Configurational Pathways for Fintech-Empowered Sustainable Innovation in SRDIEs Under Financing Constraints
Abstract
:1. Introduction
2. Theoretical Foundation and Research Framework
2.1. How Fintech and Financing Capacity Influence the “Able to Innovate” of SRDIEs
2.2. How Fintech and Financing Channels Influence the “Daring to Innovate” of SRDIEs
2.3. How Fintech and Financing Willingness Influence the “Excelling in Innovation” of SRDIEs
2.4. Capability Progression: From “Able to Innovate” to “Daring to Innovate” and Finally to “Excelling in Innovation”
2.5. Research Framework
3. Results
3.1. Date
3.2. Measurement and Calibration
3.2.1. Outcome Variables
3.2.2. Selection of Conditional Variables
3.2.3. Variable Calibration
3.3. Research Ideas
4. Empirical Results and Analysis
4.1. Fintech, Financing Capacity, and the “Able to Innovate” of SRDIEs
4.1.1. Necessary Condition Test (NCA)
4.1.2. FSQCA Configuration Path Analysis About “Able to Innovate”
4.2. Fintech, Financing Channels, and the “Daring to Innovate” of SRDIEs
4.2.1. Necessity Test for NCA
4.2.2. FSQCA Configuration Path Analysis About “Daring to Innovate”
4.3. FinTech, Financing Willingness, and the “Excelling in Innovation” of SRDIEs
4.3.1. NCA Necessity Test
4.3.2. FSQCA Configuration Path Analysis About “Excelling in Innovation”
4.4. Robustness Tests
5. Conclusions and Implications
5.1. Research Conclusions
5.2. Practical Implications
5.3. Research Contribution
5.4. Research Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.X.; Huang, Y.S.; Zhan, X.L. The evolution of collective strategies in SMEs’ innovation: A tripartite game analysis and application. Complexity 2019, 2019, 9326489. [Google Scholar] [CrossRef]
- Le, T.T.; Huan, N.Q.; Hong, T.T.T.; Tran, D.K. The contribution of corporate social responsibility on SMEs performance in emerging country. J. Clean. Prod. 2021, 322, 129103. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhao, T.Y.; Wang, L.H.; Dong, Z.Q. Does Fintech benefit financial disintermediation? Evidence based on provinces in China from 2013 to 2018. J. Asian Econ. 2022, 82, 101516. [Google Scholar] [CrossRef]
- Yang, H.X.; Ren, W.R. Research on the influence mechanism and configuration path of Network relationship characteristics on SMEs’ innovation—The mediating effect of supply chain dynamic capability and the moderating effect of geographical proximity. Sustainability 2021, 13, 9919. [Google Scholar] [CrossRef]
- Assarzadeh, A.H.; Aberoumand, S. FinTech in Western Asia: Case of Iran. J. Ind. Integr. Manag. 2018, 3, 1850006. [Google Scholar] [CrossRef]
- Soni, G.J.; Kumar, S.; Mahto, R.V.; Mangla, S.K.; Mittal, M.L.; Lim, W.M. A decision-making framework for Industry 4.0 technology implementation: The case of FinTech and sustainable supply chain finance for SMEs. Technol. Forecast. Soc. Chang. 2022, 180, 121686. [Google Scholar] [CrossRef]
- Ng, E.; Pan, S.L. Competitive strategies for ensuring Fintech platform performance: Evidence from multiple case studies. Inf. Syst. J. 2022, 34, 616–641. [Google Scholar] [CrossRef]
- Kangwa, D.; Mwale, J.K.; Shaikh, J.M. The social production of financial inclusion of generation Z in digital banking ecosystems. Australas. Account. Bus. Financ. J. 2021, 15, 95–118. [Google Scholar] [CrossRef]
- Lai, X.B.; Yue, S.J.; Guo, C.; Zhang, X.H. Does FinTech reduce corporate excess leverage? evidence from China. Econ. Anal. Policy 2023, 77, 281–299. [Google Scholar] [CrossRef]
- AboAlsamh, H.M.; Khrais, L.T.; Albahussain, S.A. Pioneering perception of green Fintech in promoting sustainable digital services application within smart cities. Sustainability 2023, 15, 11440. [Google Scholar] [CrossRef]
- Dooley, L.; O’Sullivan, D. Managing within distributed innovation networks. Int. J. Innov. Manag. 2007, 11, 397–416. [Google Scholar] [CrossRef]
- Pensel, F.H.; Winkler, H.; Brückner, A.; Wölke, M.; Jabs, I.; Mayan, I.J.; Kirschenbaum, A.; Friedrich, J.; Wehlmann, C.Z. Maturity assessment for Industry 5.0: A review of existing maturity models. J. Manuf. Syst. 2023, 66, 200–210. [Google Scholar] [CrossRef]
- Austin, A.; Rahman, I.U. A triple helix of market failures: Financing the 3Rs of the circular economy in European SMEs. J. Clean. Prod. 2022, 361, 132284. [Google Scholar] [CrossRef]
- Karim, S.; Naz, F.; Naeem, M.A.; Vigne, S.A. Is FinTech providing effective solutions to small and medium enterprises (SMEs) in ASEAN countries? Econ. Anal. Policy 2022, 75, 335–344. [Google Scholar] [CrossRef]
- Bonsu, M.O.A.; Wang, Y.; Guo, Y.S. Does fintech lead to better accounting practices? empirical evidence. Account. Res. J. 2023, 36, 129–147. [Google Scholar] [CrossRef]
- He, C.Y.; Geng, X.X.; Tan, C.; Guo, R.J. Fintech and corporate debt default risk: Influencing mechanisms and heterogeneity. J. Bus. Res. 2023, 164, 113923. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.; Ryu, J.Y. Do competent managers hoard bad news? Self-regulation theory and Korean evidence. Financ. Res. Lett. 2021, 41, 101836. [Google Scholar] [CrossRef]
- Dong, X.; Yu, M.Z. Does FinTech development facilitate firms’ innovation? evidence from China. Int. Rev. Financ. Anal. 2023, 89, 102805. [Google Scholar] [CrossRef]
- Gomber, P.; Kauffman, R.J.; Parker, C.; Weber, B. On the Fintech revolution: Interpreting the forces of innovation, disruption, and transformation in financial services. J. Manag. Inf. Syst. 2018, 35, 220–265. [Google Scholar] [CrossRef]
- Ye, X.; Pan, Y.; Wu, F. Fintech and corporate green technological innovation: Structural characteristics, impact identification, and gap-filling effects. South. Financ. 2024, 571, 95–110. [Google Scholar]
- Hu, J.Y.; Yu, L.; Liu, Y.W. Research on the incentive effect of Fintech on corporate green transformation: A dual-enabling perspective of digitalization and green governanc. Mod. Financ. 2024, 413, 97–109. [Google Scholar] [CrossRef]
- Liu, C.; Pan, H.F.; Li, P.; Feng, Y.X. The impact and mechanism of digital transformation on green innovation efficiency in manufacturing enterprises. China Soft Sci. 2023, 33, 121–129. [Google Scholar]
- Berger, A.N.; Frame, W.S.; Ioannidou, V. Tests of exante versus expost theories of collateral using private and public information. J. Financ. Econ. 2011, 100, 85–97. [Google Scholar] [CrossRef]
- Mapanje, O.; Karuaihe, S.; Machethe, C.; Amis, M. Financing sustainable agriculture in Sub-Saharan Africa: A review of the role of financial technologies. Sustainability 2023, 15, 4587. [Google Scholar] [CrossRef]
- Liu, M. Assessing human information processing in lending decisions: A machine learning approach. J. Account. Res. 2022, 60, 607–651. [Google Scholar] [CrossRef]
- Wang, H.J.; Mao, K.Y.; Wu, W.; Luo, H.H. Fintech inputs, non-performing loans risk reduction and bank performance improvement. Int. Rev. Financ. Anal. 2023, 90, 102849. [Google Scholar] [CrossRef]
- Chen, T.; Huang, Y.; Lin, C.; Sheng, Z. Finance and firm volatility: Evidence from small business lending in China. Manag. Sci. 2022, 68, 2226–2249. [Google Scholar] [CrossRef]
- Zhu, C. Big data as a governance mechanism. Rev. Financ. Stud. 2019, 32, 2021–2061. [Google Scholar] [CrossRef]
- Sahoo, P.S.B.B.; Thakur, V. The factors obstructing the blockchain adoption in supply chain finance: A hybrid fuzzy DELPHI-AHP-DEMATEL approach. Int. J. Qual. Reliab. Manag. 2024, 41, 2292–2310. [Google Scholar] [CrossRef]
- Senyo, P.K.; Karanasios, S.; Gozman, D.; Baba, M. FinTech ecosystem practices shaping financial inclusion: The case of mobile money in Ghana. Eur. J. Inf. Syst. 2021, 31, 112–127. [Google Scholar] [CrossRef]
- Forcadell, F.J.; Aracil, E.; Úbeda, F. Using reputation for corporate sustainability to tackle banks digitalization challenges. Bus. Strategy Environ. 2020, 29, 2181–2193. [Google Scholar] [CrossRef]
- He, Z.G.; Huang, J.; Zhou, J.C. Open banking: Credit market competition when borrowers own the data. J. Financ. Econ. 2023, 147, 449–474. [Google Scholar] [CrossRef]
- Ahelegbey, D.F.; Giudici, P.; Misheva, B.H. Latent factor models for credit scoring in P2P systems. Phys. A Stat. Mech. Appl. 2019, 522, 112–121. [Google Scholar] [CrossRef]
- Allen, L.; Shan, Y.; Shen, Y. Do FinTech mortgage lenders fill the credit gap? evidence from natural disasters. J. Financ. Quant. Anal. 2022, 58, 3342–3383. [Google Scholar] [CrossRef]
- Zhang, S.F.; Chen, Y.Q. Research on the Path to Improving the Innovation Performance of “Specialized, Refined, Distinctive, and Innovative” Small and Medium-sized Enterprises. Sci. Sci. Manag. S.&T 2024, 42, 873–884. [Google Scholar] [CrossRef]
- Ain, Q.U.; Yuan, X.H.; Javaid, H.M. The impact of board gender diversity and foreign institutional investors on firm innovation: Evidence from China. Eur. J. Innov. Manag. 2021, 25, 813–837. [Google Scholar] [CrossRef]
- Du, Y.S.; Guo, H.Y.; Li, T.T. A Study on the relationship between digital finance, financing constraints, and technological innovation in small and micro enterprises: Empirical evidence from new third board listed companies. Price Theory Pract. 2024, 12, 151–157. [Google Scholar] [CrossRef]
- Liu, Y.C.; Hua, G.H. Can financial technology promote the sustainability of enterprise innovation by alleviating financial mismatch?—Empirical evidence from listed companies in strategic emerging industries. China Sci. Technol. Forum 2023, 4, 122–132. [Google Scholar] [CrossRef]
- Li, C.T.; Yan, X.W.; Song, M.; Yang, W. Fintech and corporate innovation: Evidence from Chinese NEEQ-Listed companies. China Ind. Econ. 2020, 12, 81–98. [Google Scholar] [CrossRef]
- Prayoonrattana, J.; Laosuthi, T.; Chaivichayachat, B. Empirical measurement of competition in the Thai banking industry. Economies 2020, 8, 44. [Google Scholar] [CrossRef]
Frequency | Centrality | Year | Keyword | Frequency | Centrality | Year | Keyword |
---|---|---|---|---|---|---|---|
224 | 1.18 | 2016 | Financial technology | 22 | 0.12 | 2014 | Technology innovation |
50 | 0.34 | 2014 | Technology finance | 20 | 0.06 | 2017 | Inclusive finance |
45 | 0.40 | 2017 | Blockchain | 20 | 0.11 | 2016 | Artificial intelligence |
35 | 0.15 | 2016 | Commercial banking | 20 | 0.06 | 2018 | Financial innovation |
29 | 0.10 | 2017 | Financial regulation | 19 | 0.20 | 2020 | Digital economy |
27 | 0.10 | 2018 | Digital finance | 19 | 0.12 | 2017 | Regulatory sandboxes |
25 | 0.02 | 2017 | Big data | 19 | 0.06 | 2016 | Smart investment banking |
24 | 0.01 | 2017 | Regulatory technology | 18 | 0.08 | 2020 | Digital economy |
First-Level Indicators | Scenario Application | Underlying Technology | |||
---|---|---|---|---|---|
Second-level indicators | Payment clearing | Resource allocation | Information intermediation | Wealth management | Technology foundation |
Specific keywords | Mobile payment 14 | Internet investment 2 | Internet banking 285 | Digital risk control 56 | Big data 152 |
Digital currency 3 | Smart contract 1 | Small and medium-sized bank 1 | Financial regulation 9 | Blockchain 7 | |
Third-party payments 11 | Sci-Tech funds 2 | Financial data center 0 | Smart investment 0 | Artificial intelligence 286 | |
Financial services21 | Investment and loan linkage 0 | Distributed database 0 | Internet insurance 0 | Cloud computing 75 | |
Digital finance 2 | Internet lending 2 | Internet financial platform 0 | Quantitative investment 0 | Internet of Things 424 | |
Supply chain financing 0 | Internet wealth management | Machine learning 0 |
First-Level Indicator | Entropy Weight | Second-Level Indicator | Entropy Weight | Third-Level Indicator | Entropy Weight |
---|---|---|---|---|---|
Scenario application | 0.89 | Payment clearing | 0.2963 | Mobile payment | 0.0294 |
Digital currency | 0.0678 | ||||
Third-party payment | 0.024 | ||||
Financial services | 0.004 | ||||
Digital finance | 0.1611 | ||||
Resource allocation | 0.4412 | Network investment | 0.1611 | ||
Smart contracts | 0.1611 | ||||
Science and technology fund | 0.0595 | ||||
Internet lending | 0.0595 | ||||
Information intermediation | 0.1611 | Internet banking | 0.0 | ||
Small and medium-sized banks | 0.1611 | ||||
Wealth management | 0.0002 | Digital risk control | 0.0002 | ||
Financial regulation | 0.0 | ||||
Underlying Technology | 0.11 | Technology foundation | 0.1114 | Big data | 0.0012 |
Blockchain | 0.1009 | ||||
Artificial intelligence | 0.0083 | ||||
Cloud computing | 0.0006 | ||||
Internet of Things | 0.0004 |
Classification | Variable Name | Fully Affiliated (95%) | Intersection (50%) | Fully Unaffiliated (5%) |
---|---|---|---|---|
Outcome variable | Innovation output | 203.100 | 0.000 | 0.000 |
Level of investment in innovation | 0.103 | 0.031 | 0.012 | |
Innovation sustainability | 0.022 | 0.001 | −0.002 | |
Antecedent variable | Fintech intensity | 0.101 | 0.005 | 0.000 |
Level of digital intelligence | 20.000 | 1.000 | 0.000 | |
Capital structure | 0.611 | 0.332 | 0.104 | |
Return on assets | 0.174 | 0.041 | −0.013 | |
Level of specialization | 0.623 | 0.016 | −0.403 | |
Credit resource allocation efficiency | 0.723 | 0.471 | 0.145 | |
Disclosure quality rating | 0.900 | 0.750 | 0.600 | |
Level of internal accumulation | 0.496 | 0.202 | 0.097 | |
Financial mismatch | 0.391 | −0.016 | −0.379 | |
Firm size | 23.669 | 22.445 | 21.369 | |
Banking competition | −0.050 | −0.106 | −0.427 | |
Financing environment | 5.878 | 0.815 | 0.050 |
Condition | Method | Precision (%) | Upper Interval | Range | d | p-Value |
---|---|---|---|---|---|---|
Fintech intensity | CR | 98.9 | 0.011 | 1 | 0.011 | 0.486 |
CE | 100 | 0.011 | 1 | 0.011 | 0.565 | |
Level of digital intelligence | CR | 100 | 0 | 1 | 0 | 0.069 |
CE | 100 | 0 | 1 | 0 | 0.069 | |
Capital structure | CR | 97.7 | 0.013 | 0.96 | 0.014 | 0.435 |
CE | 100 | 0.009 | 0.96 | 0.009 | 0.598 | |
Return on assets | CR | 100 | 0 | 0.95 | 0 | 1 |
CE | 100 | 0 | 0.95 | 0 | 1 | |
Degree of specialization | CR | 100 | 0 | 0.95 | 0 | 1 |
CE | 100 | 0 | 0.95 | 0 | 1 |
Y | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
0 | NN | NN | NN | NN | NN |
10 | NN | NN | NN | NN | NN |
20 | NN | NN | NN | NN | NN |
30 | NN | NN | NN | NN | NN |
40 | 0.3 | NN | NN | NN | NN |
50 | 0.8 | NN | NN | NN | NN |
60 | 1.4 | NN | NN | NN | NN |
70 | 1.9 | NN | NN | NN | NN |
80 | 2.4 | NN | 2.4 | NN | NN |
90 | 2.9 | NN | 6.6 | NN | NN |
100 | 3.4 | 2.0 | 10.9 | NN | NN |
Antecedent Condition | High-Innovation Output | Non-High-Innovation Output | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
Fintech intensity | 0.650148 | 0.853003 | 0.618818 | 0.543816 |
~Fintech intensity | 0.652303 | 0.718694 | 0.832730 | 0.614540 |
Digital intelligence level | 0.680851 | 0.863683 | 0.695215 | 0.590707 |
~Digital intelligence level | 0.677350 | 0.768408 | 0.839566 | 0.637947 |
Capital structure | 0.639375 | 0.796377 | 0.719340 | 0.600134 |
~Capital structure | 0.678966 | 0.783162 | 0.755931 | 0.584032 |
Enterprise size | 0.685671 | 0.788846 | 0.653435 | 0.600491 |
~Enterprise size | 0.652744 | 0.702197 | 0.770229 | 0.661856 |
Degree of specialization | 0.692701 | 0.839152 | 0.770004 | 0.624796 |
~Degree of specialization | 0.690278 | 0.817544 | 0.801769 | 0.636045 |
Antecedent Variable | High-Innovation Output | ~High-Innovation Output | ||
---|---|---|---|---|
Grouping 1 | Grouping 2 | Grouping 3 | Grouping 4 | |
Fintech intensity | ●● | ●● | ⊗⊗ | ⊗⊗ |
Digital intelligence level | ● | ⊗ | ⊗⊗ | |
Enterprise size | ● | ●● | ⊗⊗ | |
Return on assets | ● | ● | ||
Capital structure | ⊗⊗ | ● | ●● | ●● |
Degree of specialization | ●● | ⊗⊗ | ⊗⊗ | ●● |
Consistency | 0.960098 | 0.991588 | 0.957983 | 0.947075 |
Original coverage | 0.335134 | 0.2531 | 0.435115 | 0.389313 |
Unique coverage | 0.0261512 | 0.02852758 | 0.0755725 | 0.029771 |
Overall consistency | 0.92005 | 0.939335 | ||
Overall coverage | 0.837408 | 0.549618 |
Antecedent Conditions | Innovation Input | ~Innovation Input | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
Fintech intensity | 0.467317 | 0.548073 | 0.570105 | 0.756036 |
~Fintech intensity | 0.791983 | 0.619667 | 0.659214 | 0.583215 |
Disclosure quality | 0.804984 | 0.614897 | 0.724369 | 0.625655 |
~Disclosure quality | 0.509931 | 0.620659 | 0.554136 | 0.762637 |
Financial mismatch | 0.722282 | 0.666223 | 0.624082 | 0.650899 |
~Financial mismatch | 0.621524 | 0.593858 | 0.679975 | 0.734644 |
Credit resource allocation efficiency | 0.712532 | 0.700888 | 0.554456 | 0.616696 |
~Credit resource allocation efficiency | 0.610328 | 0.547812 | 0.731076 | 0.741977 |
Degree of specialization | 0.655832 | 0.664958 | 0.566592 | 0.649579 |
~Degree of specialization | 0.654388 | 0.571789 | 0.707761 | 0.699274 |
Antecedent Variable | High-Innovation Input | ~High-Innovation Input | ||
---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | |
Fintech intensity | ●● | ●● | ⊗ | ⊗⊗ |
Quality of information disclosure | ● | ● | ⊗⊗ | ● |
Financial mismatch | ● | ⊗ | ||
Efficiency of credit resource allocation | ●● | ●● | ⊗ | |
Degree of specialization | ● | ⊗ | ⊗⊗ | |
Consistency | 0.852282 | 0.888041 | 0.866973 | 0.887565 |
Original coverage | 0.370892 | 0.378115 | 0.362185 | 0.380709 |
Unique coverage | 0.0624774 | 0.0697002 | 0.0504632 | 0.0613223 |
Overall consistency | 0.86771 | 0.816202 | ||
Overall coverage | 0.440592 | 0.598531 |
Antecedent Conditions | Innovation Positivity | ~Innovation Positivity | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
Fintech intensity | 0.617921 | 0.657764 | 0.535691 | 0.635636 |
~Fintech intensity | 0.657706 | 0.559622 | 0.711576 | 0.674901 |
Banking competition | 0.712186 | 0.636655 | 0.699679 | 0.697212 |
~Banking competition | 0.66129 | 0.663908 | 0.63537 | 0.711047 |
Financing environment | 0.598925 | 0.647674 | 0.57492 | 0.693023 |
~Financing environment | 0.716129 | 0.601807 | 0.707717 | 0.662952 |
Degree of specialization | 0.666308 | 0.637736 | 0.633119 | 0.675472 |
~Degree of specialization | 0.660932 | 0.617755 | 0.66045 | 0.688107 |
Enterprise size | 0.550896 | 0.539109 | 0.690354 | 0.753069 |
~Enterprise size | 0.74767 | 0.684159 | 0.577492 | 0.589046 |
Capital structure | 0.59785 | 0.589191 | 0.635691 | 0.69834 |
~Capital structure | 0.693907 | 0.630824 | 0.626045 | 0.634409 |
Antecedent Variable | High-Innovation Motivation and Sustainability | ~High-Innovation Motivation and Sustainability | ||
---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | |
Fintech intensity | ●● | ●● | ⊗⊗ | ⊗⊗ |
Competition in the banking sector | ● | ⊗ | ● | |
Financing environment | ●● | ● | ⊗⊗ | |
Degree of specialization | ● | ⊗⊗ | ⊗⊗ | ● |
Firm size | ⊗⊗ | ⊗⊗ | ● | ● |
Capital structure | ⊗ | ● | ●● | ●● |
Consistency | 0.944818 | 0.935028 | 0.919858 | 0.917336 |
Original coverage | 0.251433 | 0.27106 | 0.332368 | 0.257079 |
Unique coverage | 0.0096705 | 0.0562321 | 0.0112612 | 0.0141571 |
Consistency of solutions | 0.876348 | 0.886587 | ||
Solution coverage | 0.494986 | 0.523166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, F.; Wu, J.; Li, Y. Configurational Pathways for Fintech-Empowered Sustainable Innovation in SRDIEs Under Financing Constraints. Sustainability 2025, 17, 2397. https://doi.org/10.3390/su17062397
Ji F, Wu J, Li Y. Configurational Pathways for Fintech-Empowered Sustainable Innovation in SRDIEs Under Financing Constraints. Sustainability. 2025; 17(6):2397. https://doi.org/10.3390/su17062397
Chicago/Turabian StyleJi, Fang, Junlin Wu, and Yiran Li. 2025. "Configurational Pathways for Fintech-Empowered Sustainable Innovation in SRDIEs Under Financing Constraints" Sustainability 17, no. 6: 2397. https://doi.org/10.3390/su17062397
APA StyleJi, F., Wu, J., & Li, Y. (2025). Configurational Pathways for Fintech-Empowered Sustainable Innovation in SRDIEs Under Financing Constraints. Sustainability, 17(6), 2397. https://doi.org/10.3390/su17062397