Consumers’ Willingness to Adapt to Shifting Fish Availability Due to Climate Change
Abstract
1. Introduction
2. Empirical Application
2.1. Survey Design and Implementation
2.2. Data Quality Maintenance
2.3. Final Data Set
3. Methodology
3.1. Choice Experiment Design
3.2. Econometric Model for Estimating WTP
4. Results
4.1. Purchasing Behavior of the Unfamiliar Seafood Species
4.1.1. Choice Experiment Results: RPL Models
4.1.2. Choice Experiment Results: LCM
5. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Model 1 (Base) | Model 2 (Local Interaction) | |
|---|---|---|
| Variables | Coefficient | Coefficient |
| ASC | −6.69 *** (0.7) | −10.03*** (1.82) |
| Fish species (base: Atlantic Cod) | ||
| Scup | −4.65 *** (0.52) | −7.19 *** (1.41) |
| Croaker | −4.46 *** (0.5) | −6.7 *** (1.24) |
| Fluke | −1.13 *** (0.22) | −2.74 *** (0.79) |
| Trigger | −3.82 *** (0.37) | −6.53 *** (1.24) |
| Local (base: not local) | 1.2 *** (0.17) | 1.81 *** (0.58) |
| Purchasing location (base: large grocery store) | ||
| Local grocery | 0.39 ** (0.19) | 0.66 ** (0.34) |
| Seafood shop | 0.4 * (0.21) | 0.84 ** (0.37) |
| Farmers’ market (FM) | 0.58 *** (0.19) | 0.02 (0.55) |
| Interaction terms | ||
| Local × Scup | −1.69 * (0.92) | |
| Local × Croaker | −1.1 (0.82) | |
| Local × Fluke | 0.65 (0.78) | |
| Local × Trigger | −0.48 (0.74) | |
| FM × Scup | 0.774 (0.97) | |
| FM × Croaker | 2.66 ** (1.08) | |
| FM × Fluke | 4.19 ** (2.03) | |
| FM × Trigger | 0.089 (0.9) | |
| Price | −1.58 *** (0.16) | −1.31 *** (0.236) |
| Observations (N) | 7455 | 7455 |
| Log likelihood | −1931.06 | −1912.11 |
| Model 3.1 Purchased Unfamiliar Species Before (Yes/No) | Model 3.2 Total Number of Species Bought Before | |
|---|---|---|
| Variable | Coefficient | Coefficient |
| ASC | −7.02 *** (0.79) | −6.48 *** (0.71) |
| Fish species (base: Atlantic Cod) | ||
| Scup | −5.16 *** (0.6) | −5.53 *** (0.64) |
| Croaker | −4.9 *** (0.58) | −4.8 *** (0.57) |
| Fluke | −1.26 *** (0.26) | −1.47 *** (0.28) |
| Trigger | −4.05 *** (0.44) | −4.34 *** (0.48) |
| Local (base: not local) | 1.26 *** (0.18) | 1.18 *** (0.17) |
| Purchase venue (base: chain grocery store) | ||
| Local grocery store | 0.43 ** (0.2) | 0.45 ** (0.2) |
| Seafood shop | 0.42 * (0.22) | 0.47 ** (0.21) |
| Farmers’ market | 0.65 *** (0.21) | 0.64 *** (0.2) |
| Interaction Controls (Previously Purchased) | ||
| Previously purchased Scup × ASC | −0.85 (0.98) | |
| Previously purchased Croaker × ASC | 0.31 (1.03) | |
| Previously purchased Fluke × ASC | 0.14 (0.45) | |
| Previously purchased Trigger × ASC | −3.93 *** (1.77) | |
| Previously purchased Scup × Scup | 3.34 *** (0.93) | |
| Previously purchased Croaker × Croaker | 3.14 *** (0.9) | |
| Previously purchased Fluke × Fluke | 0.46 (0.44) | |
| Previously purchased Trigger × Trigger | 1.35 (1.01) | |
| Total species purchased control × ASC | −0.33 (0.29) | |
| Total species × Scup | 1.14 *** (0.35) | |
| Total species × Croaker | 0.48 (0.32) | |
| Total species × Fluke | 0.42 ** (0.25) | |
| Total species × Trigger | 0.69 *** (0.26) | |
| Price | −1.5 *** (0.16) | −1.58 *** (0.16) |
| Observations (N) | 7455 | 7455 |
| Log likelihood | −1903.32 | −1913.78 |
| Model 3.3 Purchase Seafood at Alternative Networks | Model 3.4 Recreational Angler | |
|---|---|---|
| Variable | Coefficient | Coefficient |
| ASC | −6.94 *** (0.83) | −6.58 *** (0.75) |
| Fish species (base: Atlantic Cod) | ||
| Scup | −5.86 *** (0.71) | −5.67 *** (0.7) |
| Croaker | −5.23 *** (0.64) | −4.93 *** (0.57) |
| Fluke | −1.44 *** (0.27) | −1.35 *** (0.27) |
| Trigger | −4.42 *** (0.49) | −4.32 *** (0.47) |
| Local (base: not local) | 1.26 *** (0.2) | 1.28 *** (0.19) |
| Purchase venue (base: chain grocery store) | ||
| Local grocery store | 0.4 ** (0.2) | 0.43 ** (0.2) |
| Seafood shop | 0.43 ** (0.22) | 0.48 ** (0.22) |
| Farmers’ market | 0.61 *** (0.21) | 0.68 *** (0.22) |
| Interaction terms | ||
| Alternative networks × ASC | 0.19 (0.47) | |
| Alternative networks × Scup | 3.2 *** (0.68) | |
| Alternative networks × Croaker | 2.18 *** (0.58) | |
| Alternative networks × Fluke | 1.02 ** (0.47) | |
| Alternative networks × Trigger | 1.54 *** (0.46) | |
| Recreational angler × ASC | −1.16 ** (0.52) | |
| Recreational angler × Scup | 1.77 *** (0.6) | |
| Recreational angler × Croaker | 0.96 (0.61) | |
| Recreational angler × Fluke | 0.56 (0.45) | |
| Recreational angler × Trigger | 0.84 (0.49) | |
| Price | −1.58 *** (0.17) | −1.53 (0.16) |
| Observations (N) | 7455 | 7425 |
| Log likelihood | −1903.83 | −1913.78 |
| WTP | 95% CI | |
|---|---|---|
| Fish Species | ||
| Scup | −20.16 *** | (−24.85, −15.48) |
| Croaker | −19.35 *** | (−23.55, −15.15) |
| Fluke | −4.89 *** | (−6.89, −2.90) |
| Trigger | −16.54 *** | (−20.09, −13.00) |
| WTP | 95% CI | |
|---|---|---|
| Fish Species | ||
| Scup | −24.67 *** | (−32.69, −16.67) |
| Scup + Local + (Local × Scup) | −24.27 *** | (−33.69, −14.84) |
| Scup + FM + (Scup × FM) | −21.95 *** | (−30.47, −13.43) |
| Croaker | −23.01 *** | (−31.64, −14.39) |
| Croakers + Local + (Local × Croaker) | −20.61 *** | (−27.75, −13.46) |
| Croaker + FM + (Croakers × FM) | −13.83 *** | (−20.59, −7.06) |
| Fluke | −9.40 *** | (−15.23, −3.56) |
| Fluke + Local + (Local × Fluke) | −0.96 | (−5.41, 3.50) |
| Fluke + FM + (Fluke × FM) | 5.04 | (−6.72, 16.8) |
| Tigger | −22.43 *** | (−30.27, −14.60) |
| Tigger + Local + (Local × Tigger) | −17.89 *** | (−25.10, −10.68) |
| Trigger + FM + (Tigger × FM) | −22.06 *** | (−30.38, −13.75) |
| WTP | 95% CI | |
|---|---|---|
| Fish Species | ||
| Scup | −20.97 *** | (−25.68, −16.26) |
| Scup + (Pervious × Scup) | −7.40 * | (−14.24, −0.58) |
| Croaker | −19.91 *** | (−24.07, −15.75) |
| Croaker + (Pervious × Croaker) | −7.15 * | (−13.85, −0.45) |
| Fluke | −5.12 *** | (−7.21, −3.03) |
| Fluke + (Pervious × Fluke) | −3.23 ** | (−6.53, 0.05) |
| Trigger | −16.46 *** | (−19.92, −12.30) |
| Trigger + (Pervious × Fluke) | −10.99 *** | (−19.10, −2.88) |
| WTP | 95% CI | |
|---|---|---|
| Fish Species | ||
| Scup | −24.12 *** | (−29.92, −18.33) |
| Scup + (Unfamiliar Species × Scup) | −19.13 *** | (−23.64, −14.61) |
| Croaker | −20.93 *** | (−25.83, −16.04) |
| Croaker + (Unfamiliar Species × Croaker) | −18.84 *** | (−23.02, −14.66) |
| Fluke | −6.41 *** | (−8.94, −3.89) |
| Fluke + (Unfamiliar Species × Fluke) | −4.57 *** | (−6.66, −2.48) |
| Trigger | −18.95 *** | (−23.24, −14.66) |
| Trigger + (Unfamiliar Species × Trigger) | −15.95 *** | (−19.40, −12.5) |
| WTP | 95% CI | |
|---|---|---|
| Fish Species | ||
| Scup | −24.38 *** | (−30.03, −18.73) |
| Scup + (Alternative Location × Scup) | −11.08 *** | (−15.61, −6.55) |
| Croaker | −21.76 *** | (−26.53, −16.99) |
| Croaker + (Alternative Location × Croaker) | −12.69 *** | (−17.07, −8.31) |
| Fluke | −6.00 *** | (−8.35, −3.65) |
| Fluke + (Alternative Location × Fluke) | −1.77 | (−5.07, 1.53) |
| Trigger | −18.38 *** | (−22.37, −14.40) |
| Trigger + (Alternative Location × Trigger) | −11.98 *** | (−15.70, −8.27) |
| WTP | 95% CI | |
|---|---|---|
| Fish Species | ||
| Scup | −23.80 *** | (−29.68, −17.92) |
| Scup + (Angler × Scup) | −16.40 *** | (−21.48, −11.30) |
| Croaker | −20.66 *** | (−25.32, −16.01) |
| Croaker + (Angler × Croaker) | −16.62 *** | (−21.83, −11.42) |
| Fluke | −5.67 *** | (−8.02, −3.32) |
| Fluke + (Angler × Fluke) | −3.31 * | (−6.56, −0.05) |
| Trigger | −18.13 *** | (−22.22, −14.05) |
| Trigger + (Angler × Trigger) | −14.62 *** | (−18.85, −10.39) |
References
- Kleisner, K.M.; Fogarty, M.J.; McGee, S.; Hare, J.A.; Moret, S.; Perretti, C.T.; Saba, V.S. Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 2017, 153, 24–36. [Google Scholar] [CrossRef]
- Fogarty, M.; Incze, L.; Hayhoe, K.; Mountain, D.; Manning, J. Potential climate change impacts on Atlantic cod (Gadus morhua) off the northeastern USA. Mitig. Adapt. Strateg. Glob. Change 2008, 13, 453–466. [Google Scholar] [CrossRef]
- Hare, J.A.; Alexander, M.A.; Fogarty, M.J.; Williams, E.H.; Scott, J.D. Forecasting the dynamics of a coastal fishery species using a coupled climate–population model. Ecol. Appl. 2010, 20, 452–464. [Google Scholar] [CrossRef]
- Schumann, S. Environmental Change, Vulnerability, Adaptation & Resilience: A Summary Report of 48 Semi-Structured Interviews with Rhode Island Commercial Fishery Stakeholders; Resilient Fisheries RI: South Kingstown, RI, USA, 2016; Available online: www.resilientfisheriesri.org (accessed on 15 October 2024).
- Pershing, A.J.; Alexander, M.A.; Hernandez, C.M.; Kerr, L.A.; Le Bris, A.; Mills, K.E.; Nye, J.A.; Record, N.R.; Scannell, H.A.; Scott, J.D.; et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 2015, 350, 809–812. [Google Scholar] [CrossRef]
- Altiok, S.; Murthy, A.; Iha, K.; Galli, A. Reducing Mediterranean Seafood Footprints: The role of consumer attitudes. Ocean. Coast. Manag. 2021, 214, 105915. [Google Scholar] [CrossRef]
- Murthy, A.; Galli, A.; Madeira, C.; Moreno Pires, S. Consumer Attitudes towards Fish and Seafood in Portugal: Opportunities for Footprint Reduction. Sustainability 2023, 15, 1363. [Google Scholar] [CrossRef]
- Witkin, T.; Dissanayake, S.T.M.; McClenachan, L. Opportunities and barriers for fisheries diversification: Consumer choice in New England. Fish. Res. 2015, 168, 56–62. [Google Scholar] [CrossRef]
- Tookes, J.S.; Barlett, P.; Yandle, T. The Case for Local and Sustainable Seafood: A Georgia Example. Cult. Agric. Food Environ. 2018, 40, 55–64. [Google Scholar] [CrossRef]
- Brinson, A.; Lee, M.-Y.; Rountree, B. Direct marketing strategies: The rise of community supported fishery programs. Mar. Policy 2011, 35, 542–548. [Google Scholar] [CrossRef]
- Witter, A.; Murray, G.; Sumaila, U.R. Consumer seafood preferences related to alternative food networks and their value chains. Mar. Policy 2021, 131, 104694. [Google Scholar] [CrossRef]
- Natali, F.; Cacchiarelli, L.; Branca, G. There are plenty more (sustainable) fish in the sea: A discrete choice experiment on discarded species in Italy. Ecol. Econ. 2022, 196, 107413. [Google Scholar] [CrossRef]
- Kersulec, C.; Doyen, L.; Cisse, A.A. From fork to fish: The role of demand on the sustainability of multi-species fishery. Ecol. Econ. 2024, 225, 108320. [Google Scholar] [CrossRef]
- Teixeira, C.M.; Coelho, M.P.; Gil, M.M.; Pita, C.; Silva, P.M. Changing the way we look to fisheries’ discards. Reg. Stud. Mar. Sci. 2024, 71, 103434. [Google Scholar] [CrossRef]
- Davis, A.G.; Staudinger, M.D.; Mills, K.E. Identifying New England’s underutilized seafood species and evaluating their market potential in a changing climate. Front. Mar. Sci. 2023, 10, 1226219. [Google Scholar] [CrossRef]
- Karnad, D.; Gangadharan, D.; Krishna, Y.C. Rethinking sustainability: From seafood consumption to seafood commons. Geoforum 2021, 126, 26–36. [Google Scholar] [CrossRef]
- Berinsky, A.J.; Huber, G.A.; Lenz, G.S. Evaluating Online Labor Markets for Experimental Research: Amazon.com’s Mechanical Turk. Political Anal. 2012, 20, 351–378. [Google Scholar] [CrossRef]
- Goodman, J.K.; Paolacci, G. Crowdsourcing Consumer Research. J. Consum. Res. 2017, 44, 196–210. [Google Scholar] [CrossRef]
- McCredie, M.N.; Morey, L.C. Who Are the Turkers? A Characterization of MTurk Workers Using the Personality Assessment Inventory. Assessment 2019, 26, 759–766. [Google Scholar] [CrossRef]
- Paolacci, G.; Chandler, J. Inside the Turk: Understanding Mechanical Turk as a Participant Pool. Curr. Dir. Psychol. Sci. 2014, 23, 184–188. [Google Scholar] [CrossRef]
- Peer, E.; Vosgerau, J.; Acquisti, A. Reputation as a sufficient condition for data quality on Amazon Mechanical Turk. Behav. Res. Methods 2014, 46, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Harms, P.D.; DeSimone, J.A. Caution! MTurk Workers Ahead—Fines Doubled. Industrial and Organizational. Psychology 2015, 8, 183–190. [Google Scholar] [CrossRef]
- Lovett, M.; Bajaba, S.; Lovett, M.; Simmering, M.J. Data Quality from Crowdsourced Surveys: A Mixed Method Inquiry into Perceptions of Amazon’s Mechanical Turk Masters. Appl. Psychol. 2018, 67, 339–366. [Google Scholar] [CrossRef]
- Sharpe Wessling, K.; Huber, J.; Netzer, O. MTurk Character Misrepresentation: Assessment and Solutions. J. Consum. Res. 2017, 44, 211–230. [Google Scholar] [CrossRef]
- Hauser, D.; Paolacci, G.; Chandler, J.J. Common Concerns with MTurk as a Participant Pool: Evidence and Solutions. PsyArXiv 2018. [Google Scholar] [CrossRef]
- Census Reporter. New England Division—Profile Data. Available online: https://censusreporter.org/profiles/03000US1-new-england-division/ (accessed on 2 November 2024).
- Breidert, C.; Hahsler, M.; Reutterer, T. A Review of Methods for Measuring Willingness-to-Pay. Innov. Mark. 2015, 1. [Google Scholar]
- NOAA Fisheries. Behind the Scenes of the Most Consumed Seafood; NOAA: Silver Spring, MD, USA, 2023. Available online: https://www.fisheries.noaa.gov/feature-story/behind-scenes-most-consumed-seafood (accessed on 15 October 2024).
- Cantillo, J.; Martín, J.C.; Román, C. Discrete choice experiments in the analysis of consumers’ preferences for finfish products: A systematic literature review. Food Qual. Prefer. 2020, 84, 103952. [Google Scholar] [CrossRef]
- Holmes, T.P.; Adamowicz, W.L.; Carlsson, F. Choice Experiments. In A Primer on Nonmarket Valuation; Champ, P.A., Boyle, K.J., Brown, T.C., Eds.; Springer: Dordrecht, The Netherlands, 2017; Volume 13, pp. 133–186. [Google Scholar] [CrossRef]
- Özdemir, S.; Johnson, F.R.; Hauber, A.B. Hypothetical bias, cheap talk, and stated willingness to pay for health care. J. Health Econ. 2009, 28, 894–901. [Google Scholar] [CrossRef]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behaviour. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: Cambridge, MA, USA, 1974; pp. 105–142. [Google Scholar]
- Lancaster, K.J. A New Approach to Consumer Theory. J. Political Econ. 1966, 74, 132–157. [Google Scholar] [CrossRef]
- Hensher, D.A.; Greene, W.H. The Mixed Logit model: The state of practice. Transportation 2003, 30, 133–176. [Google Scholar] [CrossRef]
- Train, K. Discrete Choice Methods with Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Carson, R.T.; Czajkowski, M. A new baseline model for estimating willingness to pay from discrete choice models. J. Environ. Econ. Manag. 2019, 95, 57–61. [Google Scholar] [CrossRef]
- Meas, T.; Hu, W.; Batte, M.T.; Woods, T.A.; Ernst, S. Substitutes or Complements? Consumer Preference for Local and Organic Food Attributes. Am. J. Agric. Econ. 2015, 97, 1044–1071. [Google Scholar] [CrossRef]
- Meyer, N.; Trandafir, S. Public attitudes and preferences for green rooftop technologies in the US: A choice experiment. Agric. Resour. Econ. Rev. 2023, 52, 320–346. [Google Scholar] [CrossRef]
- Weir, M.J.; Uchida, H.; Vadiveloo, M. Quantifying the effect of market information on demand for genetically modified salmon. Aquac. Econ. Manag. 2021, 25, 1–26. [Google Scholar] [CrossRef]
- Mariel, P.; Hoyos, D.; Meyerhoff, J.; Czajkowski, M.; Dekker, T.; Glenk, K.; Jacobsen, J.B.; Liebe, U.; Olsen, S.B.; Sagebiel, J.; et al. Econometric Modelling: Basics. In Environmental Valuation with Discrete Choice Experiments; Springer International Publishing: Cham, Switzerland, 2021; pp. 61–81. [Google Scholar] [CrossRef]
- Ai, C.; Norton, E.C. Interaction terms in logit and probit models. Econ. Lett. 2003, 80, 123–129. [Google Scholar] [CrossRef]
- Greene, W. Testing hypotheses about interaction terms in nonlinear models. Econ. Lett. 2010, 107, 291–296. [Google Scholar] [CrossRef]
- Bond, C.A.; Thilmany, D.D.; Bond, J.K. What to Choose? The Value of Label Claims to Fresh Produce Consumers. J. Agric. Resour. Econ. 2008, 33, 402–427. [Google Scholar]
- Liu, R.; Wang, J.; Liang, F.; Nian, Y.; Ma, H. What we can learn from the interactions of food traceable attributes? A case study of Fuji apple products in China. Appl. Econ. 2022, 54, 6829–6849. [Google Scholar] [CrossRef]
- Mariel, P.; Hoyos, D.; Meyerhoff, J.; Czajkowski, M.; Dekker, T.; Glenk, K.; Jacobsen, J.B.; Liebe, U.; Olsen, S.B.; Sagebiel, J.; et al. Calculating Marginal and Non-marginal Welfare Measures. In Environmental Valuation with Discrete Choice Experiments; Springer International Publishing: Cham, Switzerland, 2021; pp. 103–110. [Google Scholar] [CrossRef]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Applied Choice Analysis: A Primer; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Ankamah-Yeboah, I.; Armstrong, C.W.; Hynes, S.; Xuan, B.B.; Simpson, K. Assessing public preferences for deep sea ecosystem conservation: A choice experiment in Norway and Scotland. J. Environ. Econ. Policy 2022, 11, 113–132. [Google Scholar] [CrossRef]
- Scarpa, R.; Thiene, M. Organic food choices and Protection Motivation Theory: Addressing the psychological sources of heterogeneity. Food Qual. Prefer. 2011, 22, 532–541. [Google Scholar] [CrossRef]
- McClenachan, L.; Neal, B.P.; Al-Abdulrazzak, D.; Witkin, T.; Fisher, K.; Kittinger, J.N. Do community supported fisheries (CSFs) improve sustainability? Fish. Res. 2014, 157, 62–69. [Google Scholar] [CrossRef]




| Variables | Survey Sample | New England |
|---|---|---|
| Race % | ||
| White | 81.85 | 70.0 |
| Black or African American | 7.66 | 6 |
| American Indian | 1.41 | 0 |
| Asian | 6.05 | 5 |
| Hispanic or Latino | 7.22 | 13 |
| Female % | 54.4 | 51.0 |
| Age (Median) | 36 | 41.4 |
| Education % | ||
| Less than HS | 0.2 | 8 |
| HS or Equivalent | 12.85 | 25 |
| Some College or Associates | 25.9 | 23 |
| Bachelors | 38.38 | 24 |
| Graduate or professional | 22.22 | 20 |
| Median Household Income | $62,500 | $92,017 |
| Political Views % | ||
| Republican | 13.74 | N/A |
| Democrat | 46.67 | N/A |
| Independent | 33.33 | N/A |
| Prefer not to Answer/Other | 6.26 | N/A |
| Married | 51.7% | 49.0% |
| Attributes | Levels |
|---|---|
| Fish species | Scup (porgy/porgies) |
| Fluke (summer flounder) | |
| Triggerfish | |
| Crocker | |
| Atlantic Cod | |
| Origin | Local (please use your definition of local) |
| Non-local | |
| Store type | Large chain grocery store (e.g., Shaw’s/Walmart) |
| Local grocery store (e.g., family-owned, not a large chain) | |
| Farmers’ market | |
| Seafood shop | |
| Price ($ per pound) | From $10.49 to $18.49 in $2.00 intervals (total of five levels) |
| Variable | Coefficient |
|---|---|
| Recreational fisher (yes = 1) | 0.648 *** (0.222) |
| Employed in seafood industry (yes = 1) | 0.771 ** (0.343) |
| Seafood consumption frequency (couple of times per year) | |
| Once per month | 0.399 (0.449) |
| Couple of times per month | 0.864 ** (0.37) |
| 1 to 2 times per week | 1.082 *** (0.378) |
| More than 2 times per week | 1.013 * (0.53) |
| Whole fish frequency (never) | |
| Not often | 0.649 *** (0.225) |
| Often | 0.574 * (0.318) |
| Purchasing location (yes = 1) | |
| Large grocery store | −0.812 ** (0.331) |
| Wholesale | 0.495 ** (0.229) |
| Local grocery | 0.195 (0.195) |
| Alternate Networks | 0.514 ** (0.223) |
| Restaurant | 0.134 (0.203) |
| Seafood Shop | 0.42 ** (0.205) |
| Convenience store | 0.685 (0.463) |
| White | −4.21 * (0.256) |
| Cut point 1 | 1.271 (0.76) |
| Cut point 2 | 2.93 (0.77) |
| Number of observations (N) | 487 |
| Pseudo r-squared | 0.153 |
| Chi-square | 155.746 |
| Akaike information criteria (AIC) | 926.933 |
| Bayesian information criteria (BIC) | 1065.145 |
| Model 1 (Base) | |
|---|---|
| Variables | Coefficient |
| ASC | −6.69 *** (0.7) |
| Fish species (base: Atlantic Cod) | |
| Scup | −4.65 *** (0.52) |
| Croaker | −4.46 *** (0.5) |
| Fluke | −1.13 *** (0.22) |
| Trigger | −3.82 *** (0.37) |
| Local (base: not local) | 1.2 *** (0.17) |
| Purchasing location (base: large grocery store) | |
| Local grocery | 0.39 ** (0.19) |
| Seafood shop | 0.4 * (0.21) |
| Farmers’ market (FM) | 0.58 *** (0.19) |
| Price | −1.58 *** (0.16) |
| Observations (N) | 7455 |
| Log likelihood | −1931.06 |
| Model 1 (Base) | Model 2 (Local) | Model 2 (Farmers’ Market) | Model 3.1 Purchased Unfamiliar Species Before (Yes/No) | Model 3.2 Total Number of Species Bought Before | Model 3.3 Purchase Seafood at Alternative Networks | Model 3.4 Recreational Angler | |
|---|---|---|---|---|---|---|---|
| Scup | |||||||
| Main effect | −20.16 *** | −24.67 *** | −24.67 *** | −20.97 *** | −24.12 *** | −24.38 *** | −23.8 *** |
| Combined effect | −24.27 *** | −21.95 *** | −7.4 * | −19.13 *** | −11.08 *** | −16.4 *** | |
| Croaker | |||||||
| Main effect | −19.35 *** | −23.01 *** | −23.01 *** | −19.91 *** | −20.93 *** | −21.76 *** | −20.66 *** |
| Combined effect | −20.61 *** | −13.83 *** | −7.15 * | −18.84 *** | −12.69 *** | −16.62 *** | |
| Fluke | |||||||
| Main effect | −4.89 *** | −9.4 | −9.4 | −5.12*** | −6.41 *** | −6 *** | −5.67 *** |
| Combined effect | −0.96 | 5.04 | −3.23 ** | −4.57 *** | −1.77 | −3.31 *** | |
| Trigger | |||||||
| Main effect | −16.54 *** | −22.43 *** | −22.43 *** | −16.46 *** | −18.95 *** | −18.38 *** | −18.13 *** |
| Combined effect | −17.89 *** | −22.06 *** | −10.99 *** | −15.95 *** | −11.98 *** | −14.62 *** |
| Number of Classes | C-AIC | Log Likelihood | McFadden R2 | Smallest Class Size |
|---|---|---|---|---|
| 2 | 3929.6 | −1943.79 | 0.288 | 0.36 |
| 3 | 3852.7 | −1894.36 | 0.31 | 0.11 |
| 4 | 3829.3 | −1871.62 | 0.31 | 0.046 |
| 5 | 3802.8 | −1847.38 | 0.32 | 0.028 |
| 6 | -- | -- | -- | -- |
| 7 | 3801.5 | −1824.74 | 0.33 | 0.025 |
| 8 | -- | -- | -- | -- |
| LCM Coeff. | WTP ($) | |||||
|---|---|---|---|---|---|---|
| Class 1 | Class 2 | Class 3 | Class 1 | Class 2 | Class 3 | |
| ASC | −3.94 *** | −5.31 *** | −1.45 | −43.78 | −44.25 | −9.67 |
| Fish Species (Atlantic Cod) | ||||||
| Croaker | −0.76 *** | −4.38 *** | −2.48 *** | −8.44 | −36.50 | −16.53 |
| Scup | −0.49 ** | −4.99 *** | −2.97 *** | −5.44 | −41.58 | −19.80 |
| Fluke | −0.05 | −1.85 *** | −0.97 *** | 0.00 | −15.42 | −6.47 |
| Trigger | −0.70 *** | −3.88 *** | −3.53 *** | −7.78 | −32.33 | −23.53 |
| Purchasing location (base: large grocery store) | ||||||
| Farmers’ market | 0.28 ** | 0.26 | 0.93 ** | 3.11 | 0.00 | 6.20 |
| Seafood shop | 0.42 *** | −0.02 | 0.39 | 4.67 | 0.00 | 0.00 |
| Small grocery | 0.18 | 0.22 | 0.65 | 0.00 | 0.00 | 0.00 |
| Local (base: not local) | 0.65 *** | 0.38 ** | 0.77 ** | 7.22 | 3.17 | 5.13 |
| Class Membership | ||||||
| Constant | −0.02 | 0.12 | 0.00 | 1.00 | ||
| Seafood employment | 0.06 | −1.52 | 0.00 | 0.00 | ||
| Angler | 1.32 ** | 0.84 | 14.67 | 0.00 | ||
| Seafood consumption | 0.18 | 0.47 *** | 0.00 | 0.00 | ||
| Whole fish consumption | 0.26 | −0.01 | 0.00 | 0.00 | ||
| Unfamiliar fish species | 0.24 | 0.20 | 0.00 | 0.00 | ||
| Alternative networks | 0.35 | −1.11 ** | 0.00 | −9.25 | ||
| Price | −0.09 *** | −0.12 *** | −0.15 ** | |||
| Log—likelihood | −1873.80 | |||||
| McFadden-R2 | 0.31 | |||||
| CAIC | 3835.6 | |||||
| Latent class probability | 0.456 | 0.408 | 0.136 | |||
| Observations (N) | 7455 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, N.; Uchida, H. Consumers’ Willingness to Adapt to Shifting Fish Availability Due to Climate Change. Sustainability 2025, 17, 10588. https://doi.org/10.3390/su172310588
Meyer N, Uchida H. Consumers’ Willingness to Adapt to Shifting Fish Availability Due to Climate Change. Sustainability. 2025; 17(23):10588. https://doi.org/10.3390/su172310588
Chicago/Turabian StyleMeyer, Natalie, and Hirotsugu Uchida. 2025. "Consumers’ Willingness to Adapt to Shifting Fish Availability Due to Climate Change" Sustainability 17, no. 23: 10588. https://doi.org/10.3390/su172310588
APA StyleMeyer, N., & Uchida, H. (2025). Consumers’ Willingness to Adapt to Shifting Fish Availability Due to Climate Change. Sustainability, 17(23), 10588. https://doi.org/10.3390/su172310588

