for Selecting the Best Slicing Machine. Comput. Ind. Eng. 2007, 52, 296–307. [Google Scholar] [CrossRef]
- Psomas, E.; Dimitrantzou, C.; Vouzas, F. Practical Implications of Cost of Quality: A Systematic Literature Review. Int. J. Product. Perform. Manag. 2022, 71, 3581–3605. [Google Scholar] [CrossRef]
- Ashtiani, M.; Abdollahi Azgomi, M. A Multi-Criteria Decision-Making Formulation of Trust Using Fuzzy Analytic Hierarchy Process. Cogn. Technol. Work 2015, 17, 465–488. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Understanding the Analytic Hierarchy Process. In Practical Decision Making: An Introduction to the Analytic Hierarchy Process (AHP) Using Super Decisions; Springer: Cham, Switzerland, 2017; pp. 7–22. [Google Scholar]
- de F.S.M. Russo, R.; Camanho, R. Criteria in AHP: A Systematic Review of Literature. Procedia Comput. Sci. 2015, 55, 1123–1132. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of Application of Analytic Hierarchy Process (AHP) in Construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Tyagi, S.; Chambers, T.; Yang, K. Enhanced Fuzzy-Analytic Hierarchy Process. Soft Comput. 2018, 22, 4431–4443. [Google Scholar] [CrossRef]
- Farsi, H.; Dizene, R.; Flamant, G.; Notton, G. Multi-Criteria Decision Making Methods for Suitable Site Selection of Concentrating Solar Power Plants. Sustainability 2024, 16, 7673. [Google Scholar] [CrossRef]
- Lin, G.; Zhang, Q.; Zhang, Y.; Shen, C.; Xu, H.; Wang, S. Performance Assessment of Public Transport Networks: An AHP-ANP Approach. Heliyon 2024, 10, e40309. [Google Scholar] [CrossRef]
- Yamada, T.; Okuda, R.; Hirakoso, H.; Kozuka, H. Sol–Gel Preparation of Yttria-Stabilized Zirconia Thin Films and Transfer to Polycarbonate Substrates. J. Sol-Gel Sci. Technol. 2019, 92, 554–561. [Google Scholar] [CrossRef]
- Duan, Y.; Guo, F.; Gardy, J.; Xu, G.; Li, X.; Jiang, X. Life Cycle Assessment of Polysilicon Photovoltaic Modules with Green Recycling Based on the ReCiPe Method. Renew. Energy 2024, 236, 121407. [Google Scholar] [CrossRef]
- Verbitsky, O.; Pushkar, S. Eco-Indicator 99, ReCiPe and ANOVA for Evaluating Building Technologies under LCA Uncertainties. Environ. Eng. Manag. J. 2018, 17, 2549–2559. [Google Scholar] [CrossRef]
- Nazim, M.; Wali Mohammad, C.; Sadiq, M. A Comparison between Fuzzy AHP and Fuzzy TOPSIS Methods to Software Requirements Selection. Alex. Eng. J. 2022, 61, 10851–10870. [Google Scholar] [CrossRef]
- Asadabadi, M.R.; Chang, E.; Saberi, M. Are MCDM Methods Useful? A Critical Review of Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP). Cogent Eng. 2019, 6, 1623153. [Google Scholar] [CrossRef]
- Santos, J.M.R.C.A.; Fernandes, G. Prioritizing Stakeholders in Collaborative Research and Innovation Projects Toward Sustainability. Proj. Manag. J. 2024, 55, 423–440. [Google Scholar] [CrossRef]
- Ksantini, F.; Sdiri, A.; Aydi, A.; Almeida-Ñauñay, A.F.; Achour, H.; Tarquis, A.M. A Comparative Study Based on AHP and Fuzzy Logic Approaches for Landslide Susceptibility Zoning Using a GIS-Based Multi-Criteria Decision Analysis. Euro-Mediterr. J. Environ. Integr. 2024, 1–20. [Google Scholar] [CrossRef]
- Ahmed, F.; Kilic, K. Fuzzy Analytic Hierarchy Process: A Performance Analysis of Various Algorithms. Fuzzy Sets Syst. 2019, 362, 110–128. [Google Scholar] [CrossRef]
- Ghosh, S.; Mandal, M.C.; Ray, A. Investigating the Key Performance Parameters of Green Supply Chain Management for Sustainability in Tea Processing Firms Using Pareto Analysis. J. Inst. Eng. Ser. C 2023, 104, 113–122. [Google Scholar] [CrossRef]
- Turhan Kara, I.; Kiyak, B.; Colak Gunes, N.; Yucel, S. Life Cycle Assessment of Aerogels: A Critical Review. J. Sol-Gel Sci. Technol. 2024, 111, 618–649. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. (Eds.) Life Cycle Assessment; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-56474-6. [Google Scholar]
Sol-Gel Coatings | Cost (EUR) | LCA Score (mPt/mg) | St 1 | Tc 2 (mm) | P 3 (%) |
---|---|---|---|---|---|
3YSZ (3% mol) | 42.25 | 3.97 | 0.00 | 200.00 | 24 |
3YSZ-5A (5% mol) | 40.33 | 4.16 | 1.00 | 190.00 | 30 |
3YSZ-20A (20% mol) | 40.67 | 4.16 | 2.00 | 185.00 | 33 |
Value | Definition | Explanation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective. |
3 | Moderate importance of one over another | Experience and judgement slightly favor one activity over another. |
5 | Essential or strong importance | Experience and judgement strongly favor one activity over another. |
7 | Very strong importance | An activity is strongly favored, and its dominance is demonstrated in practice. |
9 | Extreme importance | The evidence favoring one activity over another is of the highest possible order of affirmation. |
2, 4, 6, 8 | Intermediate values between the two adjacent judgments | When compromise is needed. |
Reciprocals | If activity i has one of the above numbers assigned to it when compared with activity j, then j has the reciprocal value when compared with i. |
Impact Categories | Acronym | Units | 3 YSZ (3% mol) | 3 YSZ-5A (5% mol) | 3 YSZ-20A (20% mol) |
---|---|---|---|---|---|
Global warming | * GWT | kg CO2 eq | 7.5·10−2 | 7.8·10−2 | 7.8·10−2 |
Stratospheric ozone depletion | SODP | kg CFC11 eq | 4.0·10−8 | 4.2·10−8 | 4.2·10−8 |
Ionizing radiation | IR | kBq Co-60 eq | 4.1·10−2 | 4.3·10−2 | 4.3·10−2 |
Ozone formation, Human health | OFHH | kg NOx eq | 2.6·10−4 | 2.8·10−4 | 2.8·10−4 |
Fine particulate matter formation | FPMF | kg PM2.5 eq | 1.9·10−4 | 2.0·10−4 | 2.0·10−4 |
Ozone formation, Terrestrial ecosystem | OFTE | kg NOx eq | 2.6·10−4 | 2.7·10−4 | 2.7·10−4 |
Terrestrial acidification | TA | kg SO2 eq | 4.9·10−4 | 5.1·10−4 | 5.1·10−4 |
Freshwater eutrophication | FE | kg P eq | 3.6·10−5 | 3.5·10−5 | 3.7·10−5 |
Marine eutrophication | ME | kg N eq | 3.0·10−6 | 2.9·10−6 | 3.1·10−6 |
Terrestrial ecotoxicity | TE | kg 1.4 DCB eq | 2·10−1 | 2·10−1 | 2·10−1 |
Freshwater ecotoxicity | FEC | kg 1.4 DCB eq | 6.8·10−3 | 6.7·10−3 | 7.1·10−3 |
Marine ecotoxicity | MEC | kg 1.4 DCB eq | 8.6·10−3 | 7.0·10−3 | 9.0·10−3 |
Human carcinogenic toxicity | HCT | kg 1.4 DCB eq | 3.8·10−3 | 4.0·10−3 | 4.0·10−3 |
Human non-carcinogenic toxicity | HnCT | kg 1.4 DCB eq | 6.1·10−2 | 6.4·10−2 | 6.4·10−2 |
Land use | LU | m2a crop eq | 2.2·10−3 | 2.0·10−3 | 2.3·10−3 |
Mineral resource scarcity | MRS | kg Cu eq | 2.0·10−4 | 2.1·10−4 | 2.1·10−4 |
Fossil resource scarcity | FRS | kg oil eq | 2.0·10−2 | 2.1·10−2 | 2.1·10−2 |
Water consumption | ** WCT | m3 | 7.2·10−4 | 7.0·10−4 | 7.6·10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guijarro-Gil, M.J.; Botejara-Antúnez, M.; Díaz-Parralejo, A.; García-Sanz-Calcedo, J. Selection of Sol-Gel Coatings by the Analytic Hierarchy Process and Life Cycle Assessment for Concentrated Solar Power Plants. Sustainability 2025, 17, 2449. https://doi.org/10.3390/su17062449
Guijarro-Gil MJ, Botejara-Antúnez M, Díaz-Parralejo A, García-Sanz-Calcedo J. Selection of Sol-Gel Coatings by the Analytic Hierarchy Process and Life Cycle Assessment for Concentrated Solar Power Plants. Sustainability. 2025; 17(6):2449. https://doi.org/10.3390/su17062449
Chicago/Turabian StyleGuijarro-Gil, María José, Manuel Botejara-Antúnez, Antonio Díaz-Parralejo, and Justo García-Sanz-Calcedo. 2025. "Selection of Sol-Gel Coatings by the Analytic Hierarchy Process and Life Cycle Assessment for Concentrated Solar Power Plants" Sustainability 17, no. 6: 2449. https://doi.org/10.3390/su17062449
APA StyleGuijarro-Gil, M. J., Botejara-Antúnez, M., Díaz-Parralejo, A., & García-Sanz-Calcedo, J. (2025). Selection of Sol-Gel Coatings by the Analytic Hierarchy Process and Life Cycle Assessment for Concentrated Solar Power Plants. Sustainability, 17(6), 2449. https://doi.org/10.3390/su17062449