Increasing Carbon Sequestration, Land-Use Efficiency, and Building Decarbonization with Short Rotation Eucalyptus
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Plantation-Level Cumulative Carbon Flows (Not Discounted)
3.2. Total (Full Life Cycle)—Annual Carbon Flows (Undiscounted)
3.3. Total (Full Life Cycle)—Cumulative Carbon Flows (Undiscounted)
3.4. Carbon Benefit Multiples (Including Temporal Discounting and Scenarios)
3.5. Total (Full Life Cycle)—Cumulative Carbon Flows with Year 0 Harvest
4. Discussion
4.1. Global Carbon Impact
4.2. Land-Use Efficiency Comparison
4.3. Transportation Impact on Carbon Flows
4.4. Additional Fast-Growing Fiber Sources
4.5. Limitations and Future Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Oceanic and Atmospheric Administration. Earth Just Had Its Warmest July on Record. Available online: https://www.noaa.gov/news/earth-just-had-its-warmest-july-on-record (accessed on 12 August 2024).
- Hausfather, Z. Analysis: What Record Global Heat Means for Breaching the 1.5C Warming Limit. Carbon Brief. Available online: https://www.carbonbrief.org/analysis-what-record-global-heat-means-for-breaching-the-1-5c-warming-limit/ (accessed on 12 August 2024).
- Mishonov, A.; Seidov, D.; Reagan, J. Revisiting the multidecadal variability of North Atlantic Ocean circulation and climate. Front. Mar. Sci. 2024, 11, 1345426. [Google Scholar] [CrossRef]
- Smith, S.M.; Geden, O.; Gidden, M.J.; Lamb, W.F.; Nemet, G.F.; Minx, J.C.; Buck, H.; Burke, J.; Cox, E.; Edwards, M.R.; et al. The State of Carbon Dioxide Removal, 2nd ed. 2024. Available online: https://doi.org/10.17605/OSF.IO/F85QJ (accessed on 14 August 2024).
- Merchant, N.; Chay, F.; Cullenward, D.; Freeman, J. Barriers to Scaling the Long-Duration Carbon Dioxide Removal Industry. CarbonPlan. Available online: https://carbonplan.org/research/cdr-scale-barriers (accessed on 12 August 2024).
- United Nations Environment Programme; Yale Center for Ecosystems + Architecture. Building Materials and the Climate: Constructing a New Future. Available online: https://wedocs.unep.org/20.500.11822/43293 (accessed on 12 August 2024).
- Searchinger, T.; Peng, L.; Zionts, J.; Waite, R. The Global Land Squeeze: Managing the Growing Competition for Land; World Resources Institute: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Pittau, F.; Krause, F.; Lumia, G.; Habert, G. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build. Environ. 2018, 129, 117–129. [Google Scholar] [CrossRef]
- Pittau, F.; Lumia, G.; Heeren, N.; Iannaccone, G.; Habert, G. Retrofit as a carbon sink: The carbon storage potentials of the EU housing stock. J. Clean. Prod. 2019, 214, 365–376. [Google Scholar] [CrossRef]
- Göswein, V.; Arehart, J.; Phan-Huy, C.; Pomponi, F.; Habert, G. Barriers and opportunities of fast-growing biobased material use in buildings. Build. Cities 2022, 3, 745–755. [Google Scholar] [CrossRef]
- Hua, L.S.; Chen, L.W.; Antov, P.; Kristak, L.; Tahir, P.M. Engineering Wood Products from Eucalyptus spp. Adv. Mater. Sci. Eng. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Hinkle, H.; McGinley, M.; Hargett, T.; Dascher, S. Carbon Farming with Timber Bamboo: A Superior Sequestration System Compared to Wood. BamCore. Available online: https://www.bamcore.com/_files/ugd/77318d_568cbad9ac2e443e87d69011ce5f48b2.pdf?index=true (accessed on 12 August 2024).
- Smith, J.E.; Heath, L.; Skog, K.; Birdsey, R. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. U.S. Department of Agriculture, Forest Service, Northeastern Research Station. Available online: https://research.fs.usda.gov/treesearch/22954 (accessed on 12 August 2024).
- Puls, S.J.; Cook, R.L.; Baker, J.S.; Rakestraw, J.L.; Trlica, A. Modeling wood product carbon flows in southern us pine plantations: Implications for carbon storage. Carbon Balance Manag. 2024, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Peay, W.S.; Bullock, B.P.; Montes, C.R. Growth and yield model comparisons for mid-rotation loblolly pine (Pinus taeda L.) plantations in the southeastern US. For. Int. J. For. Res. 2022, 14, 616–633. [Google Scholar]
- Sohngen, B.; Brown, S. Extending timber rotations: Carbon and cost implications. Clim. Policy 2008, 8, 435–451. [Google Scholar] [CrossRef]
- Jonker, J.; van der Hilst, F.; Markewitz, D.; Faaij, A.; Junginger, H. Carbon balance and economic performance of pine plantations for bioenergy production in the Southeastern United States. Biomass- Bioenergy 2018, 117, 44–55. [Google Scholar] [CrossRef]
- Gonzalez-Benecke, C.A.; Martin, T.A.; Jokela, E.J.; De La Torre, R. A Flexible Hybrid Model of Life Cycle Carbon Balance for Loblolly Pine (Pinus taeda L.) Management Systems. Forests 2011, 2, 749–776. [Google Scholar] [CrossRef]
- le Maire, G.; Guillemot, J.; Campoe, O.C.; Stape, J.-L.; Laclau, J.-P.; Nouvellon, Y. Light absorption, light use efficiency and productivity of 16 contrasted genotypes of several Eucalyptus species along a 6-year rotation in Brazil. For. Ecol. Manag. 2019, 449, 117443. [Google Scholar] [CrossRef]
- Turner, J.; West, G.; Dungey, H.; Wakelin, S.; Maclaren, P.; Adams, T.; Silcock, P. Managing New Zealand Planted Forests for Carbon: A Review of Selected Management Scenarios and Identification of Knowledge Gaps. Available online: https://www.researchgate.net/publication/259346441 (accessed on 12 August 2024).
- Campoe, O.C.; Stape, J.L.; Laclau, J.-P.; Marsden, C.; Nouvellon, Y. Stand-level patterns of carbon fluxes and partitioning in a Eucalyptus grandis plantation across a gradient of productivity, in Sao Paulo State, Brazil. Tree Physiol. 2012, 32, 696–706. [Google Scholar] [CrossRef] [PubMed]
- De Moraes Goncalves, J.L.; Alvares, C.A.; Higa, A.R.; Silva, L.D.; Alfenas, A.C.; Stahl, J.; Ferraz, S.F.d.B.; Lima, W.d.P.; Brancalion, P.H.S.; Hubner, A.; et al. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For. Ecol. Manag. 2013, 301, 6–27. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.C.; Alvares, C.A.; Carneiro, R.L.; Stape, J.L. Variation in whole-rotation yield among Eucalyptus genotypes in response to water and heat stresses: The TECHS project. For. Ecol. Manag. 2020, 462, 117953. [Google Scholar] [CrossRef]
- Ibá. Annual report 2024. Brazilian Tree Industry. Available online: https://iba.org/eng/iba-publications/annual-reports (accessed on 11 November 2024).
- Ximenes, F.; Björdal, C.; Cowie, A.; Barlaz, M. The decay of wood in landfills in contrasting climates in Australia. Waste Manag. 2015, 41, 101–110. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Discounting future benefits and costs. In Guidelines for Preparing Economic Analyses; Office of the Administrator: Washington, DC, USA, 2010; Chapter 6. Available online: https://www.epa.gov/sites/production/files/2017-09/documents/ee-0568-06.pdf (accessed on 11 November 2024).
- O’hare, M.; Plevin, R.J.; I Martin, J.; Jones, A.D.; Kendall, A.; Hopson, E. Proper accounting for time increases crop-based biofuels’ greenhouse gas deficit versus petroleum. Environ. Res. Lett. 2009, 4. [Google Scholar] [CrossRef]
- Hellweg, S.; Hofstetter, T.B.; Hungerbuhler, K. Discounting and the environment should current impacts be weighted differently than impacts harming future generations? Int. J. Life Cycle Assess. 2003, 8, 8–18. [Google Scholar] [CrossRef]
- Hawkins, W.; Cooper, S.; Allen, S.; Roynon, J.; Ibell, T. Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure. Structures 2021, 33, 90–98. [Google Scholar] [CrossRef]
- Hoxha, E.; Passer, A.; Saade, M.R.M.; Trigaux, D.; Shuttleworth, A.; Pittau, F.; Allacker, K.; Habert, G. Biogenic carbon in buildings: A critical overview of LCA methods. Build. Cities 2020, 1, 504–524. [Google Scholar] [CrossRef]
- Levasseur, A.; Lesage, P.; Margni, M.; Samson, R. Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment. J. Ind. Ecol. 2013, 17, 117–128. [Google Scholar] [CrossRef]
- Liao, Y.; Tu, D.; Zhou, J.; Zhou, H.; Yun, H.; Gu, J.; Hu, C. Feasibility of manufacturing cross-laminated timber using fast-grown small diameter eucalyptus lumbers. Constr. Build. Mater. 2017, 132, 508–515. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, H.; Wang, Z.; Yang, L. Experimental buckling performance of eucalyptus-based oriented oblique laminated strand lumber columns under centric and eccentric compression. Constr. Build. Mater. 2020, 262. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, H.; Wang, Z.; Yang, L. Mechanical Properties of a Eucalyptus-Based Oriented Oblique Strand Lumber for Structural Applications. J. Renew. Mater. 2019, 7, 1147–1164. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X. Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Oregon Department of Environmental Quality. A Life Cycle Assessment Based Approach to Prioritizing Methods of Preventing Waste from Residential Building Construction, Remodeling, and Demolition in the State of Oregon: Phase 1 Report, Version 1.2; Quantis, Earth Advantage, and Oregon Home Builders Association: Salem, OR, USA, 2009. [Google Scholar]
- United Nations—Population Division. World Population Prospects 2022. Available online: https://population.un.org/wpp/ (accessed on 11 November 2024).
- Muhammad, A.; Rahman, M.R.; Hamdan, S.; Ervina, J. Possibility Usage of Acacia Wood Bio-composites in Application and Appliances. In Acacia Wood Bio-composites; Engineering Materials; Rahman, M., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Sheeba, K.R.J.; Priya, R.K.; Arunachalam, K.P.; Avudaiappan, S.; Flores, E.S.; Kozlov, P. Enhancing structural, thermal, and mechanical properties of Acacia pennata natural fibers through benzoyl chloride treatment for construction applications. Case Stud. Constr. Mater. 2023, 19, e02443. [Google Scholar] [CrossRef]
- Martins, F.B.; Benassi, R.B.; Torres, R.R.; Brito Neto, F.A. Impacts of 1.5 °C and 2 °C global warming on Eucalyptus plantations in South America. Sci. Total Environ. 2022, 825, 153820. [Google Scholar] [CrossRef] [PubMed]
Species | Zero Concern | Modest Concern | Serious Concern | Extreme Concern |
---|---|---|---|---|
Eucalyptus | 286 | 60 | 24 | 2 |
US Softwoods | 72 | −24 | −51 | −57 |
Origin | Destination | Land (km) | Sea (km) | Total CO2eq per kg Raw Material (kg) |
---|---|---|---|---|
Pacific Northwest US | Midwest US | 3670 | 0 | 0.56 |
Pacific Northwest US | Southern US | 3300 | 0 | 0.50 |
Southern Brazil | Southern US | 1690 | 11,450 | 0.33 |
Southern Brazil | Midwest US | 1415 | 11,450 | 0.29 |
Southeast US | Southern US | 1610 | 0 | 0.24 |
Southeast US | Midwest US | 1045 | 0 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilton, K.; Campoe, O.; Allan, N.; Hinkle, H. Increasing Carbon Sequestration, Land-Use Efficiency, and Building Decarbonization with Short Rotation Eucalyptus. Sustainability 2025, 17, 1281. https://doi.org/10.3390/su17031281
Chilton K, Campoe O, Allan N, Hinkle H. Increasing Carbon Sequestration, Land-Use Efficiency, and Building Decarbonization with Short Rotation Eucalyptus. Sustainability. 2025; 17(3):1281. https://doi.org/10.3390/su17031281
Chicago/Turabian StyleChilton, Kate, Otavio Campoe, Nicholas Allan, and Hal Hinkle. 2025. "Increasing Carbon Sequestration, Land-Use Efficiency, and Building Decarbonization with Short Rotation Eucalyptus" Sustainability 17, no. 3: 1281. https://doi.org/10.3390/su17031281
APA StyleChilton, K., Campoe, O., Allan, N., & Hinkle, H. (2025). Increasing Carbon Sequestration, Land-Use Efficiency, and Building Decarbonization with Short Rotation Eucalyptus. Sustainability, 17(3), 1281. https://doi.org/10.3390/su17031281