Research on the Spatial Differentiation Pattern of High-Temperature Disaster Resilience and Strategies for Enhancing Resilience: A Case Study of Hangzhou, China
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Research Framework
2.3. High-Temperature Disaster Resilience Assessment
2.3.1. PSR-Based Assessment Model
2.3.2. Assessment Indicators and Weights
2.3.3. Data Sources and Calculations
2.4. Second-Order Clustering-Based Spatial Zoning of High-Temperature Disaster Resilience
2.4.1. Phase 1, SOM Clustering
2.4.2. Phase 2, K-Means Clustering
3. Results
3.1. Spatial Differentiation of High-Temperature Disaster Resilience
3.1.1. Pressure Resilience
3.1.2. State Resilience
3.1.3. Response Resilience
3.1.4. High-Temperature Disaster Resilience
3.2. Spatial Zoning of High-Temperature Disaster Resilience
4. Discussion
4.1. Enhancement Strategy
4.1.1. H-L-L-L Zone
4.1.2. L-H-L-L Zone
4.1.3. H-H-L-L Zone
4.1.4. L-L-L-L Zone
4.2. Multi-Domain Application Scenarios
4.3. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSR | Pressure-State-Response |
SOM | Self-Organizing Map |
POI | Point of Interest |
NDVI | Normalized Difference Vegetation Index |
MNDWI | Modified Normalized Difference Water Index |
GDP | Gross Domestic Product |
AHP | Analytic Hierarchy Process |
DBI | Davies–Bouldin Index |
References
- WMO. Atlas of Mortality and Economic Losses from Weather, Climate and Water-Related Hazards (1970–2019); World Meteorological Organization: Geneva, Switzerland, 2021; Available online: https://wmo.int/publication-series/atlas-of-mortality-and-economic-losses-from-weather-climate-and-water-related-hazards-1970-2021 (accessed on 18 December 2024).
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2023: Synthesis Report. 2023. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf (accessed on 5 April 2024).
- Cai, W.; Zhang, C.; Zhang, S.; Ai, S.; Bai, Y.; Bao, J.; Chen, B.; Chang, N.; Chen, H.; Cheng, L.; et al. The 2021 China report of the Lancet Countdown on health and climate change: Seizing the window of opportunity. Lancet Public Health 2021, 6, e932–e947. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Zaitchik, B.F.; Hsu, A.; Chakraborty, T. Sensitivity and vulnerability to summer heat extremes in major cities of the United States. Environ. Res. Lett. 2024, 19, 94039. [Google Scholar] [CrossRef]
- Akhtar, N.; Jan, I. Climate Change: Rising Security (Non-Traditional) Threat to Pakistan. J. Dev. Soc. Sci. 2023, 4, 991–1004. [Google Scholar] [CrossRef]
- Ruan, J.; Chen, Y.; Yang, Z. Assessment of temporal and spatial progress of urban resilience in Guangzhou under rainstorm scenarios. Int. J. Disaster Risk Reduct. 2021, 66, 102578. [Google Scholar] [CrossRef]
- Semenza, J.C.; Rubin, C.H.; Falter, K.H.; Selanikio, J.D.; Flanders, W.D.; Howe, H.L.; Wilhelm, J.L. Heat-Related Deaths during the July 1995 Heat Wave in Chicago. N. Engl. J. Med. 1996, 335, 84–90. [Google Scholar] [CrossRef]
- Uejio, C.K.; Wilhelmi, O.V.; Golden, J.S.; Mills, D.M.; Gulino, S.P.; Samenow, J.P. Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Heal. Place 2001, 17, 498–507. [Google Scholar] [CrossRef]
- El-Zein, A.; Tonmoy, F.N. Assessment of vulnerability to climate change using a multi-criteria outranking approach with application to heat stress in Sydney. Ecol. Indic. 2015, 48, 207–217. [Google Scholar] [CrossRef]
- Fu, Q.; Zheng, Z.; Sarker, N.I.; Lv, Y. Combating urban heat: Systematic review of urban resilience and adaptation strategies. Heliyon 2024, 10, e37001. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- UN-Habitat. An Urbanizing World: Global Report on Human Settlements; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- The World Bank. World Development Report 2009; The World Bank: Washington, DC, USA, 2008; pp. 73–78. Available online: http://documents.worldbank.org/curated/en/730971468139804495/World-development-report-2009-reshaping-economic-geography (accessed on 18 December 2024).
- United Nations Office for Disaster Risk Reduction. Report of the Open Ended Intergovernmental Working Group on Possible Measures to Improve the Treatment of Nominations to the Representative List by the Committee, Its Subsidiary Body and the Secretariat; United Nations General Assembly: New York, NY, USA, 2016. [Google Scholar]
- Campbell, K.A.; Laurien, F.; Czajkowski, J.; Keating, A.; Hochrainer-Stigler, S.; Montgomery, M. First insights from the Flood Resilience Measurement Tool: A large-scale community flood resilience analysis. Int. J. Disaster Risk Reduct. 2019, 40, 101257. [Google Scholar] [CrossRef]
- Atrachali, M.; Ghafory-Ashtiany, M.; Amini-Hosseini, K.; Arian-Moghaddam, S. Toward quantification of seismic resilience in Iran: Developing an integrated indicator system. Int. J. Disaster Risk Reduct. 2019, 39, 101231. [Google Scholar] [CrossRef]
- Frausto, O.; Vazquez, A.; Arroyo, L.; Castillo, L.; Hernández, M. Hurricane resilience indicators in mexican caribbean coastal cities. Int. J. Saf. Secur. Eng. 2016, 6, 755–763. [Google Scholar] [CrossRef]
- Aubrecht, C.; Özceylan, D. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability. Environ. Int. 2013, 56, 65–77. [Google Scholar] [CrossRef]
- Shan, Z.; An, Y.; Xu, L.; Yuan, M. High-Temperature Disaster Risk Assessment for Urban Communities: A Case Study in Wuhan, China. Int. J. Environ. Res. Public Health 2021, 19, 183. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, X.; Yue, W. The spatiotemporal patterns and regional characteristics of extreme heat disaster risk in China at the county level. J. Clean. Prod. 2024, 474, 143605. [Google Scholar] [CrossRef]
- Rapport, D.J.; Singh, A. An EcoHealth-based framework for State of Environment Reporting. Ecol. Indic. 2006, 6, 409–428. [Google Scholar] [CrossRef]
- Hua, Y.; Yan, M.; Limin, D. Land Ecological Security Assessment for Bai Autonomous Prefecture of Dali Based Using PSR Model--with Data in 2009 as Case. Energy Procedia 2011, 5, 2172–2177. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Zhong, B.; Yang, A.; Jue, K.; Wu, J.; Zhang, L.; Xu, W.; Wu, S.; Zhang, N.; et al. Ecological environment assessment for Greater Mekong Subregion based on Pressure-State-Response framework by remote sensing. Ecol. Indic. 2020, 117, 106521. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, P.; Guo, H.; Yang, G. Wetlands ecological security assessment in lower reaches of Taoerhe river connected with Nenjiang river using modified PSR model. HydroResearch 2023, 6, 156–165. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Liu, L.; Hu, W.; Li, J.; Sun, X.; Li, Y. Health assessment of small-to-medium sized rivers: Comparison between comprehensive indicator method and biological monitoring method. Ecol. Indic. 2021, 126, 107686. [Google Scholar] [CrossRef]
- Li, W.; Qi, J.; Huang, S.; Fu, W.; Zhong, L.; He, B.-J. A pressure-state-response framework for the sustainability analysis of water national parks in China. Ecol. Indic. 2021, 131, 108127. [Google Scholar] [CrossRef]
- Tu, J.; Wan, M.; Chen, Y.; Tan, L.; Wang, J. Biodiversity assessment in the near-shore waters of Tianjin city, China based on the Pressure-State-Response (PSR) method. Mar. Pollut. Bull. 2022, 184, 114123. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C. Evolution process and obstacle factors of ecological security in western China, a case study of Qinghai province. Ecol. Indic. 2020, 117, 106659. [Google Scholar] [CrossRef]
- Yuan, D.; Xue, H.; Du, M.; Pang, Y.; Wang, J.; Wang, C.; Song, X.; Wang, S.; Kou, Y. Urban waterlogging resilience assessment based on combination weight and cloud model: A case study of Haikou. Environ. Impact Assess. Rev. 2025, 111, 107728. [Google Scholar] [CrossRef]
- Chen, L.; Guo, H.; Gong, P.; Yang, Y.; Zuo, Z.; Gu, M. Landslide susceptibility assessment using weights-of-evidence model and cluster analysis along the highways in the Hubei section of the Three Gorges Reservoir Area. Comput. Geosci. 2021, 156, 104899. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, K. Cloud model assessment of urban flood resilience based on PSR model and game theory. Int. J. Disaster Risk Reduct. 2023, 97, 104050. [Google Scholar] [CrossRef]
- Song, S.; Yu, H.; Zhang, Q.; Zhang, L.; Zhong, Q.; Zhang, G. Functional regionalization of land resources considering eco-efficiency in Nanjing Metropolitan Area, China. Ecol. Indic. 2023, 155, 110964. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Liu, H.; Chen, N.; Wang, X. Exploring spatial patterns of sustainability and resilience of metropolitan areas in the US using self-organizing maps. Cities 2024, 155, 105414. [Google Scholar] [CrossRef]
- Brentan, B.; Meirelles, G.; Luvizotto, E.; Izquierdo, J. Hybrid SOM+k-Means clustering to improve planning, operation and management in water distribution systems. Environ. Model. Softw. 2018, 106, 77–88. [Google Scholar] [CrossRef]
- Lawrimore, M.A.; Sanchez, G.M.; Cothron, C.; Tulbure, M.G.; BenDor, T.K.; Meentemeyer, R.K. Creating spatially complete zoning maps using machine learning. Comput. Environ. Urban Syst. 2024, 112, 102157. [Google Scholar] [CrossRef]
- Sützl, B.S.; Strebel, D.A.; Rubin, A.; Wen, J.; Carmeliet, J. Urban morphology clustering analysis to identify heat-prone neighbourhoods in cities. Sustain. Cities Soc. 2024, 107, 105360. [Google Scholar] [CrossRef]
- Dong, X.; Yang, R.; Ye, Y.; Yi, S.; Haase, D.; Lausch, A. Planning for green infrastructure by integrating multi-driver: Ranking priority based on accessibility equity. Sustain. Cities Soc. 2024, 114, 105767. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Wang, Y.; Li, G.; Che, Y. Mapping future droughts under global warming across China: A combined multi-timescale meteorological drought index and SOM-Kmeans approach. Weather. Clim. Extremes 2021, 31, 100304. [Google Scholar] [CrossRef]
- Xia, S.; Yang, Y. Examining spatio-temporal variations in carbon budget and carbon compensation zoning in Beijing-Tianjin-Hebei urban agglomeration based on major functional zones. J. Geogr. Sci. 2022, 32, 1911–1934. [Google Scholar] [CrossRef]
- Yang, X.; Jia, C.; Yang, F.; Yang, H.; Yao, Y. Spatio-temporal variation of groundwater pollution in urban wetlands and management strategies for zoning. J. Environ. Manag. 2023, 342, 118318. [Google Scholar] [CrossRef]
- Cao, J.; Zhou, W.; Zheng, Z.; Ren, T.; Wang, W. Within-city spatial and temporal heterogeneity of air temperature and its relationship with land surface temperature. Landsc. Urban Plan 2021, 206, 103979. [Google Scholar] [CrossRef]
- Li, K.; Yang, H.; Chen, Q.; Chen, T.; Shen, R. Analysis of Urban Thermal Environment Evolution and Mechanisms Based on Multisource Data: A Case Study of Hangzhou, China. J. Urban Plan. Dev. 2024, 150, 5024026. [Google Scholar] [CrossRef]
- Huang, X.; Li, L.; Yan, X.; Ji, W.; Zhao, K.; Zhao, X. Assessment of heat exposure risk for urban populations and spatio-temporal patterns: A perspective of urban functional zones in Xi’an, China. Urban Clim. 2024, 55, 101992. [Google Scholar] [CrossRef]
- Park, K.; Baik, J.-J.; Jin, H.-G.; Tabassum, A. Changes in urban heat island intensity with background temperature and humidity and their associations with near-surface thermodynamic processes. Urban Clim. 2024, 58, 102191. [Google Scholar] [CrossRef]
- Savić, S.; Marković, V.; Šećerov, I.; Pavić, D.; Arsenović, D.; Milošević, D.; Dolinaj, D.; Nagy, I.; Pantelić, M. Heat wave risk assessment and mapping in urban areas: Case study for a midsized Central European city, Novi Sad (Serbia). Nat. Hazards 2018, 91, 891–911. [Google Scholar] [CrossRef]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Heal. Place 2018, 53, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Ballester, J.; Quijal-Zamorano, M.; Turrubiates, R.F.M.; Pegenaute, F.; Herrmann, F.R.; Robine, J.M.; Basagaña, X.; Tonne, C.; Antó, J.M.; Achebak, H. Heat-related mortality in Europe during the summer of 2022. Nat. Med. 2023, 29, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, Y.; Zhang, M.; Su, L.; Wang, Y.; Zhu, S. Spatially explicit assessment of the heat-related health risk in the Yangtze River Delta, China, using multisource remote sensing and socioeconomic data. Sustain. Cities Soc. 2024, 104, 105300. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef]
- Huang, H.; Ma, J.; Yang, Y. Spatial heterogeneity of driving factors for urban heat health risk in Chongqing, China: A new identification method and proposal of planning response framework. Ecol. Indic. 2023, 153, 110449. [Google Scholar] [CrossRef]
- Huang, X.; Qi, M.; Zhao, K.; Zheng, D.; Liu, M. Assessment of population vulnerability to heat stress and spatial differentiation in Xi’an. Geogr. Res. 2021, 40, 1684–1700. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.; Li, J.; Liu, X.; Ru, H.; Sun, C. A model for phased evacuations for disasters with spatio-temporal randomness. Int. J. Geogr. Inf. Sci. 2019, 33, 922–944. [Google Scholar] [CrossRef]
- Saguansap, P.; Saguansap, V.; Mruksirisuk, P.; Thanvisitthpon, N.T. Assessment of urban heat Island vulnerability using sustainability-focused framework: A case study of Thailand’s Bangkok Metropolis. Curr. Res. Environ. Sustain. 2024, 8, 100262. [Google Scholar] [CrossRef]
- Li, Z.; Fu, D.; Wang, J.; Min, K.; Zhang, J. Urban resilience assessment model for waterlogging disasters and its application. J. Tsinghua Univ. 2022, 62, 266–276. [Google Scholar] [CrossRef]
- Qasim, S.; Qasim, M.; Shrestha, R.P.; Khan, A.N.; Tun, K.; Ashraf, M. Community resilience to flood hazards in Khyber Pukhthunkhwa province of Pakistan. Int. J. Disaster Risk Reduct. 2016, 18, 100–106. [Google Scholar] [CrossRef]
- Ma, L.; Luo, J. An Exploration of the study Method of Urban Geography Based Grid Computing. Trop. Geogr. 2007, 27, 25–28. [Google Scholar]
- Chen, W.; Liu, X.; Zeng, S.; Zhang, H.; Mao, Z. Research on the correlation betweenland cover and climatic status basedon Google Earth Engine. Bull. Surv. Mapp. 2021, 99–104. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Pappalardo, S.E.; Zanetti, C.; Todeschi, V. Mapping urban heat islands and heat-related risk during heat waves from a climate justice perspective: A case study in the municipality of Padua (Italy) for inclusive adaptation policies. Landsc. Urban Plan. 2023, 238, 104831. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities–A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
Criterion (Weight) | Indicator (Weight) | Indicator Description | Indicator Attribute | Characterization Explanation |
---|---|---|---|---|
Pressure resilience (0.2091) | Surface temperature (0.4153) | The higher the indicator, the greater the risk of high-temperature disasters in the region. | − | Surface temperature inversion based on remote sensing images in GEE (with unit grid size set at 1 km * 1 km, the same below) |
Development intensity (0.3631) | Unit grid building plot ratio | |||
Relative air humidity (0.2216) | The higher the relative humidity of the air, the stronger the effect of reducing high temperatures. | + | Unit grid relative humidity | |
State resilience (0.3642) | Population density (0.1321) | The higher the population density of the region, the higher the likelihood of being affected by high-temperature disasters. | − | Unit grid population |
Elderly population ratio (0.0539) | The higher the vulnerable population ratio of the region, the worse the ability to withstand high-temperature disasters. | − | The proportion of the population aged 65 and above in the street | |
Child population ratio (0.0638) | The proportion of the population aged 14 and under in the street | |||
Female population ratio (0.0309) | The proportion of the female population in the street | |||
Per-land-area GDP (0.2311) | The higher the indicator, the stronger the ability to withstand high-temperature disasters in the region. | + | Unit grid GDP | |
Per-unit-area housing price (0.1019) | Unit grid average housing price | |||
Normalized Difference Vegetation Index (0.2251) | Unit grid NDVI in GEE | |||
Modified Normalized Difference Water Index (0.1612) | Unit grid MNDWI in GEE | |||
Response resilience (0.4267) | High-temperature disaster avoidance spatial density (0.3297) | The higher the indicator, the stronger the ability of high-temperature disaster relief and post-disaster recovery in the region. | + | Unit grid disaster avoidance spatial density |
Road network density (0.1256) | Unit grid road network density | |||
Number of medical facilities (0.3795) | Unit grid medical facility’s available quantity | |||
Per capita general public budget expenditure (0.1652) | The ratio of street general public budget expenditure to street total population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Xu, Y.; Wu, H.; Wu, W.; Lou, Y. Research on the Spatial Differentiation Pattern of High-Temperature Disaster Resilience and Strategies for Enhancing Resilience: A Case Study of Hangzhou, China. Sustainability 2025, 17, 2338. https://doi.org/10.3390/su17062338
Zhang S, Xu Y, Wu H, Wu W, Lou Y. Research on the Spatial Differentiation Pattern of High-Temperature Disaster Resilience and Strategies for Enhancing Resilience: A Case Study of Hangzhou, China. Sustainability. 2025; 17(6):2338. https://doi.org/10.3390/su17062338
Chicago/Turabian StyleZhang, Shanfeng, Yilin Xu, Hao Wu, Wenting Wu, and Yuhao Lou. 2025. "Research on the Spatial Differentiation Pattern of High-Temperature Disaster Resilience and Strategies for Enhancing Resilience: A Case Study of Hangzhou, China" Sustainability 17, no. 6: 2338. https://doi.org/10.3390/su17062338
APA StyleZhang, S., Xu, Y., Wu, H., Wu, W., & Lou, Y. (2025). Research on the Spatial Differentiation Pattern of High-Temperature Disaster Resilience and Strategies for Enhancing Resilience: A Case Study of Hangzhou, China. Sustainability, 17(6), 2338. https://doi.org/10.3390/su17062338