Human Exposure Estimation of Polycyclic Aromatic Hydrocarbons (PAHs) Resulting from Bucharest Landfill Leakages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Health Assessment Methodology
- Collection of groundwater samples and analyses in an ISO 17025 [31]-certified laboratory.
- Identification of risk-based screening levels (RBSLs) in accordance with the ASTM E2081-22 [32].
- Comparison of the RBSLs to the actual concentrations on the site and quantification of the potential health hazards.
- Providing recommendations for the mitigation of future health hazards.
2.2. General Information Regarding the Bucharest Landfill
2.3. Groundwater Sampling
2.4. Potential Exposure Routes and Qualitative Risk Assessment
- Group 1: carcinogenic to humans, when there is sufficient evidence of carcinogenicity in humans and animals.
- Group 2A: probably carcinogenic to humans, when two of the following evaluations were made by the working group and at least one of them involves humans or human cells/tissues—there is limited evidence of carcinogenicity in humans, sufficient evidence of carcinogenicity in animals, and strong evidence that the agent exhibits key characteristics of carcinogens.
- Group 2B: possibly carcinogenic to humans, when only one evaluation was performed by the working group in conformity with the requirements under group 2A.
- Group 3: not classifiable as to its carcinogenicity to humans, when the agent may not be classified in the previous categories.
2.5. Equations for Calculating the Health Risk Level
2.5.1. Equations for Ingestion Exposure
- Infants—9 kg as an average, based on the World Health Organization (WHO) growth charts for boys and girls, with 50% confidence.
- Children and young adults—38 kg as an average, based on the Centers for Disease Control and Prevention (CDC) growth charts for boys and girls, with 50% confidence.
2.5.2. Equations for Dermal Contact Exposure
3. Results
3.1. PAH Concentrations in Groundwater near Vidra Landfill
3.2. Health Risks for Receptors via Ingestion
3.3. Health Risks for Receptors via Dermal Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Przydatek, G.; Kanownik, W. Impact of small municipal solid waste landfill on groundwater quality. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tenodi, S.; Krcmar, D.; Agbaba, J.; Zrnic, K.; Radenovic, M.; Ubavin, D.; Dalmacija, B. Assessment of the environmental impact of sanitary and unsanitary parts of a municipal solid waste landfill. J. Environ. Manag. 2020, 258, 110019. [Google Scholar] [CrossRef]
- Mohammadi, S.; Lorestani, B.; Ardakani, S.; Cheraghi, M.; Sadr, M. Source identification and health risk assessment of PAHs in surface soils from the vicinity of Arad-Kouh processing and disposal complex, Tehran, Iran. Int. J. Environ. Anal. Chem. 2023, 103, 9647–9660. [Google Scholar] [CrossRef]
- Barathi, S.; Gitanjali, J.; Rathinasamy, G.; Sabapathi, N.; Aruljothi, K.N.; Lee, J.; Kandasamy, S. Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies. Chemosphere 2023, 337, 139396. [Google Scholar] [CrossRef] [PubMed]
- Takam, P.; Schäffer, A.; Laovitthayanggoon, S.; Charerntantanakul, W.; Sillapawattana, P. Toxic effect of polycyclic aromatic hydrocarbons (PAHs) on co-culture model of human alveolar epithelial cells (A549) and macrophages (THP-1). Environ. Sci. Eur. 2024, 36, 176. [Google Scholar] [CrossRef]
- Saad-Hussein, A.; Beshir, S.; Shaheen, W.; Saleh, I.; Elhamshary, M.; Mohammed, A. Integrated evaluation of workplace exposures and biomarkers of bladder cancer among textile dyeing workers. J. Egypt. Public Health Assoc. 2024, 99, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Buculei, I.; Dobrin, M.; Matei, D.; Onu, I.; Cioroiu, I.; Caba, B.; Postelnicu, M.; Buhociu, D.; Musat, C.; Crisan-Dabija, R.; et al. HPLC Analysis and Risk Assessment of 15 Priority PAHs in Human Blood Serum of COPD Patient from Urban and Rural Areas, Iasi (Romania). J. Pers. Med. 2023, 13, 1290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chang, S.; Zhang, Q.; Bai, Y.; Wang, E.; Fan, Y.; Tu, X.; Fu, Q.; Wei, L.; Yu, Y. Occurrence, source modeling, influencing factors and exposure assessment of polycyclic aromatic hydrocarbons in water sources: A mega-study from mainland China. Environ. Technol. Innov. 2024, 35, 103634. [Google Scholar] [CrossRef]
- Favre, H.A.; Powell, W.H. Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names; The Royal Society of Chemistry: London, UK, 2013. [Google Scholar] [CrossRef]
- IUPAC. Compendium of chemical terminology. Int. Union Pure Appl. Chem. 2014, 528. [Google Scholar]
- You, Q.; Yan, K.; Yuan, Z.; Feng, D.; Wang, H.; Wu, L.; Xu, J. Polycyclic aromatic hydrocarbons (PAHs) pollution and risk assessment of soils at contaminated sites in China over the past two decades. J. Clean. Prod. 2024, 450, 141876. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, X.; Yang, Y.; Wang, R.; Liao, J.; Zhang, P.; Liu, L.; Zhao, Y.; Deng, Y. Distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) with PCA-MLR and PMF methods in the topsoil of Chengdu at SW, China. Sci. Total Environ. 2024, 908, 168263. [Google Scholar] [CrossRef] [PubMed]
- Noro, K.; Omagari, R.; Ito, K.; Wang, Q.; Sei, K.; Miyake, Y.; Amagai, T. Sampling, pretreatment, instrumental analysis, and observed concentrations of polycyclic aromatic hydrocarbons, polychlorinated naphthalenes, and halogenated polycyclic aromatic hydrocarbons: A review. TrAC-Trends Anal. Chem. 2023, 169, 117384. [Google Scholar] [CrossRef]
- Carvalho, F.; Dantas, H.; Dantas, K. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in groundwater by GC-FID after solid-phase extraction. SN Appl. Sci. 2019, 1, 804. [Google Scholar] [CrossRef]
- Ganiyu, S.; Komolafe, A.; Basheeru, K.; Lasisi, R.; Adeyemi, A. Levels, distribution, origins, and human health risk evaluation of polycyclic aromatic hydrocarbons in groundwater around a petroleum depot wastewater discharge point. Environ. Chem. Ecotoxicol. 2024, 6, 303–314. [Google Scholar] [CrossRef]
- Grimmer, G. Environmental Carcinogens–Polycyclic Aromatic Hydrocarbons: Chemistry, Occurrence, Biochemistry, Carcinogenicity; CRC Press: Boca Raton, FL, USA, 1983. [Google Scholar]
- Adlard, E.R. Amy, J. Forsgren (Ed): Wastewater Treatment: Occurrence and Fate of Polycyclic Aromatic Hydrocarbons (PAHs). Chromatographia 2018, 81, 729. [Google Scholar] [CrossRef]
- Kazerouni, N.; Sinha, R.; Hsu, C.H.; Greenberg, A.; Rothman, N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 2001, 39, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.; Anumol, T.; Barlaz, M.; Snyder, S. Investigating landfill leachate as a source of trace organic pollutants. Chemosphere 2015, 127, 269–275. [Google Scholar] [CrossRef]
- Eggen, T.; Moeder, M.; Arukwe, A. Municipal landfill leachates: A significant source for new and emerging pollutants. Sci. Total Environ. 2010, 408, 5147–5157. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Ma, H.; Shi, G.; He, L.; Wei, L.; Shi, Q. A review of groundwater contamination near municipal solid waste landfill sites in China. Sci. Total Environ. 2016, 569, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Ziyaei, K.; Mokhtari, M.; Hashemi, M.; Rezaei, K.; Abdi, F. Association between exposure to water sources contaminated with polycyclic aromatic hydrocarbons and cancer risk: A systematic review. Sci. Total Environ. 2024, 924, 171261. [Google Scholar] [CrossRef]
- Qu, X.; Niu, Q.; Sheng, C.; Xia, M.; Zhang, C.; Qu, X.; Yang, C. Co-toxicity and co-contamination remediation of polycyclic aromatic hydrocarbons and heavy metals: Research progress and future perspectives. Environ. Res. 2024, 263, 120211. [Google Scholar] [CrossRef] [PubMed]
- Mogashane, T.; Maree, J.; Mokoena, L. Adsorption of Polycyclic Aromatic Hydrocarbons from Wastewater Using Iron Oxide Nanomaterials Recovered from Acid Mine Water: A Review. Minerals 2024, 14, 826. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, L.; Moghaddam, T.; Chen, M.; Wu, S.; Yuan, X. Adsorption mechanism of polycyclic aromatic hydrocarbons using wood waste-derived biochar. J. Hazard. Mater. 2022, 425, 128003. [Google Scholar] [CrossRef]
- Rezagholizade-shirvan, A.; Mohammadi, M.; Mazaheri, Y.; Fallahizadeh, S.; Ghorbani, H.; Shokri, S.; Shariatifar, N.; Darroudi, M.; Shamloo, E. Employing a magnetic chitosan/molybdenum disulfide nanocomposite for efficiently removing polycyclic aromatic hydrocarbons from milk samples. Sci. Rep. 2024, 14, 15054. [Google Scholar] [CrossRef]
- Peluffo, M.; Rosso, J.; Morelli, I.; Mora, V. Strategies for oxidation of PAHs in aged contaminated soil by batch reactors. Ecotoxicol. Environ. Saf. 2018, 151, 76–82. [Google Scholar] [CrossRef]
- Rayaroth, M.; Marchel, M.; Boczkaj, G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons—A review. Sci. Total Environ. 2023, 857, 159043. [Google Scholar] [CrossRef] [PubMed]
- Balint, A. Assessment of Human Exposure to Polycyclic Aromatic Hydrocarbons in Groundwater near Municipal Landfills. 2021. Available online: https://www.matec-conferences.org/articles/matecconf/pdf/2021/11/matecconf_simpro21_03016.pdf (accessed on 12 December 2024).
- Title 42 US Code of Federal Regulations Part 90. Available online: https://www.ecfr.gov/current/title-42/chapter-I/subchapter-H/part-90/section-90.2 (accessed on 11 December 2024).
- ISO/IEC 17025:2018; Testing and Calibration Laboratories. ISO: ISO: Geneva, Switzerland. Available online: https://www.asro.ro/sr-en-iso-170242018/ (accessed on 15 January 2025).
- ASTM-E2081-22; Standard Guide for Risk-Based Corrective Action. ASTM International: West Conshohocken, PA, USA, 2022.
- Balint, A. Geological and hydrogeological characterization of the landfill areas located around Bucharest city in the context of environmental management. MATEC Web Conf. 2021, 342, 03015. [Google Scholar] [CrossRef]
- Bandrabur, T.; Petrescu, I.; Enea, G. Hydrogeological Map of Romania, Scale 1:100,000, Sheet 44c Vidra; Geological Institute of Romania: Bucharest, Romania, 1970. [Google Scholar]
- Boukhemacha, M.A.; Gogu, R.; Serpescu, I.; Gaitanaru, S.; Bica, I.; Diaconescu, A.; Brusten, A. Hydraulic characterizing of tunnel’s barrier effect for groundwater flow modeling-application for Bucharest city. In Proceedings of the International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, June 16–22 2013; Volume 2, p. 179. [Google Scholar]
- Plumb, R.H., Jr. The Occurrence of Appendix IX Organic Constituents in Disposal Site Ground Water. Groundwater Monitoring & Remediation. Groundw. Monit. Remediat. 1991, 11, 157–164. [Google Scholar] [CrossRef]
- USEPA. EPA/540/R/99/005 Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); Report EPA/540/R/99/005; United States Environmental Protection Agency: Washington, DC, USA, 2004; p. 20460.
- Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, UK, 1979. [Google Scholar]
- Frasch, H.F.; Barbero, A.M. The transient dermal exposure: Theory and experimental examples using skin and silicone membranes. J. Pharm. Sci. 2008, 97, 1578–1592. [Google Scholar] [CrossRef]
- Barrer, R.M. Diffusion in and Through Solids; The University Press: Cambridge, UK, 1941. [Google Scholar]
- Mitragotri, S.; Anissimov, Y.; Bunge, A.; Frasch, H.; Guy, R.; Hadgraft, J.; Kasting, G.; Lane, M.; Roberts, M. Mathematical models of skin permeability: An overview. Int. J. Pharm. 2011, 418, 115–129. [Google Scholar] [CrossRef]
- Stein, W.D. Transport and Diffusion Across Cell Membranes; Academic Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Potts, R.; Guy, R. Predicting skin permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef]
- Laurent, A.; Mistretta, F.; Bottigioli, D.; Dahel, K.; Goujon, C.; Nicolas, J.; Hennino, A.; Laurent, P. Echographic measurement of skin thickness in adults by high frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines. Vaccine 2007, 25, 6423–6430. [Google Scholar] [CrossRef] [PubMed]
- Menon, G.K.; Cleary, G.W.; Lane, M.E. The structure and function of the stratum corneum. Int. J. Pharm. 2012, 435, 3–9. [Google Scholar] [CrossRef]
- Nitsche, J.M.; Kasting, G.B. How Predictable Are Human Stratum Corneum Lipid/Water Partition Coefficients? Assessment and Useful Correlations for Dermal Absorption. J. Pharm. Sci. 2018, 107, 727–738. [Google Scholar] [CrossRef]
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.U.; UFZ-LSER database v 3.2 [Internet]. 2017, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany. Available online: http://www.ufz.de/lserd (accessed on 15 November 2024).
- Gupta, P.K. Fundamentals of Toxicology: Essential Concepts and Applications; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- ATSDR. Toxicological Profile for Polycyclic Aromatic Hydrocarbons; U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry: Atlanta, Georgia, 1995.
- US EPA. Regional Screening Tables for Chemical Contaminants Ate Superfund Sites; US Environmental Protection Agency: Washington, DC, USA, 2011.
- The Risk Assessment Information System. RAIS Toxicity Values and Physical Parameters Search. Available online: https://rais.ornl.gov/index.html (accessed on 11 December 2024).
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2010; Volume 92, pp. 1–853. [Google Scholar] [PubMed] [PubMed Central]
- Ma, Y.-G.; Lei, Y.; Xiao, H.; Wania, F.; Wang, W.-H. Critical Review and Recommended Values for the Physical-Chemical Property Data of 15 Polycyclic Aromatic Hydrocarbons at 25 °C. J. Chem. Eng. Data 2009, 55, 819–825. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B. Microplastic Pollutants; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 1–315. [Google Scholar] [CrossRef]
- Lerda, D. Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet, 4th ed.; Technical notes Joint Research Centre; European Commission: Brussels, Belgium, 2017. [Google Scholar]
Parameter | Limit of Detection | Units | Concentration (Confidence Interval) | |
---|---|---|---|---|
VID1 | VID2 | |||
Naphthalene (Nap) | 0.007 | µg·L−1 | <0.0070 | <0.0070 |
Acenaphthylene (Any) | 0.001 | µg·L−1 | <0.0010 | <0.0010 |
Acenaphthene (Acp) | 0.001 | µg·L−1 | <0.0010 | <0.0010 |
Fluorene (Pf) | 0.001 | µg·L−1 | 0.0037 (±25%) | <0.0010 |
Phenanthrene (Phe) | 0.001 | µg·L−1 | 0.0065 (±26%) | 0.0014 (±26%) |
Anthracene (Ant) | 0.001 | µg·L−1 | 0.0013 (±25%) | <0.0010 |
Fluoranthene (Flu) | 0.001 | µg·L−1 | 0.0011 (±31%) | <0.0010 |
Pyrene (Pyr) | 0.001 | µg·L−1 | 0.0030 (±31%) | 0.0032 (±31%) |
Benz(a)anthracene (BaA) | 0.001 | µg·L−1 | <0.0010 | <0.0010 |
Chrysene (Chr) | 0.001 | µg·L−1 | <0.0010 | <0.0010 |
Benzo(b)fluoranthene (BbF) | 0.001 | µg·L−1 | <0.0010 | <0.0010 |
Benzo(k)fluoranthene (BkF) | 0.001 | µg·L−1 | <0.0010 | <0.0010 |
Benzo(a)pyrene (BaP) | 0.001 | µg·L−1 | <0.0010 | <0.0010 |
Indeno(1,2,3,cd)pyrene (InP) | 0.0003 | µg·L−1 | <0.00030 | <0.00030 |
Benzo(g,h,i)perylene (BghiP) | 0.0003 | µg·L−1 | <0.00030 | <0.00030 |
Dibenz(a.h)anthracene (DbA) | 0.0006 | µg·L−1 | <0.00060 | <0.00060 |
ΣPAHs | 0.0202 | µg·L−1 | <0.0202 | <0.0202 |
Chemical Name | CAS No. a | Chemical Formula a | Melting Point a (°C) | Boiling Point a (°C) | Density (kg/L) | Molecular Weight a (g/mol) | Octanol-Water Partition Coefficient c Log KOW | IARC Carcinogenicity b | Toxic Equivalency Factors (TEFs) d |
---|---|---|---|---|---|---|---|---|---|
Anthracene | 120-12-7 | C14H10 | 216.00 | 341.3 | 1.2800 a | 178.229 | 4.57 | Group 3 | 0.01 |
Fluoranthene | 206-44-0 | C16H10 | 110.20 | 380.0 a | 1.2520 a | 202.250 | 4.97 | Group 3 | 0.001 |
Fluorene | 86-73-7 | C13H10 | 114.76 | 294.0 a | 1.2030 a | 166.218 | 4.11 | Group 3 | 0.001 |
Phenanthrene | 85-01-8 | C14H10 | 99.00 | 338.4 a | 0.9800 a | 178.229 | 4.47 | Group 3 | 0.001 |
Pyrene | 129-00-0 | C16H10 | 150.62 | 394.0 a | 1.2710 a | 202.250 | 5.01 | Group 3 | 0.001 |
Parameter | Category No. of Exposed Receptors | RBSLW (mg·L−1) | Maximum Concentration Recorded (mg·L−1) | HQW | RQW |
---|---|---|---|---|---|
Anthracene | Category 1 | 12,000 | 0.0013 | 8.67 × 10−6 | 1.08 × 10−7 |
Category 2 | 12,000 | 0.0013 | 8.67 × 10−6 | 1.08 × 10−7 | |
Category 3 | 12,000 | 0.0013 | 8.67 × 10−6 | 1.08 × 10−7 | |
Category 4 | 16,500 | 0.0013 | 8.67 × 10−7 | 9.63 × 10−8 | |
Category 5 | 10,800 | 0.0013 | 6.50 × 10−6 | 1.71 × 10−7 | |
Fluoranthene | Category 1 | 1600 | 0.0011 | 5.50 × 10−5 | 6.88 × 10−7 |
Category 2 | 1600 | 0.0011 | 5.50 × 10−5 | 6.88 × 10−7 | |
Category 3 | 1600 | 0.0011 | 5.50 × 10−5 | 6.88 × 10−7 | |
Category 4 | 2200 | 0.0011 | 5.50 × 10−6 | 6.11 × 10−7 | |
Category 5 | 1440 | 0.0011 | 4.13 × 10−5 | 1.09 × 10−6 | |
Fluorene | Category 1 | 1600 | 0.0037 | 1.85 × 10−4 | 2.31 × 10−6 |
Category 2 | 1600 | 0.0037 | 1.85 × 10−4 | 2.31 × 10−6 | |
Category 3 | 1600 | 0.0037 | 1.85 × 10−4 | 2.31 × 10−6 | |
Category 4 | 2200 | 0.0037 | 1.85 × 10−5 | 2.06 × 10−6 | |
Category 5 | 1440 | 0.0037 | 1.39 × 10−4 | 3.65 × 10−6 | |
Phenanthrene | Category 1 | 1200 | 0.0065 | 4.33 × 10−4 | 5.42 × 10−6 |
Category 2 | 1200 | 0.0065 | 4.33 × 10−4 | 5.42 × 10−6 | |
Category 3 | 1200 | 0.0065 | 4.33 × 10−4 | 5.42 × 10−6 | |
Category 4 | 1650 | 0.0065 | 4.33 × 10−5 | 4.81 × 10−6 | |
Category 5 | 1080 | 0.0065 | 3.25 × 10−4 | 8.55 × 10−6 | |
Pyrene | Category 1 | 1200 | 0.0032 | 2.13 × 10−4 | 2.67 × 10−6 |
Category 2 | 1200 | 0.0032 | 2.13 × 10−4 | 2.67 × 10−6 | |
Category 3 | 1200 | 0.0032 | 2.13 × 10−4 | 2.67 × 10−6 | |
Category 4 | 1650 | 0.0032 | 2.13 × 10−5 | 2.37 × 10−6 | |
Category 5 | 1080 | 0.0032 | 1.60 × 10−4 | 4.21 × 10−6 |
Parameter | Category No. of Exposed Receptors | DAevent (mg·cm−2) | DADW (mg·kg−1·day−1) | RfDABS (mg·kg−1·day−1) | DHQ |
---|---|---|---|---|---|
Anthracene | Category 1 | 5.48 × 10−9 | 1.51 × 10−6 | 0.27 | 5.66 × 10−6 |
Category 2 | 5.48 × 10−9 | 1.08 × 10−6 | 0.27 | 4.06 × 10−6 | |
Category 3 | 5.48 × 10−9 | 1.69 × 10−6 | 0.27 | 6.32 × 10−6 | |
Category 4 | 5.48 × 10−9 | 1.33 × 10−6 | 0.27 | 4.98 × 10−6 | |
Category 5 | 5.48 × 10−9 | 1.72 × 10−6 | 0.27 | 6.46 × 10−6 | |
Fluoranthene | Category 1 | 1.31 × 10−9 | 3.61 × 10−7 | 0.04 | 1.01 × 10−5 |
Category 2 | 1.31 × 10−9 | 2.59 × 10−7 | 0.04 | 7.27 × 10−6 | |
Category 3 | 1.31 × 10−9 | 4.03 × 10−7 | 0.04 | 1.13 × 10−5 | |
Category 4 | 1.31 × 10−9 | 3.17 × 10−7 | 0.04 | 8.91 × 10−6 | |
Category 5 | 1.31 × 10−9 | 4.12 × 10−7 | 0.04 | 1.16 × 10−5 | |
Fluorene | Category 1 | 8.78 × 10−10 | 2.42 × 10−7 | 0.04 | 6.79 × 10−6 |
Category 2 | 8.78 × 10−10 | 1.74 × 10−7 | 0.04 | 4.87 × 10−6 | |
Category 3 | 8.78 × 10−10 | 2.70 × 10−7 | 0.04 | 7.59 × 10−6 | |
Category 4 | 8.78 × 10−10 | 2.13 × 10−7 | 0.04 | 5.98 × 10−6 | |
Category 5 | 8.78 × 10−10 | 2.76 × 10−7 | 0.04 | 7.75 × 10−6 | |
Phenanthrene | Category 1 | 2.55 × 10−9 | 7.02 × 10−7 | 0.27 | 2.63 × 10−6 |
Category 2 | 2.55 × 10−9 | 5.04 × 10−7 | 0.27 | 1.89 × 10−6 | |
Category 3 | 2.55 × 10−9 | 7.84 × 10−7 | 0.27 | 2.94 × 10−6 | |
Category 4 | 2.55 × 10−9 | 6.17 × 10−7 | 0.27 | 2.31 × 10−6 | |
Category 5 | 2.55 × 10−9 | 8.01 × 10−7 | 0.27 | 3.00 × 10−6 | |
Pyrene | Category 1 | 2.69 × 10−9 | 7.41 × 10−7 | 0.03 | 2.77 × 10−5 |
Category 2 | 2.69 × 10−9 | 5.32 × 10−7 | 0.03 | 1.99 × 10−5 | |
Category 3 | 2.69 × 10−9 | 8.27 × 10−7 | 0.03 | 3.10 × 10−5 | |
Category 4 | 2.69 × 10−9 | 6.52 × 10−7 | 0.03 | 2.44 × 10−5 | |
Category 5 | 2.69 × 10−9 | 8.45 × 10−7 | 0.03 | 3.17 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balint, A.I.; Matei, E.; Râpă, M.; Șăulean, A.-A.; Mateș, I.M. Human Exposure Estimation of Polycyclic Aromatic Hydrocarbons (PAHs) Resulting from Bucharest Landfill Leakages. Sustainability 2025, 17, 1356. https://doi.org/10.3390/su17041356
Balint AI, Matei E, Râpă M, Șăulean A-A, Mateș IM. Human Exposure Estimation of Polycyclic Aromatic Hydrocarbons (PAHs) Resulting from Bucharest Landfill Leakages. Sustainability. 2025; 17(4):1356. https://doi.org/10.3390/su17041356
Chicago/Turabian StyleBalint, Alexandru Ioan, Ecaterina Matei, Maria Râpă, Anca-Andreea Șăulean, and Ileana Mariana Mateș. 2025. "Human Exposure Estimation of Polycyclic Aromatic Hydrocarbons (PAHs) Resulting from Bucharest Landfill Leakages" Sustainability 17, no. 4: 1356. https://doi.org/10.3390/su17041356
APA StyleBalint, A. I., Matei, E., Râpă, M., Șăulean, A.-A., & Mateș, I. M. (2025). Human Exposure Estimation of Polycyclic Aromatic Hydrocarbons (PAHs) Resulting from Bucharest Landfill Leakages. Sustainability, 17(4), 1356. https://doi.org/10.3390/su17041356