Multi-Objective Dynamic Economic Emission Dispatch with Wind-Photovoltaic-Biomass-Electric Vehicles Interaction System Using Self-Adaptive MOEA/D
Abstract
1. Introduction
2. Modeling of DEED Based on WPBEV
2.1. Dispatch Model of Electric Vehicles
2.2. Modeling of Biomass Energy
2.3. Modeling of WP and PV
2.4. Modeling of DEED with WPBEV
2.5. Objective Functions
2.6. Constraints
3. Adaptive IMOEA/D-DE with ICMIC
3.1. The Proposed IMOEA/D-DE
3.2. Adaptive Dynamic Mutation Strategy
| Algorithm 1. Adaptive dynamic mutation strategy |
| Input: |
| itrCounter: Represents the number of iterations |
| itrCounterratio: The running progress of the current algorithm |
| jn: The stage represents the coefficient |
| xn: Mutation parameter |
| mutprob: Select mutation Indicators |
| piter: Current number of iterations |
| Output: |
| newpoint: The generated new individual |
| for i = 1 to itrCounter do |
| % Calculate the proportion of iteration progress |
| itrCounterratio = piter/itrCounter |
| % Three-stage adaptive strategy selection |
| if itrCounterratio jn then % Early stage |
| mutprob = xn |
| else if itrCounterratio jn |
| mutprob = xn % Middle stage |
| else mutprob = xn % Late stage |
| end else |
| end if |
| end if |
| if rand() < mutprob then |
| % MOEA/D mutation strategy |
| else rand() mutprob % DE multi-strategy variation |
| % DE mutation strategy |
| end else |
| end if |
| end |
4. Experimental Results and Analysis
4.1. Test System and Algorithm Parameters
4.2. Verify the Proposed IMOEA/D-DE
4.3. Verify the DEEDWPBEV Model
4.4. Sensitivity Analysis for Parameters
Different Population Size and Number of Iterations
4.5. Verify Algorithm and Model Scalability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| WP rated power | |
| , , | Cut-in wind speed, cut-out wind speed, and rated wind speed |
| Temperature under standard conditions | |
| k | Temperature-power coefficient |
| Light intensity under standard conditions | |
| T | Dispatching cycle |
| Np | Number of units |
| , , , , | Emission coefficients of the nth thermal generator |
| Net operating cost of the unit, active power of WP | |
| Net operating cost of the unit, active power of PV | |
| , | Charging price and discharging price |
| , | New energy abandonment and the shortage cost coefficient |
| , | Abandoned wind and photovoltaic coefficient |
| , , | Fuel cost coefficient of the jth thermal generator |
| Network loss at time t | |
| , | Charging and discharging power coefficient |
| Power consumed by EVs during driving | |
| L | The distance driven by EVs |
| , , | Coefficients of the B-coefficient method |
| Nnew | Number of new energy-generating units |
| , | Shortage of power and new energy waste power |
References
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Ameur, A.; Berrada, A.; Loudiyi, K.; Aggour, M. Analysis of renewable energy integration into the transmission network. Electr. J. 2019, 32, 106676. [Google Scholar] [CrossRef]
- Dong, W.; Sun, H.; Li, Z.; Yang, H. Design and optimal scheduling of forecasting-based campus multi-energy complementary energy system. Energy 2024, 309, 133088. [Google Scholar] [CrossRef]
- Lin, J.; Gu, Y.; Wang, Z.; Zhao, Z.; Zhu, P. Operational characteristics of an integrated island energy system based on multi-energy complementarity. Renew. Energy 2024, 230, 120890. [Google Scholar] [CrossRef]
- Tan, Q.; Wen, X.; Sun, Y.; Lei, X.; Wang, Z.; Qin, G. Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty. Appl. Energy 2021, 285, 116442. [Google Scholar]
- Ikeda, S.; Ooka, R. A new optimization strategy for the operating schedule of energy systems under uncertainty of renewable energy sources and demand changes. Energy Build. 2016, 125, 75–85. [Google Scholar] [CrossRef]
- Sharma, S.; Ali, I. Optimized electric vehicle charging and discharging with sporadic renewable energy source. In Proceedings of the 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 10–12 February 2023; IEEE: New York, NY, USA, 2023; pp. 1–6. [Google Scholar]
- Wang, N.; Li, B.; Duan, Y.; Jia, S. A multi-energy dispatching strategy for orderly charging and discharging of electric vehicles based on multi-objective particle swarm optimization. Sustain. Energy Technol. Assess. 2021, 44, 101037. [Google Scholar]
- Wang, H.; Liao, Y.; Zhang, J.; Cai, Z.; Zhao, Y.; Wang, W. Optimization of shared energy storage configuration for village-level photovoltaic systems considering vehicle charging management. Energy 2024, 311, 133373. [Google Scholar] [CrossRef]
- Yi, T.; Cheng, X.; Chen, Y.; Liu, J. Joint optimization of charging station and energy storage economic capacity based on the effect of alternative energy storage of electric vehicle. Energy 2020, 208, 118357. [Google Scholar] [CrossRef]
- Wang, W.; Chen, P.; Zeng, D.; Liu, J. Electric vehicle fleet integration in a virtual power plant with large-scale wind power. IEEE Trans. Ind. Appl. 2020, 56, 5924–5931. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Parrodi, J.C.; Lucas, H.; Gigantino, M.; Sauve, G.; Esguerra, J.L.; Einhäupl, P.; Vollprecht, D.; Pomberger, R.; Friedrich, B.; Van Acker, K.; et al. Integration of resource recovery into current waste management through (Enhanced) landfill mining. Detritus 2019, 8, 141–156. [Google Scholar] [CrossRef]
- Drożyner, P.; Rejmer, W.; Starowicz, P.; Klasa, A.; Skibniewska, K.A. Biomass as a renewable source of energy. Tech. Sci. 2013, 16, 211–220. [Google Scholar]
- Saeed, M.A.; Irshad, A.; Sattar, H.; Andrews, G.; Phylaktou, H.; Gibbs, B. Agricultural waste biomass energy potential in pakistan. In Proceedings of the International Bioenergy (Shanghai) Exhibition and Asian Bioenergy Conference, Shanghai, China, 21–23 October 2015. [Google Scholar]
- Shi, Y.; Ge, Y.; Chang, J.; Shao, H.; Tang, Y. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development. Renew. Sustain. Energy Rev. 2013, 22, 432–437. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, Y. Optimal scheduling of Biomass-Hybrid Microgrids with Energy Storage: An LSTM-PMOEVO Framework for Uncertain Environments. Appl. Sci. 2025, 15, 2702. [Google Scholar] [CrossRef]
- Wu, C. Carbon emission evaluation and low carbon economy optimization scheduling of rural integrated energy system based on LCA method. IEEE Access 2025, 13, 17182–17194. [Google Scholar] [CrossRef]
- Wang, P.; Pan, L.; He, G.; Li, G.; Song, J.; Zhou, M.; Wang, J. Constructing a biomass-data center nexus for circular economy-based energy systems integration. IEEE Open Access J. Power Energy 2025, 12, 270–283. [Google Scholar] [CrossRef]
- Jayarathna, L.; Kent, G.; O’Hara, I. Spatial optimization of multiple biomass utilization for large-scale bioelectricity generation. J. Clean. Prod. 2021, 319, 128625. [Google Scholar] [CrossRef]
- Li, W.; Zou, Y.; Yang, H.; Fu, X.; Xiang, S.; Li, Z.; Xiang, S. Two stage stochastic energy scheduling for multi energy rural microgrids with irrigation systems and biomass fermentation. IEEE Trans. Smart Grid 2024, 16, 1075–1087. [Google Scholar] [CrossRef]
- Dai, C.; Sun, X.; Hu, H.; Song, W.; Zhang, Y.; Gong, D. Multiform differential evolution with elite-guided knowledge transfer for coal mine integrated energy systems constrained dispatch. IEEE Trans. Evol. Comput. 2024. [Google Scholar] [CrossRef]
- Li, J.; Gong, Z.; Miao, G.; Wang, X.; Yuan, L.; Jia, X.; Ma, H. Multi-objective optimization of power-gas-heat integrated energy system based on NSGA-II-MOPSO hybrid intelligent algorithm. J. Electr. Eng. Technol. 2025, 20, 4941–4957. [Google Scholar] [CrossRef]
- Zio, E.; Baraldi, P.; Pedroni, N. Optimal power system generation scheduling by multi-objective genetic algorithms with preferences. Reliab. Eng. Syst. Saf. 2009, 94, 432–444. [Google Scholar] [CrossRef]
- Ji, D.; Cheng, H. Path Planning Algorithm for Long-Range Autonomous Underwater Vehicles Based on Environmental Features. In Proceedings of the 2023 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 19 August 2023; IEEE: New York, NY, USA, 2023; pp. 168–173. [Google Scholar]
- Li, X.; Fang, Y. Dynamic environmental/economic scheduling for microgrid using improved MOEA/D-M2M. Math. Probl. Eng. 2016, 2016, 2167153. [Google Scholar] [CrossRef]
- Zhang, H.; Yue, D.; Yue, W.; Li, K.; Yin, M. MOEA/D-based probabilistic PBI approach for risk-based optimal operation of hybrid energy system with intermittent power uncertainty. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 2080–2090. [Google Scholar] [CrossRef]
- Shao, P.; Yang, Z.; Zhu, X.; Zhao, S. Multi-objective optimization of electric vehicle and unit commitment considering users satisfaction: An improved MOEA/D algorithm. In Proceedings of the International Conference on Life System Modeling and Simulation, Hangzhou, China, 30 October–1 November 2021; Springer: Singapore, 2021; pp. 76–85. [Google Scholar]
- Marwali, M.K.C.; Ma, H.; Shahidehpour, S.M.; Abdul-Rahman, K.H. Short term generation scheduling in photovoltaic-utility grid with battery storage. In Proceedings of the 20th International Conference on Power Industry Computer Applications, Columbus, OH, USA, 11 May–16 June 1997; IEEE: New York, NY, USA, 1997; pp. 239–244. [Google Scholar]
- Fernandez, M.I.; Go, Y.I.; Früh, W.G.; Wong, D.M. Projection of electricity generation profiles and carbon emissions towards 2050: A Malaysia context. Energy Sustain. Dev. 2025, 85, 101681. [Google Scholar] [CrossRef]
- Ji, J.; Xie, Y.; Wang, Y.; Xiao, J.; Wen, W.; Zhang, C.; Sun, N.; Huang, H.; Zhang, C. Holistic optimization of grid-connected multi-energy systems: Biomass and flexible storage integration. Energy Convers. Manag. 2025, 327, 119558. [Google Scholar] [CrossRef]
- Vaysse, K.; Lagacherie, P. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma 2017, 291, 55–64. [Google Scholar] [CrossRef]
- Qiao, B.; Liu, J. Multi-objective dynamic economic emission dispatch based on electric vehicles and wind power integrated system using differential evolution algorithm. Renew. Energy 2020, 154, 316–336. [Google Scholar] [CrossRef]
- Khoa, T.H.; Vasant, P.M.; Singh, M.S.B.; Dieu, V.N. Swarm based mean-variance mapping optimization for convex and non-convex economic dispatch problems. Memetic Comput. 2017, 9, 91–108. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, Y.L.; Jiang, W. Wind-thermal dynamic economic emission dispatch with a hybrid multi-objective algorithm based on wind speed statistical analysis. IET Gener. Transm. Distrib. 2018, 12, 3972–3984. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multi objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Z.; Zhou, J. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1229–1246. [Google Scholar] [CrossRef]
- Fu, S.; Ma, C.; Li, K.; Xie, C.; Fan, Q.; Huang, H.; Xie, J.; Zhang, G.; Yu, M. Modified LSHADE-SPACMA with new mutation strategy and external archive mechanism for numerical optimization and point cloud registration. Artif. Intell. Rev. 2025, 58, 72. [Google Scholar] [CrossRef]
- Guerreiro, A.P.; Fonseca, C.M.; Paquete, L. The hypervolume indicator: Computational problems and algorithms. ACM Comput. Surv. (CSUR) 2021, 54, 119. [Google Scholar] [CrossRef]
- Qu, B.; Qiao, B.; Zhu, Y.; Jiao, Y.; Xiao, J.; Wang, X. Using multi-objective evolutionary algorithm to solve dynamic environment and economic dispatch with EVs. In Proceedings of the International Conference on Swarm Intelligence, Fukuoka, Japan, 27 July–1 August 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 31–39. [Google Scholar]
- Qu, B.; Qiao, B.; Zhu, Y.; Liang, J.; Wang, L. Dynamic power dispatch considering electric vehicles and wind power using decomposition based multi-objective evolutionary algorithm. Energies 2017, 10, 1991. [Google Scholar] [CrossRef]
- Alvarez-Benitez, J.E.; Everson, R.M.; Fieldsend, J.E. A MOPSO algorithm based exclusively on pareto dominance concepts. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico, 9–11 March 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 459–473. [Google Scholar]
- Babu, B.V.; Jehan, M.M.L. Differential evolution for multi-objective optimization. In Proceedings of the 2003 Congress on Evolutionary Computation, 2003. CEC’03, Canberra, Australia, 8–12 December 2003; IEEE: New York, NY, USA, 2003; Volume 4, pp. 2696–2703. [Google Scholar]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [Google Scholar] [CrossRef]
- Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Paris, France, 18–20 September 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858. [Google Scholar]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [Google Scholar] [CrossRef]









| State | Description |
|---|---|
| Charging | < 0, describe that EVs are in the charging stage. |
| Discharging | > 0, describe that EVs are in the discharging stage. |
| No charging/discharging | x = 0, EVs are not in the dispatch phase. |
| MODA | MOAHA | MODE | MOPSO | MOEA/D | IMOEA/D-DE | |
|---|---|---|---|---|---|---|
| HV | 3.20 × 10−3 | 1.46 × 10−2 | 2.02 × 10−2 | 1.49 × 10−2 | 2.97 × 10−2 | 3.01 × 10−2 |
| t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Load/MW | 1184 | 1036 | 1110 | 1258 | 1406 | 1480 | 1628 | 1702 | 1776 | 1924 | 2022 | 2106 |
| t | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| Load/MW | 2127 | 2072 | 1924 | 1776 | 1554 | 1480 | 1628 | 1776 | 1972 | 1924 | 1628 | 1332 |
| Unit | MW | UR MW/h | DR | an USD/h | bn USD/MW/h | cn USD/(MW)2/h | lb/h | lb/MWh | lb/(MW)2/h | lb/h | 1/MW | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P1 | 470 | 150 | 80 | 80 | 786.7988 | 38.5379 | 0.1524 | 103.3908 | −2.4444 | 0.0312 | 0.5035 | 0.0207 |
| P2 | 470 | 135 | 80 | 80 | 451.3251 | 46.1591 | 0.1058 | 103.3908 | −2.4444 | 0.0312 | 0.5035 | 0.0207 |
| P3 | 340 | 73 | 80 | 80 | 1049.9977 | 40.3965 | 0.0280 | 300.3910 | −4.0695 | 0.0509 | 0.4968 | 0.0202 |
| P4 | 300 | 60 | 50 | 50 | 1243.5311 | 38.3055 | 0.0354 | 300.3910 | −4.0695 | 0.0509 | 0.4968 | 0.0202 |
| P5 | 243 | 73 | 50 | 50 | 1658.5696 | 36.3278 | 0.0211 | 320.0006 | −3.8132 | 0.0344 | 0.4972 | 0.0200 |
| P6 | 160 | 57 | 50 | 50 | 1356.6592 | 38.2704 | 0.0179 | 320.0006 | −3.8132 | 0.0344 | 0.4972 | 0.0200 |
| P7 | 130 | 20 | 30 | 30 | 1450.7045 | 36.5104 | 0.0121 | 330.0056 | −3.9023 | 0.0465 | 0.5163 | 0.0214 |
| P8 | 120 | 47 | 30 | 30 | 1450.7045 | 36.5104 | 0.0121 | 330.0056 | −3.9023 | 0.0465 | 0.5163 | 0.0214 |
| P9 | 80 | 20 | 30 | 30 | 1455.6056 | 39.5804 | 0.1090 | 350.0056 | −3.9524 | 0.0465 | 0.5475 | 0.0234 |
| P10 | 55 | 10 | 30 | 30 | 1469.4026 | 40.5407 | 0.1295 | 360.0012 | −3.9864 | 0.0470 | 0.5475 | 0.0234 |
| Parameters | Value |
|---|---|
| Battery capacity | 24 kWh |
| ΔE | 0.15 kWh/km |
| L | 50 km |
| Commuting period | 07:00–08:00 and 18:00–19:00 |
| The initial state of SOC | 100% of the battery capacity |
| Minimum SOC | 20% of the battery capacity |
| Charge discharge efficiency | 0.85 |
| Parameters of the Wind Turbines | Value | Photovoltaic Parameters | Value |
|---|---|---|---|
| Pw,rate | 2 MW | Ps,rate | 1 MW |
| vr | 13 m/s | Tstc | 25 °C |
| vin | 3 m/s | Gstc | 1357 W/m2 |
| vout | 22 m/s | a | 0.38 |
| Algorithms | FM (lb) | FC (USD) | |
|---|---|---|---|
| MOAHA | Best cost | 2.8592 × 105 | 2.5624 × 106 |
| Best emission | 2.2689 × 105 | 2.7724 × 106 | |
| Best compromise solutions | 2.4406 × 105 | 2.6412 × 106 | |
| NSGA-II | Best cost | 2.5659 × 105 | 2.5267 × 106 |
| Best emission | 2.3834 × 105 | 2.6753 × 106 | |
| Best compromise solutions | 2.4717 × 105 | 2.5559 × 106 | |
| NSGA-III | Best cost | 2.5843 × 105 | 2.6673 × 106 |
| Best emission | 2.6239 × 105 | 2.6513 × 106 | |
| Best compromise solutions | 2.6017 × 105 | 2.6575 × 106 | |
| MOPSO | Best cost | 2.6787 × 105 | 2.4944 × 106 |
| Best emission | 2.1741 × 105 | 2.7228 × 106 | |
| Best compromise solutions | 2.3186 × 105 | 2.5769 × 106 | |
| MODE | Best cost | 3.1387 × 105 | 2.4372 × 106 |
| Best emission | 2.1078 × 105 | 2.7950 × 106 | |
| Best compromise solutions | 2.4811 × 105 | 2.5346 × 106 | |
| MOEA/D | Best cost | 2.8501 × 105 | 2.4389 × 106 |
| Best emission | 2.0649 × 105 | 2.7631 × 106 | |
| Best compromise solutions | 2.3125 × 105 | 2.5628 × 106 | |
| IMOEA/D-DE | Best cost | 2.7120 × 105 | 2.4326 × 106 |
| Best emission | 1.9967 × 105 | 2.7790 × 106 | |
| Best compromise solutions | 2.2341 × 105 | 2.5622 × 106 |
| t | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | PV2G | PBE | Pw | Ps | PL | PD |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 134.52 | 133.35 | 94.01 | 71.47 | 130.20 | 129.68 | 111.34 | 106.17 | 61.22 | 47.86 | 72.71 | 0.22 | 27.29 | 0.00 | 84.05 | 1036 |
| 2 | 150.07 | 138.97 | 97.17 | 89.74 | 143.06 | 138.51 | 115.21 | 113.40 | 64.73 | 45.27 | 9.10 | 2.85 | 34.23 | 0.00 | 32.31 | 1110 |
| 3 | 152.74 | 145.64 | 141.08 | 125.97 | 183.03 | 138.33 | 123.72 | 112.33 | 77.78 | 52.21 | 1.82 | 0.00 | 27.29 | 0.00 | 23.93 | 1258 |
| 4 | 157.01 | 143.90 | 174.94 | 151.33 | 231.46 | 154.32 | 128.58 | 119.10 | 79.20 | 53.67 | −11.67 | 0.00 | 27.29 | 0.00 | 3.13 | 1406 |
| 5 | 177.74 | 170.77 | 174.76 | 170.50 | 233.55 | 160.00 | 130.00 | 116.38 | 80.00 | 55.00 | 1.08 | 1.55 | 27.29 | 0.00 | 18.61 | 1480 |
| 6 | 201.08 | 240.05 | 204.42 | 220.00 | 241.96 | 158.80 | 128.90 | 118.90 | 78.37 | 53.73 | 12.01 | 0.00 | 55.19 | 0.00 | 85.41 | 1628 |
| 7 | 212.96 | 235.41 | 221.78 | 195.13 | 241.35 | 159.83 | 130.00 | 120.00 | 79.16 | 54.80 | 0.00 | 58.11 | 55.19 | 0.00 | 61.73 | 1702 |
| 8 | 199.08 | 247.35 | 213.58 | 229.28 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 12.66 | 140.31 | 28.19 | 0.00 | 82.44 | 1776 |
| 9 | 226.79 | 247.42 | 235.02 | 248.63 | 242.66 | 159.56 | 129.94 | 119.90 | 79.43 | 54.94 | 0.26 | 192.13 | 62.14 | 0.00 | 74.81 | 1924 |
| 10 | 242.34 | 279.78 | 265.76 | 249.83 | 242.87 | 159.78 | 129.67 | 119.99 | 79.86 | 54.79 | −16.45 | 198.45 | 41.24 | 0.00 | 25.93 | 2022 |
| 11 | 258.63 | 299.11 | 302.24 | 289.24 | 242.44 | 159.80 | 129.78 | 119.77 | 79.91 | 54.85 | −17.38 | 198.97 | 41.24 | 0.00 | 52.62 | 2106 |
| 12 | 259.65 | 325.50 | 285.26 | 268.68 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | −40.47 | 195.65 | 47.29 | 0.00 | 2.56 | 2127 |
| 13 | 264.47 | 276.03 | 247.63 | 277.89 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | −13.18 | 200.00 | 55.19 | 20.17 | 44.21 | 2072 |
| 14 | 225.96 | 225.48 | 240.48 | 244.73 | 243.00 | 160.00 | 130.00 | 119.58 | 80.00 | 55.00 | −3.36 | 200.00 | 48.19 | 50.00 | 95.06 | 1924 |
| 15 | 226.24 | 230.88 | 204.25 | 229.48 | 242.91 | 159.94 | 129.91 | 119.91 | 79.72 | 54.85 | 5.41 | 47.55 | 34.23 | 50.00 | 39.27 | 1776 |
| 16 | 183.93 | 189.29 | 174.95 | 180.64 | 239.78 | 160.00 | 129.92 | 119.94 | 80.00 | 54.76 | 90.41 | 23.33 | 20.28 | 0.24 | 93.48 | 1554 |
| 17 | 170.05 | 153.38 | 150.32 | 174.63 | 238.69 | 159.47 | 129.65 | 119.13 | 79.90 | 54.98 | 0.00 | 4.25 | 76.09 | 0.26 | 30.80 | 1480 |
| 18 | 192.04 | 187.55 | 211.57 | 196.07 | 243.00 | 158.99 | 129.34 | 119.42 | 79.79 | 54.97 | 47.17 | 51.04 | 34.23 | 0.00 | 77.20 | 1628 |
| 19 | 218.19 | 235.51 | 216.68 | 215.31 | 243.00 | 160.00 | 130.00 | 120.00 | 80.00 | 55.00 | 31.98 | 116.46 | 34.23 | 0.00 | 80.36 | 1776 |
| 20 | 229.85 | 251.62 | 259.66 | 265.07 | 242.85 | 159.78 | 129.99 | 119.99 | 79.90 | 54.99 | −1.35 | 199.15 | 27.29 | 0.00 | 46.80 | 1972 |
| 21 | 226.27 | 248.21 | 236.39 | 246.37 | 240.33 | 158.68 | 128.67 | 118.90 | 78.90 | 53.90 | −1.42 | 197.67 | 27.29 | 0.00 | 36.15 | 1924 |
| 22 | 191.89 | 203.38 | 204.88 | 232.67 | 242.93 | 159.96 | 129.96 | 119.89 | 79.88 | 54.96 | 36.40 | 22.65 | 41.24 | 0.00 | 92.70 | 1628 |
| 23 | 160.32 | 145.20 | 158.15 | 185.06 | 231.25 | 147.80 | 129.94 | 119.89 | 79.26 | 54.94 | −93.70 | 30.78 | 34.23 | 0.00 | 51.13 | 1332 |
| 24 | 154.69 | 141.00 | 140.49 | 109.77 | 121.58 | 142.70 | 121.73 | 118.07 | 79.94 | 47.92 | −66.84 | 51.00 | 40.28 | 0.00 | 18.32 | 1184 |
| Scenarios | FM (lb) | FC (USD) | |
|---|---|---|---|
| 1 | Best cost | 2.7120 × 105 | 2.4326 × 106 |
| Best emission | 1.9967 × 105 | 2.7790 × 106 | |
| Best compromise solutions | 2.2341 × 105 | 2.5622 × 106 | |
| 2 | Best cost | 2.4844 × 105 | 2.4760 × 106 |
| Best emission | 2.0671 × 105 | 2.6828 × 106 | |
| Best compromise solutions | 2.3026 × 105 | 2.5784 × 106 | |
| 3 | Best cost | 2.6237 × 105 | 2.4530 × 106 |
| Best emission | 2.0206 × 105 | 2.7378 × 106 | |
| Best compromise solutions | 2.2352 × 105 | 2.5650 × 106 | |
| 4 | Best cost | 3.0116 × 105 | 2.4240 × 106 |
| Best emission | 2.7918 × 105 | 2.5148 × 106 | |
| Best compromise solutions | 2.8556 × 105 | 2.4539 × 106 | |
| 5 | Best cost | 2.9793 × 105 | 2.4381 × 106 |
| Best emission | 2.7737 × 105 | 2.5185 × 106 | |
| Best compromise solutions | 2.8340 × 105 | 2.4618 × 106 |
| EVs | FM (lb) | FC (USD) | |
|---|---|---|---|
| 10,000 | Best cost | 2.0929 × 105 | 2.7227 × 106 |
| Best emission | 2.0780 × 105 | 2.7332 × 106 | |
| Best compromise solutions | 2.6437 × 105 | 2.4268 × 106 | |
| 20,000 | Best cost | 2.0653 × 105 | 2.7082 × 106 |
| Best emission | 2.0712 × 105 | 2.7048 × 106 | |
| Best compromise solutions | 2.4570 × 105 | 2.4792 × 106 | |
| 30,000 | Best cost | 2.0684 × 105 | 2.7421 × 106 |
| Best emission | 2.0936 × 105 | 2.6952 × 106 | |
| Best compromise solutions | 2.5679 × 105 | 2.4738 × 106 | |
| 40,000 | Best cost | 2.0901 × 105 | 2.7467 × 106 |
| Best emission | 2.1025 × 105 | 2.7075 × 106 | |
| Best compromise solutions | 2.6038 × 105 | 2.4702 × 106 | |
| 50,000 | Best cost | 2.0480 × 105 | 2.7721 × 106 |
| Best emission | 2.1611 × 105 | 2.6393 × 106 | |
| Best compromise solutions | 2.6642 × 105 | 2.4569 × 106 | |
| 60,000 | Best cost | 2.1416 × 105 | 2.7501 × 106 |
| Best emission | 2.2632 × 105 | 2.6289 × 106 | |
| Best compromise solutions | 2.5052 × 105 | 2.5314 × 106 |
| Max _Fes = 3000 | FM (lb) | FC (USD) | |
|---|---|---|---|
| NP = 100 | Best cost | 2.7120 × 105 | 2.4326 × 106 |
| Best emission | 1.9967 × 105 | 2.7790 × 106 | |
| Best compromise solutions | 2.2341 × 105 | 2.5622 × 106 | |
| Average times | 2103.2 s | ||
| NP = 200 | Best cost | 2.7819 × 105 | 2.4410 × 106 |
| Best emission | 2.0269 × 105 | 2.7150 × 106 | |
| Best compromise solutions | 2.3122 × 105 | 2.5326 × 106 | |
| Average times | 2353.68 s | ||
| NP = 300 | Best cost | 2.8158 × 105 | 2.4254 × 106 |
| Best emission | 2.0171 × 105 | 2.4244 × 106 | |
| Best compromise solutions | 2.3013 × 105 | 2.5569 × 106 | |
| Average times | 2581.89 s | ||
| NP = 400 | Best cost | 2.8445 × 105 | 2.4458 × 106 |
| Best emission | 2.0470 × 105 | 2.7333 × 106 | |
| Best compromise solutions | 2.3230 × 105 | 2.5502 × 106 | |
| Average times | 2956.5 s | ||
| NP = 500 | Best cost | 2.8833 × 105 | 2.4478 × 106 |
| Best emission | 2.1197 × 105 | 2.4008 × 106 | |
| Best compromise solutions | 2.2965 × 105 | 2.5426 × 106 | |
| Average times | 3301.21 s | ||
| NP = 100 | FM (lb) | FC (USD) | |
|---|---|---|---|
| Max _Fes = 1000 | Best cost | 2.7483 × 105 | 2.4516 × 106 |
| Best emission | 2.1012 × 105 | 2.7610 × 106 | |
| Best Compromise Solutions | 2.3483 × 105 | 2.5733 × 106 | |
| Max _Fes = 2000 | Best cost | 2.7222 × 105 | 2.4467 × 106 |
| Best emission | 2.1060 × 105 | 2.7112 × 106 | |
| Best Compromise Solutions | 2.2840 × 105 | 2.5731 × 106 | |
| Max _Fes = 3000 | Best cost | 2.7120 × 105 | 2.4326 × 106 |
| Best emission | 1.9967 × 105 | 2.7790 × 106 | |
| Best Compromise Solutions | 2.2341 × 105 | 2.5622 × 106 | |
| Max _Fes = 4000 | Best cost | 2.7213 × 105 | 2.4369 × 106 |
| Best emission | 2.0430 × 105 | 2.7472 × 106 | |
| Best Compromise Solutions | 2.2439 × 105 | 2.5723 × 106 | |
| Max _Fes = 5000 | Best cost | 2.7448 × 105 | 2.4434 × 106 |
| Best emission | 2.0754 × 105 | 2.7402 × 106 | |
| Best Compromise Solutions | 2.2401 × 105 | 2.5673 × 106 |
| Algorithms | FM (lb) | FC (USD) | |
|---|---|---|---|
| MOAHA | Best cost | 5.2683 × 106 | 3.6661 × 106 |
| Best emission | 4.6673 × 106 | 3.5259 × 106 | |
| Best compromise solutions | 5.0804 × 106 | 3.6766 × 106 | |
| NSGA-II | Best cost | 4.7683 × 106 | 3.0226 × 106 |
| Best emission | 4.6380 × 106 | 3.6267 × 106 | |
| Best compromise solutions | 4.6528 × 106 | 3.6528 × 106 | |
| MOPSO | Best cost | 4.8410 × 106 | 3.5391 × 106 |
| Best emission | 4.0167 × 106 | 3.4803 × 106 | |
| Best compromise solutions | 4.6954 × 106 | 3.5152 × 106 | |
| MODE | Best cost | 4.2853 × 106 | 3.1253 × 106 |
| Best emission | 3.8366 × 106 | 3.1784 × 106 | |
| Best compromise solutions | 4.1049 × 106 | 3.6766 × 106 | |
| MOEA/D | Best cost | 2.8072 × 106 | 3.1065 × 106 |
| Best emission | 3.0828 × 106 | 2.9403 × 106 | |
| Best compromise solutions | 2.9266 × 106 | 2.9976 × 106 | |
| IMOEA/D-DE | Best cost | 2.9829 × 106 | 2.9036 × 106 |
| Best emission | 2.6831 × 106 | 3.2150 × 106 | |
| Best compromise solutions | 2.8106 × 106 | 2.9799 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, B.; Ye, J.; Hu, H.; Wen, P. Multi-Objective Dynamic Economic Emission Dispatch with Wind-Photovoltaic-Biomass-Electric Vehicles Interaction System Using Self-Adaptive MOEA/D. Sustainability 2025, 17, 9949. https://doi.org/10.3390/su17229949
Qiao B, Ye J, Hu H, Wen P. Multi-Objective Dynamic Economic Emission Dispatch with Wind-Photovoltaic-Biomass-Electric Vehicles Interaction System Using Self-Adaptive MOEA/D. Sustainability. 2025; 17(22):9949. https://doi.org/10.3390/su17229949
Chicago/Turabian StyleQiao, Baihao, Jinglong Ye, Hejuan Hu, and Pengwei Wen. 2025. "Multi-Objective Dynamic Economic Emission Dispatch with Wind-Photovoltaic-Biomass-Electric Vehicles Interaction System Using Self-Adaptive MOEA/D" Sustainability 17, no. 22: 9949. https://doi.org/10.3390/su17229949
APA StyleQiao, B., Ye, J., Hu, H., & Wen, P. (2025). Multi-Objective Dynamic Economic Emission Dispatch with Wind-Photovoltaic-Biomass-Electric Vehicles Interaction System Using Self-Adaptive MOEA/D. Sustainability, 17(22), 9949. https://doi.org/10.3390/su17229949

