Linking Soil C:N Stoichiometry to Greenhouse Gas Balance: Implications for Ecosystem Sustainability in Temperate Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Gas Sampling and Flux Measurement
2.3. Soil Sampling and Measurement
2.4. Data Analysis
2.5. Stoichiometric Analysis
2.6. Global Warming Potential (GWP) Calculation
(Cumulative CH4 flux kg·ha−1 × 25) + (Cumulative N2O flux kg·ha−1 × 298)
3. Results and Analysis
3.1. Characteristics of CO2, CH4, and N2O Fluxes
3.2. PCA of Soil Properties
3.3. RDA of Soil Properties and Greenhouse Gas Flux
3.4. Correlation Analysis and Linear Fitting
3.5. Mantel Test: Overall Relationship Between Environment and GHG Fluxes
3.6. Greenhouse Gas Emissions and Global Warming Potential (GWP)
3.7. Stoichiometric Controls on GHG Emissions
4. Discussion
4.1. Implications for Sustainable Management and Climate Change
4.2. Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Sun, L.; Huang, Y.; Wang, Y.; Wan, Z. Carbon exchange in a freshwater marsh in the Sanjiang Plain, northeastern China. Agric. For. Meteorol. 2011, 151, 1131–1138. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, F.; Yu, L.L.; Xu, K.; Sun, Z.L.; La, X.G. Plant species diversity of the island forest in a marsh in the Sanjiang Plain, China. J. Plant Ecol. 2008, 32, 582–590. [Google Scholar]
- Wang, J.; Liu, H.; Wang, X.; Zhang, L.; Wang, X.; Zhang, H. Vegetation and environmental interpretation of the Qixing River National Nature Reserve wetland in Heilongjiang Province. Wetl. Sci. 2018, 16, 481–487. [Google Scholar]
- Pumpanen, J.; Kolari, P.; Ilvesniemi, H.; Minkkinen, K.; Vesala, T.; Niinisto, S.; Lohila, A.; Larmola, T.; Morero, M.; Pihlatie, M.; et al. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For. Meteorol. 2004, 123, 159–176. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Yan, W.; Zhong, Y.; Yang, J.; Shangguan, Z.; Torn, M.S. Response of soil greenhouse gas fluxes to warming: A global meta-analysis of field studies. Geoderma 2022, 419, 115865. [Google Scholar] [CrossRef]
- Manzoni, S.; Trofymow, J.A.; Jackson, R.B.; Porporato, A. Stoichiometric controls on carbon, nitrogen, and phos-phorus dynamics in decomposing litter. Ecol. Monogr. 2010, 80, 89–106. [Google Scholar] [CrossRef]
- Zhou, Y.; Boutton, T.W.; Wu, X.B.; Liu, S.; Hu, G. Soil carbon and nitrogen dynamics along a natural grass-land-to-forest successional gradient in southern China. For. Ecol. Manag. 2019, 437, 86–95. [Google Scholar] [CrossRef]
- Lladó, S.; Větrovský, T.; Baldrian, P. Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. Soil Biol. Biochem. 2019, 135, 275–282. [Google Scholar] [CrossRef]
- Xu, M.; Qi, Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob. Change Biol. 2001, 7, 667–677. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Köster, K.; Aurela, M.; Laurila, T.; Tuovinen, J.-P.; Lohila, A. Methane exchange in a drained and forested peatland: An analysis of the net ecosystem balance. Biogeosciences 2011, 8, 2625–2639. [Google Scholar]
- Lai, D.Y.F. Methane dynamics in northern peatlands: A review. Pedosphere 2009, 19, 409–421. [Google Scholar] [CrossRef]
- Bodelier, P.L.; Laanbroek, H.J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 2004, 47, 265–277. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil N2O emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [PubMed]
- Mooshammer, M.; Wanek, W.; Zechmeister-Boltenstern, S.; Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 2014, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Philippot, L.; Spor, A.; Hénault, C.; Bru, D.; Bizouard, F.; Jones, C.M.; Sarr, A.; Maron, P.A. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 2013, 7, 1609–1619. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef]
- Roothans, N.; Gabriëls, M.; Abeel, T.; Pabst, M.; van Loosdrecht, M.C.M.; Laureni, M. Aerobic denitrification as an N2O source from microbial communities. ISME J. 2024, 18, wrae116. [Google Scholar] [CrossRef] [PubMed]
- Melillo, J.M.; Frey, S.D.; DeAngelis, K.M.; Werner, W.J.; Bernard, M.J.; Bowles, F.P.; Pold, G.; Knorr, M.A.; Grandy, A.S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 2017, 358, 101–105. [Google Scholar] [CrossRef]
- Knief, C. Diversity and habitat preferences of methanotrophic bacteria. Environ. Microbiol. Rep. 2015, 7, 169–183. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Legendre, P.; Gallagher, E.D. Ecologically meaningful transformations for ordination of species data. Oecologia 2001, 129, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Dutaur, L.; Verchot, L.V. A global inventory of the soil CH4 sink. Glob. Biogeochem. Cycles 2007, 21, GB4013. [Google Scholar] [CrossRef]







| Layer | LGF (Larix Gmelinii Forest) | PBMF (Populus-Betula Mixed Forest) | BPF (Betula Platyphylla Forest) |
| Tree | Larix gmelinii, Betula platyphylla | Populus davidiana, Betula platyphylla, Tilia amurensis | Betula platyphylla, Alnus hirsuta |
| Shrub | Vaccinium vitis-idaea, Ledum palustre, Rosa davurica | Corylus heterophylla, Euonymus alatus, Lespedeza bicolor | Spiraea salicifolia, Salix brachypoda, Betula ovalifolia |
| Herb | Carex globularis, Maianthemum bifolium, Pyrola incarnata | Aegopodium podagraria, Convallaria keiskei, Paris verticillata | Deyeuxia angustifolia, Carex schmidtii, Thalictrum simplex |
| Forest Type (Code) | Soil Type | T (°C) | V (%) | SOC (g·kg−1) | TN (g·kg−1) | AN (g·kg−1) | pH |
|---|---|---|---|---|---|---|---|
| LGF | Dark brown soil | 2.0–18.2 (9.6) | 25.5–50.1 (38.5) | 45.1–68.2 (58.5) | 3.5–4.9 (4.1) | 0.45–0.68 (0.55) | 4.3–4.9 (4.6) |
| BPF | Swampy meadow soil | 1.8–18.1 (9.3) | 28.2–58.5 (41.5) | 31.5–51.8 (42.0) | 4.1–5.5 (4.7) | 0.51–0.75 (0.62) | 4.6–5.1 (4.8) |
| PBMF | Dark brown soil | 2.1–18.5 (9.8) | 26.1–52.3 (39.0) | 35.8–55.4 (45.5) | 4.5–6.1 (5.2) | 0.60–0.91 (0.70) | 4.8–5.3 (5.0) |
| Forest Type | Gas | Equation | Adj R2 | p |
|---|---|---|---|---|
| CO2 | CO2 = 45.8 × T + 8.5 × SOC + 15.2 | 0.91 | <0.001 | |
| LGF | CH4 | CH4 = −4.5 × T + 9.8 × pH − 65.1 | 0.85 | <0.001 |
| N2O | N2O = 1.5 × T − 8.2 | 0.78 | <0.001 | |
| CO2 | CO2 = 35.1 × T + 35.5 | 0.88 | <0.001 | |
| BPF | CH4 | CH4 = 5.2 × V − 217.1 | 0.82 | <0.001 |
| N2O | N2O = 1.8 × T − 1.2 × SOC − 5.6 | 0.84 | <0.001 | |
| CO2 | CO2 = 41.2 × T + 41.3 | 0.90 | <0.001 | |
| PBMF | CH4 | CH4 = −5.1 × T + 20.5 | 0.89 | <0.001 |
| N2O | N2O = 35.5 × AN + 0.8 × T − 9.6 | 0.93 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, B.; Xu, N.; Wang, Y.; Dong, J.; Yu, S. Linking Soil C:N Stoichiometry to Greenhouse Gas Balance: Implications for Ecosystem Sustainability in Temperate Forests. Sustainability 2025, 17, 11260. https://doi.org/10.3390/su172411260
Du B, Xu N, Wang Y, Dong J, Yu S. Linking Soil C:N Stoichiometry to Greenhouse Gas Balance: Implications for Ecosystem Sustainability in Temperate Forests. Sustainability. 2025; 17(24):11260. https://doi.org/10.3390/su172411260
Chicago/Turabian StyleDu, Baolong, Nan Xu, Yuan Wang, Juexian Dong, and Shaopeng Yu. 2025. "Linking Soil C:N Stoichiometry to Greenhouse Gas Balance: Implications for Ecosystem Sustainability in Temperate Forests" Sustainability 17, no. 24: 11260. https://doi.org/10.3390/su172411260
APA StyleDu, B., Xu, N., Wang, Y., Dong, J., & Yu, S. (2025). Linking Soil C:N Stoichiometry to Greenhouse Gas Balance: Implications for Ecosystem Sustainability in Temperate Forests. Sustainability, 17(24), 11260. https://doi.org/10.3390/su172411260

