The Role of IT Flexibility in Enhancing Supply Chain Resilience in the Oil Products Distribution Sector
Abstract
:1. Introduction
2. Literature Review
3. Research Model and Hypotheses
4. Methodology
5. Results and Discussion
5.1. Structural Model Path Coefficients (Model 1)
5.2. Model Fit Indices and Statistical Reporting
5.3. Structural Model Path Coefficients (Model 2)
5.4. Testing of Hypotheses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Dimensions | Questions |
---|---|
Compatibility |
|
| |
Connectivity |
|
Modularity |
|
Dimensions | Questions |
---|---|
Agility |
|
Collaboration |
|
Flexibility |
|
Redundancy |
|
Redundancy |
|
Information Sharing |
|
visible |
|
References
- Cao, J.; Bo, Y.; Luo, X.; Bhaumik, D.A. A critical assessment of the distribution strategies employed in the marketing of petroleum products. Int. J. Multidiscip. Res. 2023, 45, 102–118. [Google Scholar]
- Egorov, A.S.; Prischepa, O.; Nefedov, Y.; Kontorovich, V.A.; Vinokurov, I.Y. Deep structure, tectonics and petroleum potential of the western sector of the Russian Arctic. J. Mar. Sci. Eng. 2021, 9, 258. [Google Scholar] [CrossRef]
- Shammary, N.A.; Badry, H.S. Effect of organizational ambidexterity in achieving high performance: Exploratory research in a company of the Petroleum Products Distribution Company/Al-Forat Al-Awsat Distribution Corporation/Babel. Transylv. Rev. 2020, 28, 99–114. [Google Scholar]
- Alanagh, S.T.; Aazad, M.A.; Ranjpour, R.; Pourebadolahan, M.; Asali, M. Calculating commission fee for the private sector’s distribution of petroleum products simultaneously with the proposal of changing Iran’s oil products market structure. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 6222–6239. [Google Scholar]
- Al-Qasimi, M.; Khudari, M.; Al Balushi, Z.; Abdullah, A. The logistics performance index in Oman: A comprehensive review through multi-criteria decision-making. J. Ecohumanism 2024, 3, 630–658. [Google Scholar]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Al-Shukri, B.S.; Al-Dulaimi, I.A.H.; Mijbas, H.A. Impact of strategic scenario planning on marketing competitive strategies: Applied study in tourism service in social media. Afr. J. Hosp. Tour. Leis. 2020, 9, 150–168. [Google Scholar]
- Al-Qasimi, M.; Khudari, M.; Al Balushi, Z. A review on mitigating disruptions and improving resilience in supply chain logistics. WSEAS Trans. Bus. Econ. 2024, 21, 2551–2577. [Google Scholar] [CrossRef]
- Mustapić, M.; Trstenjak, M.; Gregurić, P.; Opetuk, T. Implementation and use of digital, green and sustainable technologies in internal and external transport of manufacturing companies. Sustainability 2023, 15, 1025. [Google Scholar] [CrossRef]
- Milovanović, V.; Chong, K.L.; Paunović, M. Benefits from adopting technologies for the hotel’s supply chain management. Menadz. Hotelj. Tur. 2022, 14, 250–265. [Google Scholar] [CrossRef]
- Zhou, Z. Application and benefits of supply chain digitization in traditional manufacturing industries. Ind. Eng. Innov. Manag. 2023, 18, 140–152. [Google Scholar]
- Dolgui, A.; Ivanov, D.A. 5G in digital supply chain and operations management: Fostering flexibility, end-to-end connectivity and real-time visibility through internet-of-everything. Int. J. Prod. Res. 2021, 60, 442–451. [Google Scholar] [CrossRef]
- Meidutė-Kavaliauskienė, I.; Çiğdem, Ş.; Yıldız, B. The effect of supply chain learning on flexibility performance: An empirical study. Indep. J. Manag. Prod. 2022, 19, 225–241. [Google Scholar] [CrossRef]
- Rezaei, G.; Hosseini, S.M.; Sana, S.S. Exploring the relationship between data analytics capability and competitive advantage: The mediating roles of supply chain resilience and organization flexibility. Sustainability 2022, 14, 1580. [Google Scholar] [CrossRef]
- Amico, A.; Verginer, L.; Casiraghi, G.; Vaccario, G.; Schweitzer, F. Adapting to disruptions: Managing supply chain resilience through product rerouting. Sci. Adv. 2024, 10, eadj1194. [Google Scholar] [CrossRef]
- Ivanov, D. Comparative analysis of product and network supply chain resilience. Int. Trans. Oper. Res. 2025, 32, 150–165. [Google Scholar] [CrossRef]
- Suali, A.S.; Srai, J.S.; Tsolakis, N. The role of digital platforms in e-commerce food supply chain resilience under exogenous disruptions. Supply Chain Manag. 2024, 29, 500–518. [Google Scholar] [CrossRef]
- Villar, A.S.; Abowitz, S.; Read, R.L.; Butler, J. Maximizing supply chain resilience: Viability of a distributed manufacturing network platform using the Open Knowledge Resilience Framework. Oper. Res. Forum 2024, 5, 26. [Google Scholar] [CrossRef]
- Al-Saadi, T.; Cherepovitsyn, A.; Semenova, T. Iraq oil industry infrastructure development in the conditions of the global economy turbulence. Energies 2022, 15, 1023. [Google Scholar] [CrossRef]
- Raissouni, R.; Hamiche, M.; Bourekkadi, S.; Raissouni, K. The impact of the integrated supply chain on the operational performance of companies in the Moroccan electric vehicle sector. E3S Web Conf. 2023, 33, 150–165. [Google Scholar] [CrossRef]
- Mijbas, H.A.; Islam, M.K.; Khudari, M. The theoretical and analytical framework of dynamic capabilities in IT flexibility: An exploratory study in the Oil Products Distribution Company. J. Ecohumanism 2025, 5, 75–98. [Google Scholar] [CrossRef]
- Ness, L.R. Assessing the relationships among IT flexibility, strategic alignment, and IT effectiveness: Study overview and findings. J. Inf. Technol. Manag. 2005, 16, 1–17. [Google Scholar]
- Jorfi, S.; Nor, K.M.; Najjar, L. An empirical study of the role of IT flexibility and IT capability in IT-business strategic alignment. J. Syst. Inf. Technol. 2017, 19, 2–21. [Google Scholar] [CrossRef]
- Afandi, W. IT flexibility, capabilities, and IT-business alignment: Do organizational characteristics and context matter? J. Theor. Appl. Inf. Technol. 2020, 98, 3837. [Google Scholar]
- Chen, X.; Siau, K.L. Business analytics/business intelligence and IT infrastructure: Impact on organizational agility. J. Organ. End User Comput. 2020, 32, 138–161. [Google Scholar] [CrossRef]
- Ononiwu, M.I.; Onwuzulike, O.C.; Shitu, K. The role of digital business transformation in enhancing organizational agility. World J. Adv. Res. Rev. 2024, 15, 550–570. [Google Scholar]
- Gao, P.; Zhang, J.; Gong, Y.; Li, H. Effects of technical IT capabilities on organizational agility: The moderating role of IT business spanning capability. Ind. Manag. Data Syst. 2020, 120, 941–961. [Google Scholar] [CrossRef]
- Hou, C.K. The effects of IT infrastructure integration and flexibility on supply chain capabilities and organizational performance: An empirical study of the electronics industry in Taiwan. Inf. Dev. 2019, 36, 576–602. [Google Scholar] [CrossRef]
- Han, J.H.; Wang, Y.; Naim, M. Narrowing the Gaps: Assessment of Logistics Firms’ Information Technology Flexibility for Sustainable Growth. Sustainability 2020, 12, 4342. [Google Scholar] [CrossRef]
- Duncan, N.B. Capturing Flexibility of Information Technology Infrastructure: A Study of Resource Characteristics and their Measure. J. Manag. Inf. Syst. 1995, 12, 37–57. [Google Scholar] [CrossRef]
- Seguin, J.P.; Varghese, D.; Anwar, M.; Bartindale, T.; Olivier, P.L. Co-Designing Digital Platforms for Volunteer-Led Migrant Community Welfare Support. In Proceedings of the 2022 ACM Designing Interactive Systems Conference, Online, 13–17 June 2022; ACM: New York, NY, USA, 2022. [Google Scholar]
- Fasola, O.S.; Abimbola, M.O. Collaborative Technology for Information Sharing, Knowledge Creation and Management in Libraries. Gatew. Inf. J. 2023, 24, 33–46. [Google Scholar]
- Lindgren, R.; Saadatmand, F.; Schultze, U. Compatibility Promotion for Standard Development within Shared Platforms: A Rising Tide Does Not Lift All Boats. Electron. Mark. 2023, 33, 19. [Google Scholar] [CrossRef]
- Schmieder, F.; Habibey, R.; Striebel, J.; Büttner, L.; Czarske, J.W.; Busskamp, V. Tracking Long-Term Functional Connectivity Maps in Human Stem-Cell-Derived Neuronal Networks by Holographic-Optogenetic Stimulation. bioRxiv 2021. [Google Scholar] [CrossRef]
- Selmani, A.; Schoetz, M.D.; Queen, A.E.; Schoenebeck, F. Modularity in the Csp3 Space—Alkyl Germanes as Orthogonal Molecular Handles for Chemoselective Diversification. ACS Catal. 2022, 12, 4833–4839. [Google Scholar] [CrossRef]
- Silva, F.N.; Albeshri, A.; Thayananthan, V.; Alhalabi, W.; Fortunato, S. Robustness Modularity in Complex Networks. Phys. Rev. E 2022, 105, 054308. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Gupta, S.; Licsandru, T.C.; Schoefer, K. Integrating Machine Learning, Modularity, and Supply Chain Integration for Branding 4.0. Ind. Mark. Manag. 2022, 104, 136–149. [Google Scholar] [CrossRef]
- Skiada, P.; Ampatzoglou, A.; Arvanitou, E.; Chatzigeorgiou, A.; Stamelos, I. Exploring the Relationship between Software Modularity and Technical Debt. In Proceedings of the 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Prague, Czech Republic, 29–31 August 2018; pp. 404–407. [Google Scholar]
- Nnaji, U.O.; Benjamin, L.B.; Eyo-Udo, N.L.; Etukudoh, E.A. Strategies for enhancing global supply chain resilience to climate change. Int. J. Manag. Entrep. Res. 2024, 6, 1677–1686. [Google Scholar] [CrossRef]
- Adewusi, A.O.; Komolafe, A.M.; Ejairu, E.; Aderotoye, I.A.; Abiona, O.O.; Oyeniran, O.C. The Role of Predictive Analytics in Optimizing Supply Chain Resilience: A Review of Techniques and Case Studies. Int. J. Manag. Entrep. Res. 2024, 6, 815–837. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A. Viability of intertwined supply networks: Extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. Int. J. Prod. Res. 2020, 58, 2904–2915. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Chowdhury, P.; Quaddus, M.; Rahman, K.W.; Shahriar, S. Flexibility in Enhancing Supply Chain Resilience: Developing a Resilience Capability Portfolio in the Event of Severe Disruption. Glob. J. Flex. Syst. Manag. 2024, 25, 395–417. [Google Scholar] [CrossRef]
- Rashid, A.; Rasheed, R.; Ngah, A.H.; Jayaratne, M.D.R.P.; Rahi, S.; Tunio, M.N. Role of information processing and digital supply chain in supply chain resilience through supply chain risk management. J. Glob. Oper. Strat. Sourc. 2024, 17, 429–447. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, X.; Sun, J.; Zhang, Y.; Wang, Y. What Does Not Kill You Makes You Stronger: Supply Chain Resilience and Corporate Sustainability Through Emerging IT Capability. IEEE Trans. Eng. Manag. 2022, 71, 10507–10521. [Google Scholar] [CrossRef]
- Jurinic, E. A-205 Evaluating the Cost and Importance of Supply Chain Resilience in the Clinical Laboratory. Clin. Chem. 2024, 70, hvae106.203. [Google Scholar] [CrossRef]
- Yamin, M.A.; Almuteri, S.D.; Bogari, K.J.; Ashi, A.K. The Influence of Strategic Human Resource Management and Artificial Intelligence in Determining Supply Chain Agility and Supply Chain Resilience. Sustainability 2024, 16, 2688. [Google Scholar] [CrossRef]
- Haji, M.H.A. Enhancing insulin supply chain resilience: A critical importance for diabetes management. Glob. J. Obes. Diabetes Metab. Syndr. 2023, 10, 9–13. [Google Scholar]
- Romagnoli, G.; Galli, M.; Mezzogori, D.; Zammori, F. Exploratory Research on Adaptability and Flexibility of a Serious Game in Operations and Supply Chain Management. Int. J. Online Biomed. Eng. (iJOE) 2022, 18, 77–98. [Google Scholar] [CrossRef]
- Saad, N.A.; Elgazzar, S.; Kac, S.M. Investigating the impact of supply chain management practices on customer satisfaction through flexibility and technology adoption: Empirical evidence. Bus. Strat. Dev. 2023, 7, e326. [Google Scholar] [CrossRef]
- Hao, Y. Research on the Synergistic Optimization Path of Supply Chain Management and Working Capital in Retail Enterprises. Front. Bus. Econ. Manag. 2024, 17, 1–4. [Google Scholar] [CrossRef]
- Lello, D.S.; Emuze, F.A. Reconceptualizing a Model for Lean Construction Supply Chain. In Proceedings of the 32nd Annual Conference of the International Group for Lean Construction (IGLC 32), Auckland, New Zealand, 3–5 July 2024. [Google Scholar]
- Guo, J.; Wang, G.; Wang, Z.; Liang, C.; Gen, M. Research on remanufacturing closed loop supply chain based on incentive-compatibility theory under uncertainty. Ann. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Tang, K. Research on Information Sharing Among Supply Chain Financial Enterprises Based on Blockchain. Front. Business, Econ. Manag. 2024, 14, 104–110. [Google Scholar] [CrossRef]
- Nguyen, H.; Onofrei, G.; Truong, D. Supply chain communication and cultural compatibility: Performance implications in the global manufacturing industry. Bus. Process. Manag. J. 2020, 27, 253–274. [Google Scholar] [CrossRef]
- Rajaguru, R.; Matanda, M.J. Role of compatibility and supply chain process integration in facilitating supply chain capabilities and organizational performance. Supply Chain Manag. Int. J. 2019, 24, 301–316. [Google Scholar] [CrossRef]
- Wolf, S.; Hofmann, C.; Bahls, T.; Maurenbrecher, H.; Pleintinger, B. Modularity in Humanoid Robot Design for Flexibility in System Structure and Application. In Proceedings of the 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), Austin, TX, USA, 12–14 December 2023; pp. 1–7. [Google Scholar]
- Lukyanenko, R.; Samuel, B.M.; Parsons, J.; Storey, V.C.; Pastor, O.; Jabbari, A. Universal conceptual modeling: Principles, benefits, and an agenda for conceptual modeling research. Softw. Syst. Model. 2024, 23, 1077–1100. [Google Scholar] [CrossRef]
- Bush, A.A.; Tiwana, A.; Rai, A. Complementarities Between Product Design Modularity and IT Infrastructure Flexibility in IT-Enabled Supply Chains. IEEE Trans. Eng. Manag. 2010, 57, 240–254. [Google Scholar] [CrossRef]
- Cepeda-Carrión, G.; Hair, J.F.; Ringle, C.M.; Roldán, J.L.; García-Fernández, J. Guest editorial: Sports management research using partial least squares structural equation modeling (PLS-SEM). Int. J. Sports Mark. Spons. 2022, 23, 229–240. [Google Scholar] [CrossRef]
- Wang, S.; Cheah, J.-H.; Wong, C.Y.; Ramayah, T. Progress in partial least squares structural equation modeling use in logistics and supply chain management in the last decade: A structured literature review. Int. J. Phys. Distrib. Logist. Manag. 2023, 54, 673–704. [Google Scholar] [CrossRef]
- Shuttleworth, M. Internal Consistency Reliability. In The SAGE Encyclopedia of Research Design; Sage Publications: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.R.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Lim, W.M. A typology of validity: Content, face, convergent, discriminant, nomological and predictive validity. J. Trade Sci. 2024, 12, 155–179. [Google Scholar] [CrossRef]
Section | Variables | Source | Items | Cranach’s Alpha |
---|---|---|---|---|
Section one | Participant and company background information | Researcher developed | 4 | |
Section two | Compatibility | [17] [39] [40] | 6 | 0.874 |
Connectivity | 6 | 0.844 | ||
Modularity | 6 | 0.877 | ||
IT Flexibility | 18 | 0.947 | ||
Section three | Supply chain resilience | [37] [38] [41] | 42 | 0.963 |
Measurement Items | Mean | SD |
---|---|---|
CPT | 3.635 | 0.693 |
CNT | 3.639 | 0.704 |
MOD | 3.615 | 0.701 |
ITF | 3.630 | 0.656 |
SCR | 3.617 | 0.579 |
Variable | Composite Reliability | |
---|---|---|
ITF | CPT | 0.89 |
CNT | 0.874 | |
MOD | 0.89 | |
SCR | AG | 0.898 |
COL | 0.823 | |
FIX | 0.899 | |
RDY | 0.828 | |
IS | 0.898 | |
VIS | 0.825 |
First-Order Variables | Second-Order Variables | Items | Loadings | AVE |
---|---|---|---|---|
CPT | ITF | CPT1 <- CP | 0.779 | 0.632 |
CPT2 <- CP | 0.778 | |||
CPT3 <- CP | 0.794 | |||
CPT4 <- CP | 0.79 | |||
CPT5 <- CP | 0.832 | |||
CPT6 <- CP | 0.794 | |||
CNT | CNT1 <- CNT | 0.809 | 0.647 | |
CNT2 <- CNT | 0.792 | |||
CNT3 <- CNT | 0.829 | |||
CNT4 <- CNT | 0.788 | |||
CNT5 <- CNT | 0.798 | |||
CNT6 <- CNT | 0.81 | |||
MOD | MOD1 <- MOD | 0.725 | 0.614 | |
MOD2 <- MOD | 0.801 | |||
MOD3 <- MOD | 0.807 | |||
MOD4 <- MOD | 0.814 | |||
MOD5 <- MOD | 0.804 | |||
MOD6 <- MOD | 0.745 | |||
AG | SCR | AG1 <- AG | 0.782 | 0.585 |
AG2 <- AG | 0.772 | |||
AG3 <- AG | 0.767 | |||
AG4 <- AG | 0.723 | |||
AG5 <- AG | 0.771 | |||
AG6 <- AG | 0.721 | |||
AG7 <- AG | 0.779 | |||
AG8 <- AG | 0.798 | |||
COL | COL-1 <- COL | 0.58 | 0.559 | |
COL-2 <- COL | 0.646 | |||
COL-3 <- COL | 0.627 | |||
COL-4 <- COL | 0.789 | |||
COL-5 <- COL | 0.797 | |||
COL-6 <- COL | 0.738 | |||
COL-7 <- COL | 0.755 | |||
COL-8 <- COL | 0.388 | |||
FIX | FIX-1 <- FIX | 0.794 | 0.589 | |
FIX-2 <- FIX | 0.768 | |||
FIX-3 <- FIX | 0.773 | |||
FIX-4 <- FIX | 0.736 | |||
FIX-5 <- FIX | 0.777 | |||
FIX-6 <- FIX | 0.712 | |||
FIX-7 <- FIX | 0.777 | |||
FIX-8 <- FIX | 0.79 | |||
RDY | RDY-1 <- RDE | 0.596 | 0.585 | |
RDY-2 <- RDE | 0.666 | |||
RDY-3 <- RDE | 0.653 | |||
RDY-4 <- RDE | 0.789 | |||
RDY-5 <- RDE | 0.799 | |||
RDY-6 <- RDE | 0.745 | |||
RDY-7 <- RDE | 0.702 | |||
RDY-8 <- RDE | 0.407 | |||
IS | IS-1 <- IS | 0.796 | 0.586 | |
IS-2 <- IS | 0.778 | |||
IS-3 <- IS | 0.772 | |||
IS-4 <- IS | 0.737 | |||
IS-5 <- IS | 0.778 | |||
IS-6 <- IS | 0.721 | |||
IS-7 <- IS | 0.779 | |||
IS-8 <- IS | 0.753 | |||
VIS | VIS-1 <- VIS | 0.59 | 0.559 | |
VIS-2 <- VIS | 0.656 | |||
VIS-3 <- VIS | 0.639 | |||
VIS-4 <- VIS | 0.78 | |||
VIS-5 <- VIS | 0.797 | |||
VIS-6 <- VIS | 0.734 | |||
VIS-7 <- VIS | 0.734 | |||
VIS-8 <- VIS | 0.40 |
ITF | CPT | CNT | MOD | SCR | AG | COL | FIX | RDY | IS | VIS | |
---|---|---|---|---|---|---|---|---|---|---|---|
IT | 0.746 | ||||||||||
CPT | 0.949 | 0.795 | |||||||||
CNT | 0.946 | 0.861 | 0.805 | ||||||||
MOD | 0.922 | 0.81 | 0.799 | 0.783 | |||||||
SCR | 0.879 | 0.828 | 0.832 | 0.816 | 0.639 | ||||||
AG | 0.87 | 0.835 | 0.829 | 0.786 | 0.918 | 0.765 | |||||
COL | 0.663 | 0.619 | 0.633 | 0.617 | 0.84 | 0.593 | 0.677 | ||||
FIX | 0.87 | 0.835 | 0.836 | 0.779 | 0.922 | 0.967 | 0.592 | 0.766 | |||
RDY | 0.656 | 0.591 | 0.599 | 0.662 | 0.847 | 0.591 | 0.94 | 0.586 | 0.68 | ||
IS | 0.867 | 0.828 | 0.828 | 0.787 | 0.925 | 0.975 | 0.592 | 0.992 | 0.598 | 0.765 | |
VIS | 0.66 | 0.597 | 0.611 | 0.655 | 0.845 | 0.584 | 0.942 | 0.59 | 0.989 | 0.589 | 0.677 |
Path | Beta | St. Error | T |
---|---|---|---|
ITF -> SCR | 0.88 | 0.034 | 12.654 |
Model Fit Index | Value | Interpretation |
---|---|---|
R2 (R-squared) | 0.0041 | Indicates IT flexibility explains 0.41% of the variance in supply chain resilience. |
Adjusted R2 | 0.0010 | Accounts for the number of predictors, confirming minimal explanatory power. |
SRMR (Standardized Root Mean Square Residual) | 0.576 | Represents residual variance; lower values indicate a better model fit. |
f2 (Effect Size) | 0.0041 | Small effect size, suggesting weak predictive power. |
Path | Beta | Std. Error | T |
---|---|---|---|
CPT -> SCR | 0.319 | 0.057 | 5.623 |
CNT -> SCR | 0.304 | 0.054 | 5.638 |
MOD -> SCR | 0.316 | 0.046 | 6.823 |
Research Hypotheses | Path | T | St. Error | Result | |
---|---|---|---|---|---|
H1 | IT flexibility significantly affects supply chain resilience | 0.880 | 12.654 | 0.034 | Accept |
H2 | Compatibility significantly affects supply chain resilience. | 0.319 | 5.623 | 0.057 | Accept |
H3 | Connectivity significantly affects supply chain resilience. | 0.304 | 5.638 | 0.054 | Accept |
H4 | Modularity significantly affects supply chain resilience. | 0.316 | 6.823 | 0.046 | Accept |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mijbas, H.A.; Islam, M.K.; Khudari, M. The Role of IT Flexibility in Enhancing Supply Chain Resilience in the Oil Products Distribution Sector. Sustainability 2025, 17, 2295. https://doi.org/10.3390/su17052295
Mijbas HA, Islam MK, Khudari M. The Role of IT Flexibility in Enhancing Supply Chain Resilience in the Oil Products Distribution Sector. Sustainability. 2025; 17(5):2295. https://doi.org/10.3390/su17052295
Chicago/Turabian StyleMijbas, Hayder Abdulmohsin, Muhummad Khairul Islam, and Mohamed Khudari. 2025. "The Role of IT Flexibility in Enhancing Supply Chain Resilience in the Oil Products Distribution Sector" Sustainability 17, no. 5: 2295. https://doi.org/10.3390/su17052295
APA StyleMijbas, H. A., Islam, M. K., & Khudari, M. (2025). The Role of IT Flexibility in Enhancing Supply Chain Resilience in the Oil Products Distribution Sector. Sustainability, 17(5), 2295. https://doi.org/10.3390/su17052295