Recycling Olive Mill Wastewater to Calcareous Soil: Effect of Preplanning Application Period on Phytotoxicity, Corn Growth, and Nutrient Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Characterization of OMWW
2.2. Chemicals and Instruments Used
2.3. Experimental Setup
Methods and Procedure
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of OMWW
3.2. Effects on Corn Seed Germination Rate
3.3. Corn Plant Response
3.4. Effects on Plant Nutrient Content
3.5. Effects on Residual Soil Available Nutrients
3.6. Effects on Soil pH and EC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz-Carrasco, B.; Fernández-Lobato, L.; López-Sánchez, Y.; Vera, D. Life Cycle Assessment of Olive Oil Production in Turkey, a Territory with an Intensive Production Project. Agriculture 2023, 13, 1192. [Google Scholar] [CrossRef]
- Hassen, W.; Hassen, B.; Werhani, R.; Hidri, Y.; Jedidi, N.; Hassen, A. Processes of valorization and management of olive by-products: The pomace and olive mill wastewater. In Wastewater from Olive Oil Production: Environmental Impacts, Treatment and Valorisation; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–25. [Google Scholar]
- Hachicha, R.; Rekik, O.; Hachicha, S.; Ferchichi, M.; Woodward, S.; Moncef, N.; Cegarra, J.; Mechichi, T.J.C. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere 2012, 88, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Vlyssides, A.G.; Loizidou, M.; Gimouhopoulos, K.; Zorpas, A. Olive oil processing wastes production and their characteristics in relation to olive oil extraction methods. Fresenius Environ. Bull. 1998, 7, 308–313. [Google Scholar]
- Justino, C.; Marques, A.G.; Duarte, K.R.; Duarte, A.C.; Pereira, R.; Rocha-Santos, T.; Freitas, A.C. Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation. Environ. Sci. Pollut. Res. 2010, 17, 650–656. [Google Scholar] [CrossRef]
- Khdair, I.; Abu-Rumman, G. Evaluation of the environmental pollution from olive mills wastewater. Fresenius Environ. Bull 2017, 26, 2537–2540. [Google Scholar]
- IOC. Sensory Analysis of Olive Oil: Method of Organoleptic Assessment of Virgin Olive Oil. 2018. Available online: https://www.internationaloliveoil.org/ (accessed on 15 July 2024).
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P.J.P.b. Olive mill wastes: Biochemical characterizations and valorization strategies. Process. Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Yamani, M.E. Olive mill wastewater: Treatment and valorization technologies. In Handbook of Environmental Materials Management; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–28. [Google Scholar]
- Fleyfel, L.M.; Leitner, N.K.V.; Deborde, M.; Matta, J.; El Najjar, N.H.; Protection, E. Olive oil liquid wastes–Characteristics and treatments: A literature review. Process. Saf. Environ. Prot. 2022, 168, 1031–1048. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Zoubi, H.; Hudaib, B.; Omar, W.; Soleimani, M.; Abu-Romman, S.; Frontistis, Z.J.W. Sustainable vs. conventional approach for olive oil wastewater management: A review of the state of the art. Water 2022, 14, 1695. [Google Scholar] [CrossRef]
- Piotrowska, A.; Iamarino, G.; Rao, M.A.; Gianfreda, L. Short-term effects of olive mill waste water (OMW) on chemical and biochemical properties of a semiarid Mediterranean soil. Soil Biol. Biochem. 2006, 38, 600–610. [Google Scholar] [CrossRef]
- Barbera, A.; Maucieri, C.; Cavallaro, V.; Ioppolo, A.; Spagna, G. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 2013, 119, 43–53. [Google Scholar] [CrossRef]
- Peikert, B.; Schaumann, G.; Bibus, D.; Fischer, J.; Braun, U.; Brunkhardt, J.J.B.; Soils, F.O. Effects of olive oil mill wastewater on chemical, microbiological, and physical properties of soil incubated under four different climatic conditions. Biol. Fertil. Soils 2017, 53, 89–102. [Google Scholar] [CrossRef]
- Meftah, O.; Guergueb, Z.; Braham, M.; Sayadi, S.; Mekki, A. Long term effects of olive mill wastewaters application on soil properties and phenolic compounds migration under arid climate. Agric. Water Manag. 2019, 212, 119–125. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Asfi, M.; Sotirakis, N.; Papadopoulou, P.; Gaitis, F. Olive mill wastewater triggered changes in physiology and nutritional quality of tomato (Lycopersicon esculentum Mill.) depending on growth substrate. J. Hazard. Mater. 2008, 158, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Belaqziz, M.; Lakhal, E.; Mbouobda, H.; El-Hadrami, I. Land spreading of olive mill wastewater: Effect on maize (Zea mays) crop. J. Agron. 2008, 7, 297–305. [Google Scholar] [CrossRef]
- Ipsilantis, I.; Karpouzas, D.G.; Papadopoulou, K.K.; Ehaliotis, C. Effects of soil application of olive mill wastewaters on the structure and function of the community of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2009, 41, 2466–2476. [Google Scholar] [CrossRef]
- Aviani, I.; Laor, Y.; Medina, S.; Krassnovsky, A.; Raviv, M. Co-composting of solid and liquid olive mill wastes: Management aspects and the horticultural value of the resulting composts. Bioresour. Technol. 2010, 101, 6699–6706. [Google Scholar] [CrossRef]
- Mechri, B.; Cheheb, H.; Boussadia, O.; Attia, F.; Mariem, F.B.; Braham, M.; Hammami, M.J.E.; Botany, E. Effects of agronomic application of olive mill wastewater in a field of olive trees on carbohydrate profiles, chlorophyll a fluorescence and mineral nutrient content. Environ. Exp. Bot. 2011, 71, 184–191. [Google Scholar] [CrossRef]
- Magdich, S.; Jarboui, R.; Rouina, B.B.; Boukhris, M.; Ammar, E. A yearly spraying of olive mill wastewater on agricultural soil over six successive years: Impact of different application rates on olive production, phenolic compounds, phytotoxicity and microbial counts. Sci. Total. Environ. 2012, 430, 209–216. [Google Scholar] [CrossRef]
- Magdich, S.; Ahmed, C.B.; Jarboui, R.; Rouina, B.B.; Boukhris, M.; Ammar, E. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil. Chemosphere 2013, 93, 1896–1903. [Google Scholar] [CrossRef]
- Cavallaro, V.; Maucieri, C.; Barbera, A.C. Lolium multiflorum Lam. cvs germination under simulated olive mill wastewater salinity and pH stress. Ecol. Eng. 2014, 71, 113–117. [Google Scholar] [CrossRef]
- Belaqziz, M.; El-Abbassi, A.; Agrafioti, E.; Galanakis, C.M. Agronomic application of olive mill wastewater: Effects on maize production and soil properties. J. Environ. Manag. 2016, 171, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Mohawesh, O.; Albalasmeh, A.; Al-Hamaiedeh, H.; Qaraleh, S.; Maaitah, O.; Bawalize, A.; Almajali, D. Controlled land application of olive mill wastewater (OMW): Enhance soil indices and barley growth performance in arid environments. Water Air Soil Pollut. 2020, 231, 1–12. [Google Scholar] [CrossRef]
- Khalil, J.; Habib, H.; Bouguerra, S.; Nogueira, V.; Rodríguez-Seijo, A. The impact of olive mill wastewater on soil properties, nutrient and heavy metal availability–A study case from Syrian vertisols. J. Environ. Manag. 2024, 351, 119861. [Google Scholar] [CrossRef] [PubMed]
- Saadi, I.; Laor, Y.; Raviv, M.; Medina, S. Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere 2007, 66, 75–83. [Google Scholar] [CrossRef]
- Khalil, J.; Habib, H.; Alabboud, M.; Mohammed, S. Olive mill wastewater effects on durum wheat crop attributes and soil microbial activities: A pilot study in Syria. Energy Ecol. Environ. 2021, 6, 469–477. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 December 2024).
- MEWA. Statistical Book. Ministry of Environment, Water, and Agriculture (MEWA), Riyadh, KSA. 2022. Available online: https://www.mewa.gov.sa (accessed on 8 April 2022).
- Rice, E.W.; Bridgewater, L.; Association, A.P.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Murphy, J.A.; Riley, J.P. A modified single solution method for the determination of phosphorus in natural waters. An. Chem. Acta. 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 6.0; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2022. [Google Scholar]
- Thomas, R.; Sheard, R.; Moyer, J. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion 1. Agron. J. 1967, 59, 240–243. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Kjeldahl Method for Nitrogen Determination; Micro-Macro Publishing: Athens, GA, USA, 1991. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Stern, R.D. CoStat-Statutical Software. California: CoHort Software (1989), pp. 302, $76.00. Exp. Agric. 1991, 27, 87. [Google Scholar] [CrossRef]
- Greco, G.; Colarieti, M.L.; Toscano, G.; Iamarino, G.; Rao, M.A.; Gianfreda, L. Mitigation of olive mill wastewater toxicity. J. Agric. Food Chem. 2006, 54, 6776–6782. [Google Scholar] [CrossRef]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzler, P.D.; Robards, K.; Stockmann, R. Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agric. Food Chem. 2005, 53, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Di Serio, M.; Lanza, B.; Mucciarella, M.; Russi, F.; Iannucci, E.; Marfisi, P.; Madeo, A. Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int. Biodeterior. Biodegradation 2008, 62, 403–407. [Google Scholar] [CrossRef]
- Garcia-Ortiz, A.; Beltrán, G.; Uceda, M.; Hermoso, M.; González, P.; Ordóñez, R.; Giráldez, J. Vegetation water (alpechin) application effects on soils and plants. Acta Hortic. 1997, 474, 749–752. [Google Scholar] [CrossRef]
- Brunetti, G.; Plaza, C.; Clapp, C.; Senesi, N. Compositional and functional features of humic acids from organic amendments and amended soils in Minnesota, USA. Soil Biol. Biochem. 2007, 39, 1355–1365. [Google Scholar] [CrossRef]
- Mohawesh, O.; Al-Hamaiedeh, H.; Albalasmeh, A.; Qaraleh, S.; Haddadin, M. Effect of olive mill wastewater (OMW) application on soil properties and wheat growth performance under rain-fed conditions. Water, Air, Soil Pollut 2019, 230, 160. [Google Scholar] [CrossRef]
- Pierantozzi, P.; Torres, M.; Verdenelli, R.; Basanta, M.; Maestri, D.M.; Meriles, J.M. Short-term impact of olive mill wastewater (OMWW) applications on the physico-chemical and microbiological soil properties of an olive grove in Argentina. J. Environ. Sci. Heal. Part B 2013, 48, 393–401. [Google Scholar] [CrossRef]
- Rusan, M.J.; Malkawi, H.I. Dilution of olive mill wastewater (OMW) eliminates its phytotoxicity and enhances plant growth and soil fertility. Desalination Water Treat. 2016, 57, 27945–27953. [Google Scholar] [CrossRef]
- Sierra, J.; Martí, E.; Garau, M.A.; Cruañas, R. Effects of the agronomic use of olive oil mill wastewater: Field experiment. Sci. Total. Environ. 2007, 378, 90–94. [Google Scholar] [CrossRef]
- Piotrowska, A.; Rao, M.A.; Scotti, R.; Gianfreda, L. Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 2011, 161, 8–17. [Google Scholar] [CrossRef]
- Magdich, S.; Rouina, B.B.; Ammar, E.J.W.; Valorization, B. Olive mill wastewater agronomic valorization by its spreading in olive grove. Waste Biomass Valorization 2020, 11, 1359–1372. [Google Scholar] [CrossRef]
Procedures | Description |
---|---|
Soil Preparation | Bulk soil samples were collected, air-dried, mixed, sieved to pass through 2 mm mesh and analyzed for basic characteristics (pH, EC, OM, CaCO3 content). |
Pot Preparation | 2.5 kg of soil was weighed into each pot, and OMWW was applied at 0 (control), 20, 40, and 60 m3 ha−1 to soil surface at the same time. The initial soil moisture was adjusted using tap water. |
Seed Sowing | Six corn seeds per pot were sown and thinned to three plants per pot after 10 days. |
Soil Moisture Maintenance | Soil moisture was maintained at 80% of field capacity during the entire study period. |
Fertilization | Nitrogen and phosphorus fertilizers were applied to all pots, including the control, at a rate equivalent to 300 kg N ha−1 and 200 kg P ha−1 |
Corn Growth | Corn (Zea mays) was grown for six weeks, and then plant height was measured, aboveground biomass was harvested, and the biomass was dried at 70 °C for dry matter yield determination. Nutrient content such as N, P, and K in plant samples were determined using methods in [33]. The Kjeldahl method was used to determine N [34], the P was measured calorimetrically [35], and K was analyzed using a flame photometer. |
Soil Analysis | Composite soil samples were collected from each pot after harvesting, and then soils were air-dried, sieved, and analyzed for pH, FC, and available N, P, and K following the laboratory procedures described in [32]. |
Characteristics | Value |
---|---|
pH | 4.47 ± 0.06 |
EC dS/m | 14.2 ± 0.10 |
COD g/L | 108 ± 2.62 |
BOD5 g/L | 414 ± 1.54 |
Phenols mg/L | 5370 ± 3.21 |
FOG mg/L | 799 ± 0.43 |
TSS mg/L | 2800 ± 1.41 |
TS% | 6.34 ± 0.05 |
TVS% | 64.4 ± 0.11 |
TDS mg/L | 44600 ± 5.31 |
Total N mg/L | 845 ± 0.05 |
NH4-N mg/L | 32.5 ± 0.04 |
Nitrate-N mg/L | <1.13 |
Total P mg/L | 515 ± 0.07 |
K mg/L | 3690 ± 2.56 |
Na mg/L | 69.4 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, Y.N.Y.; Ahmed, I.; Al-Barakah, F.N.; Schoenau, J.J.; Alotaibi, K.D. Recycling Olive Mill Wastewater to Calcareous Soil: Effect of Preplanning Application Period on Phytotoxicity, Corn Growth, and Nutrient Uptake. Sustainability 2025, 17, 1369. https://doi.org/10.3390/su17041369
Hasan YNY, Ahmed I, Al-Barakah FN, Schoenau JJ, Alotaibi KD. Recycling Olive Mill Wastewater to Calcareous Soil: Effect of Preplanning Application Period on Phytotoxicity, Corn Growth, and Nutrient Uptake. Sustainability. 2025; 17(4):1369. https://doi.org/10.3390/su17041369
Chicago/Turabian StyleHasan, Yousef N. Y., Ibrahim Ahmed, Fahad N. Al-Barakah, Jeff J. Schoenau, and Khaled D. Alotaibi. 2025. "Recycling Olive Mill Wastewater to Calcareous Soil: Effect of Preplanning Application Period on Phytotoxicity, Corn Growth, and Nutrient Uptake" Sustainability 17, no. 4: 1369. https://doi.org/10.3390/su17041369
APA StyleHasan, Y. N. Y., Ahmed, I., Al-Barakah, F. N., Schoenau, J. J., & Alotaibi, K. D. (2025). Recycling Olive Mill Wastewater to Calcareous Soil: Effect of Preplanning Application Period on Phytotoxicity, Corn Growth, and Nutrient Uptake. Sustainability, 17(4), 1369. https://doi.org/10.3390/su17041369