Exploring Geochemical Characteristics of Composite Geothermal Reservoirs for Sustainable Utilization: A Case Study of the Northwestern Shandong Geothermal Area in China
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
5. Discussion
5.1. Hydrogeochemical Processes for the Formation of Major Ions
5.1.1. Dissolution–Precipitation Processes
5.1.2. Cation Exchange Reactions
5.2. Circulation Characteristics of Geothermal Fluids
5.2.1. Estimation of Reservoir Temperatures
5.2.2. Circulation Depths of Geothermal Fluids
5.2.3. Fluid Sources
5.2.4. Mixing Processes of Geothermal Fluids
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spittler, N.; Shafiei, E.; Davidsdottir, B.; Juliusson, E. Modelling geothermal resource utilization by incorporating resource dynamics, capacity expansion, and development costs. Energy 2020, 190, 116407. [Google Scholar] [CrossRef]
- Jalilinasrabady, S.; Itoi, R. Classification of Geothermal Energy Resources in Japan Applying Exergy Concept. Int. J. Energy Res. 2013, 37, 1842–1850. [Google Scholar] [CrossRef]
- Barbacki, A. Classification of geothermal resources in Poland by exergy analysis-Comparative study. Renew. Sustain. Energy Rev. 2012, 16, 123–128. [Google Scholar] [CrossRef]
- Bina, S.M.; Jalilinasrabady, S.; Fujii, H.; Pambudi, N.A. Classification of geothermal resources in Indonesia by applying exergy concept. Renew. Sustain. Energy Rev. 2018, 93, 499–506. [Google Scholar] [CrossRef]
- Górecki, W.; Sowizdzal, A.; Hajto, M.; Wachowicz-Pyzik, A. Atlases of geothermal waters and energy resources in Poland. Environ. Earth Sci. 2015, 74, 7487–7495. [Google Scholar] [CrossRef]
- Wang, G.L.; Lin, W.J. Main hydro-geothermal systems and their genetic models in China. Acta Geol. Sin. 2020, 94, 1923–1937. (In Chinese) [Google Scholar]
- Karlsdottir Marta, R.; Heinonen, J.; Palsson, H.; Palsson, O. Life cycle assessment of a geothermal combined heat and power plant based on high temperature utilization. Geothermics 2020, 84, 101727. [Google Scholar] [CrossRef]
- Jolie, E.; Scott, S.; Faulds, J.; Chambefort, I.; Axelsson, G.; Guti’errez-Negrín, L.C.; Regenspurg, S.; Ziegler, M.; Ayling, B.; Richter, A.; et al. Geological controls on geothermal resources for power generation. Nat. Rev. Earth Environ. 2021, 2, 324–339. [Google Scholar] [CrossRef]
- Mou, L.K. Study of Occurrence Characteristics and Formation Model of Geothermal Water in Shandong Province; Shandong University of Science and Technology: Qingdao, China, 2017. (In Chinese) [Google Scholar]
- Gao, Z.J.; Sun, Z.J.; Yang, Y.H.; Mou, L.K.; Cui, Y.C. Occurrence Characteristics and Hydrochemical Characteristics of Geothermal Water in Shandong Province. Sci. Technol. Eng. 2019, 19, 85–90. (In Chinese) [Google Scholar]
- Li, M.; Zhang, W. Characteristics and mechanisms of fluorine enrichment in the geothermal water of south central Shandong Province. Bull. Geol. Sci. Technol. 2024, 43, 36–47. (In Chinese) [Google Scholar]
- Zhang, B.J. Hydrogeochemical Characteristics and Formation Conditions of the Geothermal Water in Northwestern Shandong Province; China University of Geosciences: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Cui, Y.; Kang, F.X.; Zhong, Z.N.; Yang, X.C.; Sui, H.B.; Zhao, Q. Gas Isotope Constraints on the Geothermal Heat Source Mechanism in Northwest Shandong Plain. Acta Geosci. Sin. 2023, 44, 93–106. [Google Scholar]
- Cui, R.; Wang, X.P.; Feng, B.; Liu, X.Y.; Feng, S.T.; Liu, S. Comparative analysis of the genesis models of different geothermal reservoirs in Chengning uplift area in northwest Shandong based on hydrochemical isotope technology. Carsologica Sin. 2023, 42, 969–981, 994. (In Chinese) [Google Scholar]
- Yang, X.C.; Kang, F.X.; Wang, X.P. Hydrochemical features of geothermal reservoir geotemperature field in sandstone porosity and enrichment mechanism of geothermal water:a case study of geothermal reservoir of Guantao Formation in the Lubei. Acta Geol. Sin. 2019, 93, 738–750. (In Chinese) [Google Scholar]
- Hu, C.P.; Wang, N.S. Thermal anomaly mechanism of carbonate rock thermal storage in the shallow buried areas of northwestern Jinan. Acta Geol. Sin. 2019, 93 (Suppl. 1), 178–183. (In Chinese) [Google Scholar]
- Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. Cosmochim. Acta 1996, 60, 1807–1821. [Google Scholar] [CrossRef]
- Peiffer, L.; Taran, Y.A.; Lounejeva, E.; Solis-Pichardo, G.; Rouwet, D.; Bemard-Romero, R.A. Tracing thermal aquifers of El Chichón volcano-hydrothermal system (México) with 87Sr/86Sr, Ca/Sr and REE. J. Volcanol. Geotherm. Res. 2011, 205, 55–66. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Zhang, F.; Dontsov, E.; Damjanac, B. Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling. Int. J. Solids Struct. 2019, 176, 207–220. [Google Scholar] [CrossRef]
- Temizel, E.H.; Gültekin, F.; Ersoy, A.F. (Eds.) Multi-isotopic (O, H, C, S, Sr, B, Li) characterization of waters in a low-enthalpy geothermal system in Havza (Samsun), Turkey. Geothermics 2021, 97, 102240. [Google Scholar] [CrossRef]
- Li, M.; Xing, L.X.; Wang, G.L. Distribution characteristics of fluorine in deep geothermal water in Jizhong Depression and its risk assessment and development utilization suggestions. Geol. China 2023, 50, 1857–1870. (In Chinese) [Google Scholar] [CrossRef]
- Tan, P.; Fu, S.; Huang, L.; Chen, Z.; Cao, J. Effects of orthogonal cleat structures on hydraulic fracture evolution behavior. Geoenergy Sci. Eng. 2024, 241, 213119. [Google Scholar] [CrossRef]
- Gültekin, F.; Hatipoglu, E.; Ersoy, A.F. Hydrogeochemistry, environment-al isotopes and the origin of the Hamamayagi-Ladik thermal spring (Samsun, Turkey). Environ. Earth Sci. 2011, 62, 1351–1360. [Google Scholar] [CrossRef]
- Sack, A.L.; Sharma, S. A multi-isotope approach for understanding sources of water, carbon and sulfur in natural springs of the Central Appalachian region. Environ. Earth Sci. 2014, 71, 4715–4724. [Google Scholar] [CrossRef]
- Guo, Q.H.; He, T.; Wu, Q.F.; Liu, M.L. Constraints of major ions and arsenic on the geological genesis of geothermal water: Insight from a com-parison between Xiong’an and Yangbajain, two hydrothermal systems in China. Appl. Geochem. 2020, 117, 104589. [Google Scholar] [CrossRef]
- Rahayudin, Y.; Kashiwaya, K.; Tada, Y.; Iskandar, I.; Koike, K.; Atmaja, R.W.; Herdianita, N.R. On the origin and evolution of geothermal fluids in the Patuha geothermal field, Indonesia based on geochemical and stable isotope data. Appl. Geochem. 2020, 114, 104530. [Google Scholar] [CrossRef]
- Fu, H.; Huang, L.; Hou, B.; Weng, D.; Guan, B.; Zhong, T.; Zhao, Y. Experimental and numerical investigation on interaction mechanism between hydraulic fracture and natural fracture. Rock Mech. Rock Eng. 2024, 57, 10571–10582. [Google Scholar] [CrossRef]
- Fournier, R.O. Chemical geothermometers and mixing models for geothermal systems. Geothermics 1977, 5, 41–50. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H. Isotopic and chemical composition of Parbati valley geothermal discharges, north-west Himalaya, India. Geothermics 1983, 12, 199–222. [Google Scholar] [CrossRef]
- Fournier, R.O.; Potter, R.W. Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim. Cosmochim. Acta 1979, 43, 1543–1550. [Google Scholar] [CrossRef]
- Sanjuan, B.; Millot, R.; Asmundsson, R.; Brach, M.; Giroud, N. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments. Chem. Geol. 2014, 389, 60–81. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Lico, M.S.; Law, L.M. Chemical geothermometers applied to formation waters, Gulf of Mexico and California Basins (abstract). Am. Ass. Petrol. Geol. Bull. 1982, 66, 588. [Google Scholar]
- Michard, G. Behaviour of major elements and some trace elements (Li, Rb, Cs, Fe, Mn, W, F) in deep hot waters from granitic areas. Chem. Geol. 1990, 89, 117–134. [Google Scholar] [CrossRef]
- Verma, S.P.; Santoyo, E. New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J. Volcanol. Geoth. Res. 1997, 79, 9–23. [Google Scholar] [CrossRef]
- Kang, F.X.; Yang, X.C.; Wang, X.P.; Zheng, T.T.; Bai, T.; Liu, Z.T.; Sui, H.B. Hydrothermal Features of a Sandstone Geothermal Reservoir in the North Shandong Plain, China. Lithosphere 2022, 5, 1675798. [Google Scholar] [CrossRef]
- Tan, P.; Chen, Z.; Huang, L.; Zhao, Q.; Shao, S. Evaluation of the combined influence of geological layer property and in-situ stresses on fracture height growth for layered formations. Pet. Sci. 2024, 21, 3222–3236. [Google Scholar] [CrossRef]
- Wang, G.L. Geothermal Records of China; Science Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Long, H.; Zhu, Q.; Tian, P.; Hu, W. Technologies and Applications of Geophysical Exploration in Deep Geothermal Resources in China; World Geothermal Congress: Melbourne, Australia, 2015. [Google Scholar]
- Zhang, L.; Chen, S.; Zhang, C. Geothermal power generation in China: Status and prospects. Energy Sci. Eng. 2019, 7, 1428–1450. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, C. The classification method of water chemical types based on the principle of Kurllov’s Formula and Shoka Lev classification. Ground Water 2018, 4, 6–11. [Google Scholar]
- Xiao, W. Formation Conditions and Hydrogeochemical Characteristics of the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province; China University of Geosciences: Wuhan, China, 2018. (In Chinese) [Google Scholar]
- Scholler, H. Qualitative evaluation of groundwater resource: Methods and techniques of groundwater investigation and development. Water Res. 1967, 33, 4452. [Google Scholar]
- Mao, R.; Guo, H.; Jia, Y.; Jiang, Y.; Cao, Y.; Zhao, W.; Wang, Z. Distribution Characteristics and Genesis of Fluoride Groundwater in the Hetao Basin, Inner Mongolia. Earth Sci. Front. 2016, 23, 260–268, (In Chinese with English Abstract). [Google Scholar]
- Nicholson, K. Geothermal Fluids; Springer: Berlin/Heidelberg, Germany, 1993; pp. 141–149. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- DZ/T 0331-2020; Specification for Estimation and Evaluation of Geothermal Resources. Ministry of Natural Resources, People’s Republic of China: Beijing, China; Geology Press: Beijing, China, 2020. (In Chinese)
- Sun, Z.X.; Li, X.L.; Shi, W.J. Isotopic hydrogeochemistry of medium-low temperature geothermal water in Jiangxi. J. East. China Inst. Geol. 1992, 15, 243–248. (In Chinese) [Google Scholar]
- Liu, J.R.; Song, X.F. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources. Chin. Sci. Bull. 2009, 54, 3521–3531. [Google Scholar]
- Wang, H.C. Introduction to Isotope Hydrogeology; Geological Publishing House: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Truesdell, A.H.; Nathenson, M.; Rye, R.O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J. Geophys. Res. Part B Solid Earth 1977, 82, 3694–3704. [Google Scholar] [CrossRef]
Reservoir Type | pH | Depth (m) | T (°C) | TDS (mg/L) | Concentrations of Major Ions (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | Na | Ca | Mg | SO4 | HCO3 | Cl | Sr | F | ||||||
Sandstone reservoir | Minimum | 7.60 | 1050.00 | 42.00 | 3676.03 | 5.20 | 1037.50 | 14.56 | 8.83 | 631.64 | 134.24 | 417.41 | 0.00 | 1.05 |
Maximum | 9.20 | 1649.02 | 65.00 | 6788.47 | 49.00 | 2400.00 | 280.56 | 65.00 | 2734.35 | 369.91 | 3578.68 | 10.88 | 7.50 | |
Average | 8.03 | 1416.54 | 55.14 | 5079.16 | 12.97 | 1675.42 | 136.79 | 26.00 | 1260.83 | 221.74 | 1829.10 | 5.66 | 1.66 | |
Karst reservoir | Minimum | 7.10 | 576.90 | 33.00 | 3314.91 | 18.50 | 152.50 | 609.40 | 124.46 | 1626.94 | 103.94 | 173.40 | 11.75 | 2.60 |
Maximum | 8.00 | 2400.00 | 56.00 | 7416.26 | 80.00 | 1450.00 | 868.30 | 159.57 | 2337.87 | 176.69 | 2393.81 | 17.50 | 4.50 | |
Average | 7.56 | 1204.85 | 43.98 | 5307.03 | 46.11 | 805.39 | 727.57 | 142.29 | 2030.42 | 150.15 | 1374.23 | 14.87 | 3.39 |
Reservoir Type | Sample No. | Area | T (Measured) (°C) | T (Quartz) (°C) | T (Chalcedony) (°C) | T (K-Mg) (°C) | T (Na-K) (°C) | T (Na-K-Ca) (°C) | Selected Temperature (°C) |
---|---|---|---|---|---|---|---|---|---|
Karst reservoir | TR1 | Liaocheng | 56.00 | 82.09 | 50.88 | 76.72 | 180.78 | 105.08 | 82.09 |
TR2 | Liaocheng | 50.20 | 82.09 | 50.88 | 79.07 | 190.41 | 106.05 | 82.09 | |
TR3 | Liaocheng | 52.00 | 78.01 | 46.59 | 76.79 | 186.73 | 102.65 | 78.01 | |
TR4 | Dezhou | / | 76.58 | 45.09 | 52.59 | 234.12 | 50.44 | 76.58 | |
TR5 | Dezhou | 27.00 | 67.06 | 35.13 | 55.54 | 226.66 | 56.58 | 67.06 | |
TR6 | Ji’nan | / | 52.97 | 20.54 | 66.49 | 159.78 | 83.74 | 52.97 | |
TR7 | Ji’nan | 41.80 | 76.58 | 45.09 | 85.23 | 170.80 | 117.24 | 76.58 | |
TR8 | Ji’nan | 36.20 | 61.53 | 29.38 | 63.93 | 159.66 | 80.81 | 61.53 | |
TR9 | Ji’nan | 33.00 | 59.53 | 27.31 | 62.22 | 154.01 | 79.49 | 59.53 | |
TR10 | Ji’nan | 40.60 | 68.78 | 36.92 | 79.22 | 156.39 | 108.88 | 68.78 | |
TR11 | Ji’nan | 42.00 | 73.60 | 41.96 | 82.18 | 163.99 | 113.05 | 73.60 | |
TR12 | Ji’nan | 55.00 | 75.11 | 43.55 | 58.81 | 217.88 | 62.59 | 75.11 | |
TR13 | Ji’nan | 43.00 | 75.11 | 43.55 | 55.43 | 220.20 | 56.49 | 75.11 | |
TR14 | Ji’nan | 39.90 | 73.60 | 41.96 | 81.47 | 163.99 | 111.64 | 73.60 | |
Sandstone reservoir | SR1 | Liaocheng | / | 75.11 | 43.55 | 57.37 | 60.72 | 80.05 | 75.11 |
SR2 | Liaocheng | / | 75.11 | 43.55 | 51.75 | 70.18 | 72.87 | 75.11 | |
SR3 | Liaocheng | 52.00 | 67.06 | 35.13 | 53.02 | 63.85 | 75.60 | 67.06 | |
SR4 | Liaocheng | 50.00 | 82.09 | 50.88 | 51.10 | 59.28 | 79.68 | 82.09 | |
SR5 | Liaocheng | 55.00 | 82.09 | 50.88 | 56.33 | 61.90 | 76.63 | 82.09 | |
SR6 | Liaocheng | 53.00 | 85.88 | 54.89 | 72.97 | 69.29 | 94.09 | 85.88 | |
SR7 | Liaocheng | 54.00 | / | / | 64.45 | 68.17 | 78.39 | / | |
SR8 | Dezhou | 62.50 | 84.64 | 53.59 | 70.30 | 72.02 | 94.28 | 84.64 | |
SR9 | Dezhou | / | 84.64 | 53.59 | 67.31 | 71.20 | 93.25 | 84.64 | |
SR10 | Dezhou | 55.00 | 79.41 | 48.06 | 62.73 | 62.31 | 87.72 | 79.41 | |
SR11 | Dezhou | 58.50 | 79.41 | 48.06 | 63.99 | 65.19 | 89.76 | 79.41 | |
SR12 | Dezhou | 56.00 | 80.76 | 49.49 | 64.36 | 64.57 | 89.85 | 80.76 | |
SR13 | Dezhou | 58.00 | 82.09 | 50.88 | 65.52 | 58.76 | 84.77 | 82.09 | |
SR14 | Dezhou | 56.00 | 79.41 | 48.06 | 65.97 | 59.66 | 86.68 | 79.41 | |
SR15 | Dezhou | / | 84.64 | 53.59 | 55.81 | 52.93 | 79.94 | 84.64 | |
SR16 | Dezhou | 51.00 | 79.41 | 48.06 | 63.66 | 64.78 | 91.83 | 79.41 | |
SR17 | Dezhou | 47.00 | 78.01 | 46.59 | 55.10 | 48.65 | 77.35 | 78.01 | |
SR18 | Dezhou | 58.00 | / | / | 61.93 | 68.49 | 91.46 | / | |
SR19 | Dezhou | 59.00 | / | / | 63.75 | 63.09 | 88.50 | / | |
SR20 | Binzhou | / | 76.58 | 45.09 | 51.21 | 42.97 | 71.76 | 76.58 | |
SR21 | Binzhou | / | 76.58 | 45.09 | 54.59 | 45.00 | 74.24 | 76.58 | |
SR22 | Binzhou | / | 60.54 | 28.36 | 35.85 | 38.48 | 63.50 | 60.54 | |
SR23 | Ji’nan | 54.00 | 81.08 | 49.83 | 64.82 | 67.52 | 89.79 | 81.08 | |
SR24 | Ji’nan | 55.00 | 85.88 | 54.89 | 66.03 | 68.00 | 90.25 | 85.88 | |
SR25 | Ji’nan | 56.00 | 72.04 | 40.33 | 52.07 | 49.28 | 76.42 | 72.04 | |
SR26 | Dongying | 65.00 | 82.09 | 50.88 | 65.24 | 63.77 | 87.63 | 82.09 | |
SR27 | Dongying | 60.00 | 76.58 | 45.09 | 65.01 | 60.76 | 86.33 | 76.58 | |
SR28 | Dongying | 54.00 | 78.01 | 46.59 | 67.17 | 66.80 | 90.10 | 78.01 |
Reservoir Type | Area | Sample No. | H (m) | t1 (°C) | t2 (°C) | G (°C/100 m) | h (m) |
---|---|---|---|---|---|---|---|
Karst reservoir | Liaocheng | TR1 | 1742.21 | 82.09 | 13.2 | 4 | 20 |
Liaocheng | TR2 | 1742.21 | 82.09 | 13.2 | 4 | 20 | |
Liaocheng | TR3 | 1640.35 | 78.01 | 13.2 | 4 | 20 | |
Dezhou | TR4 | 1297.68 | 76.58 | 12.7 | 5 | 20 | |
Dezhou | TR5 | 1107.28 | 67.06 | 12.7 | 5 | 20 | |
Ji’nan | TR6 | 1161.89 | 52.97 | 13 | 3.5 | 20 | |
Ji’nan | TR7 | 1836.69 | 76.58 | 13 | 3.5 | 20 | |
Ji’nan | TR8 | 1406.45 | 61.53 | 13 | 3.5 | 20 | |
Ji’nan | TR9 | 1349.39 | 59.53 | 13 | 3.5 | 20 | |
Ji’nan | TR10 | 1613.71 | 68.78 | 13 | 3.5 | 20 | |
Ji’nan | TR11 | 1751.50 | 73.60 | 13 | 3.5 | 20 | |
Ji’nan | TR12 | 1794.70 | 75.11 | 13 | 3.5 | 20 | |
Ji’nan | TR13 | 1794.70 | 75.11 | 13 | 3.5 | 20 | |
Ji’nan | TR14 | 1751.50 | 73.60 | 13 | 3.5 | 20 | |
Sandstone reservoir | Liaocheng | SR1 | 1567.87 | 75.11 | 13.2 | 4 | 20 |
Liaocheng | SR2 | 1567.87 | 75.11 | 13.2 | 4 | 20 | |
Liaocheng | SR3 | 1366.60 | 67.06 | 13.2 | 4 | 20 | |
Liaocheng | SR4 | 1742.21 | 82.09 | 13.2 | 4 | 20 | |
Liaocheng | SR5 | 1742.21 | 82.09 | 13.2 | 4 | 20 | |
Liaocheng | SR6 | 1837.01 | 85.88 | 13.2 | 4 | 20 | |
Liaocheng | SR7 | / | / | 13.2 | 4 | 20 | |
Dezhou | SR8 | 2075.57 | 84.64 | 12.7 | 3.5 | 20 | |
Dezhou | SR9 | 2075.57 | 84.64 | 12.7 | 3.5 | 20 | |
Dezhou | SR10 | 1925.90 | 79.41 | 12.7 | 3.5 | 20 | |
Dezhou | SR11 | 1925.90 | 79.41 | 12.7 | 3.5 | 20 | |
Dezhou | SR12 | 1964.69 | 80.76 | 12.7 | 3.5 | 20 | |
Dezhou | SR13 | 2002.52 | 82.09 | 12.7 | 3.5 | 20 | |
Dezhou | SR14 | 1925.90 | 79.41 | 12.7 | 3.5 | 20 | |
Dezhou | SR15 | 2075.57 | 84.64 | 12.7 | 3.5 | 20 | |
Dezhou | SR16 | 1925.90 | 79.41 | 12.7 | 3.5 | 20 | |
Dezhou | SR17 | 1886.12 | 78.01 | 12.7 | 3.5 | 20 | |
Dezhou | SR18 | / | / | 12.7 | 3.5 | 20 | |
Dezhou | SR19 | / | / | 12.7 | 3.5 | 20 | |
Binzhou | SR20 | 1853.84 | 76.58 | 12.4 | 3.5 | 20 | |
Binzhou | SR21 | 1853.84 | 76.58 | 12.4 | 3.5 | 20 | |
Binzhou | SR22 | 1395.37 | 60.54 | 12.4 | 3.5 | 20 | |
Ji’nan | SR23 | 1965.28 | 81.08 | 13 | 3.5 | 20 | |
Ji’nan | SR24 | 2102.29 | 85.88 | 13 | 3.5 | 20 | |
Ji’nan | SR25 | 1707.00 | 72.04 | 13 | 3.5 | 20 | |
Dongying | SR26 | 2016.81 | 82.09 | 12.2 | 3.5 | 20 | |
Dongying | SR27 | 1859.55 | 76.58 | 12.2 | 3.5 | 20 | |
Dongying | SR28 | 1900.40 | 78.01 | 12.2 | 3.5 | 20 |
Reservoir Type | Area | δDVSMOW (‰) | δ18OVSMOW (‰) | Elevation of the Sampling Site | Elevation (D) | Elevation (O) | Recharge Source Temperature |
---|---|---|---|---|---|---|---|
Karst reservoir | Liaocheng | −68 | −9.4 | 34 | 634.00 | 649.38 | 6.86 |
Ji’nan | −72 | −9.8 | 34 | 834.00 | 803.23 | 5.83 | |
−74 | −9.6 | 25 | 925.00 | 717.31 | 5.32 | ||
−67.4 | −9 | 29 | 1099.00 | 1067.46 | 7.01 | ||
−63.4 | −8.8 | 21 | 891.00 | 982.54 | 8.03 | ||
−62.8 | −9.2 | 22 | 862.00 | 1137.38 | 8.19 | ||
−68.1 | −9.6 | 25 | 1130.00 | 1294.23 | 6.83 | ||
−76 | −10.5 | 26 | 1526.00 | 1641.38 | 4.81 | ||
−71.3 | −10.1 | 22 | 1287.00 | 1483.54 | 6.01 | ||
−68.2 | −9.7 | 21 | 1131.00 | 1328.69 | 6.81 | ||
−69.4 | −9.8 | 25 | 1195.00 | 1371.15 | 6.50 | ||
−68.3 | −8.7 | 30 | 1145.00 | 953.08 | 6.78 | ||
−63.4 | −8 | 34 | 904.00 | 687.85 | 8.03 | ||
−72 | −9.8 | 34 | 1334.00 | 1380.15 | 5.83 | ||
−70 | −9.6 | 34 | 1234.00 | 1303.23 | 6.35 | ||
−70 | −9.6 | 25 | 1225.00 | 1294.23 | 6.35 | ||
−71 | −9.3 | 25 | 1275.00 | 1178.85 | 6.09 | ||
−68 | −9.7 | 34 | 1134.00 | 1341.69 | 6.86 | ||
−69 | −9.3 | 25 | 1175.00 | 1178.85 | 6.60 | ||
−73 | −9.8 | 25 | 1375.00 | 1371.15 | 5.58 | ||
−73 | −10.6 | 25 | 1375.00 | 1678.85 | 5.58 | ||
−76 | −10.1 | 25 | 1525.00 | 1486.54 | 4.81 | ||
Sandstone reservoir | Ji’nan | −73 | −10.1 | 28 | 1378.00 | 1489.54 | 5.58 |
−68 | −9.2 | 17 | 1117.00 | 1132.38 | 6.86 | ||
−70.39 | −8.53 | 17 | 1236.50 | 874.69 | 6.25 | ||
−66 | −8.9 | 21 | 1021.00 | 1021.00 | 7.37 | ||
−70.39 | −8.53 | 15 | 1234.50 | 872.69 | 6.25 | ||
Liaocheng | −71 | −9.4 | 36 | 1286.00 | 1228.31 | 6.09 | |
−69 | −9.4 | 32 | 1182.00 | 1224.31 | 6.60 | ||
−70 | −9.4 | 34 | 1234.00 | 1226.31 | 6.35 | ||
−71 | −9.7 | 33 | 1283.00 | 1340.69 | 6.09 | ||
−73 | −9.4 | 42 | 1392.00 | 1234.31 | 5.58 | ||
−66 | −8.8 | 42 | 1042.00 | 1003.54 | 7.37 | ||
−70 | −9.5 | 34 | 1234.00 | 1264.77 | 6.35 | ||
−76 | −9.9 | 41 | 1541.00 | 1425.62 | 4.81 | ||
−72 | −9.4 | 40 | 1340.00 | 1232.31 | 5.83 | ||
−73 | −9.7 | 33 | 1383.00 | 1340.69 | 5.58 | ||
−72 | −9.5 | 31 | 1331.00 | 1261.77 | 5.83 | ||
−71 | −10.2 | 36 | 1286.00 | 1536.00 | 6.09 | ||
−70.37 | −8.03 | 37 | 1255.50 | 702.38 | 6.25 | ||
Dezhou | −75.05 | −9.59 | 22 | 1474.50 | 1287.38 | 5.05 | |
−73 | −10 | 24 | 1374.00 | 1447.08 | 5.58 | ||
−74 | −10 | 22 | 1422.00 | 1445.08 | 5.32 | ||
−75 | −10 | 26 | 1476.00 | 1449.08 | 5.07 | ||
−74 | −9.9 | 26 | 1426.00 | 1410.62 | 5.32 | ||
−68 | −8.6 | 27 | 1127.00 | 911.62 | 6.86 | ||
−67 | −9.2 | 11 | 1061.00 | 1126.38 | 7.11 | ||
−75 | −9.7 | 26 | 1476.00 | 1333.69 | 5.07 | ||
−70 | −8.8 | 22 | 1222.00 | 983.54 | 6.35 | ||
−76 | −9.7 | 22 | 1522.00 | 1329.69 | 4.81 | ||
−71 | −9.3 | 11 | 1261.00 | 1164.85 | 6.09 | ||
−72 | −9.4 | 26 | 1326.00 | 1218.31 | 5.83 | ||
−74 | −9.4 | 20 | 1420.00 | 1212.31 | 5.32 | ||
−70 | −8.5 | 13 | 1213.00 | 859.15 | 6.35 | ||
−73 | −8.7 | 18 | 1368.00 | 941.08 | 5.58 | ||
−70 | −8.7 | 23 | 1223.00 | 946.08 | 6.35 | ||
Dongying | −59 | −8.7 | 1 | 651.00 | 924.08 | 9.16 | |
−66 | −8 | 3 | 1003.00 | 656.85 | 7.37 | ||
−65 | −8.2 | 1 | 951.00 | 731.77 | 7.63 | ||
−68 | −7.4 | 4 | 1104.00 | 427.08 | 6.86 | ||
−64 | −8.1 | 1 | 901.00 | 693.31 | 7.88 | ||
−68 | −8.2 | 1 | 1101.00 | 731.77 | 6.86 | ||
−73 | −9.4 | 3 | 1353.00 | 1195.31 | 5.58 | ||
−67 | −7.4 | 6 | 1056.00 | 429.08 | 7.11 | ||
Binzhou | −71 | −9.3 | 12 | 1262.00 | 1165.85 | 6.09 | |
−64 | −7.5 | 12 | 912.00 | 473.54 | 7.88 | ||
−66 | −9.1 | 13 | 1013.00 | 1089.92 | 7.37 | ||
−61 | −7.8 | 10 | 760.00 | 586.92 | 8.65 | ||
Weifang | −68 | −9 | 53 | 1153.00 | 1091.46 | 6.86 |
T (°C) | Enthalpy (J/g) | SiO2 (mg/L) | T (°C) | Enthalpy (J/g) | SiO2 (mg/L) | T (°C) | Enthalpy (J/g) | SiO2 (mg/L) |
---|---|---|---|---|---|---|---|---|
50 | 50.0 | 13.5 | 150 | 151.0 | 125.0 | 250 | 259.2 | 486.0 |
75 | 75.0 | 26.6 | 175 | 177.0 | 185.0 | 275 | 289.0 | 614.0 |
100 | 100.1 | 48.0 | 200 | 203.6 | 265.0 | 300 | 321.0 | 692.0 |
125 | 125.1 | 80.0 | 225 | 230.9 | 365.0 | ─ | ─ | ─ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Li, M.; Chen, L.; Zhang, H.; Zhang, W. Exploring Geochemical Characteristics of Composite Geothermal Reservoirs for Sustainable Utilization: A Case Study of the Northwestern Shandong Geothermal Area in China. Sustainability 2025, 17, 2252. https://doi.org/10.3390/su17052252
Qiao Y, Li M, Chen L, Zhang H, Zhang W. Exploring Geochemical Characteristics of Composite Geothermal Reservoirs for Sustainable Utilization: A Case Study of the Northwestern Shandong Geothermal Area in China. Sustainability. 2025; 17(5):2252. https://doi.org/10.3390/su17052252
Chicago/Turabian StyleQiao, Yong, Man Li, Long Chen, Hanxiong Zhang, and Wei Zhang. 2025. "Exploring Geochemical Characteristics of Composite Geothermal Reservoirs for Sustainable Utilization: A Case Study of the Northwestern Shandong Geothermal Area in China" Sustainability 17, no. 5: 2252. https://doi.org/10.3390/su17052252
APA StyleQiao, Y., Li, M., Chen, L., Zhang, H., & Zhang, W. (2025). Exploring Geochemical Characteristics of Composite Geothermal Reservoirs for Sustainable Utilization: A Case Study of the Northwestern Shandong Geothermal Area in China. Sustainability, 17(5), 2252. https://doi.org/10.3390/su17052252