Artificial Sweeteners in Aquatic Ecosystems: Occurrence, Sources and Effects
Abstract
1. Introduction
2. Bibliographic Search
3. Use and Consumption
4. Sources of Artificial Sweeteners in Aquatic Ecosystems
5. Concentrations of Sweeteners in Environmental Matrices
6. Effects
| Sweeteners | Organisms | Concentration (µg L−1) | Assay | Effects | References |
|---|---|---|---|---|---|
| Ace-K | Fresh water Vertebrate, fish Danio rerio | 50 | Biomarker assay | Increased HPC and LPX activity | [15] |
| 10,000 | Light/dark preference test (LDP) | Increased anxiety | [69] | ||
| 10,000 | Test NTDT | Increased anxiety | [69] | ||
| 10,000 | CPP behavioral testing | Impaired learning and memory capacity | [69] | ||
| >1,000,000 | Acute toxicity test LC50-96 h | Mortality | [48] | ||
| 24 | Toxicity test IC50-24 h | Effects on swimming and feeding | [64] | ||
| Fresh water Vertebrate, fish Cyprinus carpio | 0.05 | Biomarker assay | Increased HPC and SOD activity | [74] | |
| Fresh water Vertebrate, fish Carassius auratus | 100 | Biomarker Assay | Increased SOD activity | [72] | |
| Fresh water crustacean Daphnia magna | 100 | In vivo cardiac toxicity assay | Increased cardiac | [75] | |
| 24 | Toxicity test IC50-24 h | Swimming impairment | [64] | ||
| 28 | Toxicity test IC50-24 h | Affecting feeding activity | [64] | ||
| 1,600,000 | Acute Toxicity Test LC50-48 h | Mortality | [54] | ||
| 0.1 | Biomarker assay | Decreased AChE activity | [64] | ||
| Aspartame | Fresh water crustacean Daphnia magna | 0.1 | Biomarker assay | Increased AChE activity | [64] |
| Fresh water Vertebrate, fish Danio rerio | 0.49 | In situ hybridization assay | Inhibition of neutrophil production | [76] | |
| 20 | Teratogenicity test | Cartilage malformation | [68] | ||
| 20 | In vitro Toxicity Assay | Decreased in locomotor activity | [68] | ||
| 60 | Western blot Technique | Decreased expression of SIRT1 and FOXO3a proteins in neurons | [68] | ||
| Cyclamate | Fresh water Vertebrate, fish Danio rerio | 100 | Biomarker assay | Increased AChE activity | [65] |
| Fresh water crustacean Daphnia magna | 1000 | Chronic toxicity test 21 d | Difficulty in reproduction | [70] | |
| Saccharin | Fresh water Vertebrate, fish Danio rerio | 1000 | Light/dark preference tests (LDP) | Alteration of neurotrans-mitter homeostasis in the brain | [77] |
| 100,000 | Acute Toxicity Test EC50-48 h | Immobilization | [78] | ||
| 1000 | Light/dark preference test (LDP) | Excessive increase during swimming | [79] | ||
| 100 | Biomarker assay | Increased dopamine | [65] | ||
| Sucralose | Fresh water Vertebrate, fish Danio rerio | 0.05 | Biomarker assay | Increased in LPX, HPC, and PCC activity | [71] |
| 0.05 | qRT-PCR molecular technique | Over-expression of Nrf1a and Nrf2a genes | [71] | ||
| 116.5 | Acute Toxicity Test LC50-96 h | Mortality | [71] | ||
| Fresh water Vertebrate, fish Cyprinus carpio | 0.05 | Comet assay | DNA damage | [67] | |
| Tunnel test | Apoptosis | [67] | |||
| 0.05 | Biomarker assay | Increased in HPC, LPX, PCC and SOD activity | [80] | ||
| Salt water crustacean Gammarus zaddachi | 500 | Biomarker assay | Increased AChE and LPX activity | [81] | |
| 5000 | Toxicity test 14 d | Increased respiration | [66] | ||
| Fresh water crustacean Daphnia magna | 20.1 | Biomarker assay | Increased AChE activity | [64] | |
| 5 | Toxicity Test (Toximeter II) | Increased swimming | [66] | ||
| 0.1 | Biomarker assay | Increased AChE activity | [81] | ||
| 175 | Toxicity test IC50-24 h | Abnormal swimming | [64] | ||
| 235 | Toxicity test IC50-24 h | Alteration in feeding activity | [64] | ||
| Saltwater copepod Nitocra spinipes | 0.5 | Acute Toxicity Test LC50-96 h | Mortality | [66] | |
| Saltwater copepod Calanus glacialis | 0.05 | Toxicity test 72 h | Decrease in egg production | [82] | |
| Aquatic plant Lemar minor | 100,000 | Toxicity test 7 days | Growth rate inhibition | [83] | |
| Green algae Pseudokirchneriella subcapitata | 10,000 | Toxicity test 48 h Bioaccumulation | Does not bioaccumulate | [84] | |
| Green algae Scenedesmus vacuolatus | 1,000,000 | Test inhibition reproduction | NOEC | [85] |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Rymon Lipinski, G.W. The New Intense Sweetener Acesulfame K. Food Chem. 1985, 16, 259–269. [Google Scholar] [CrossRef]
- Sang, Z.; Jiang, Y.; Tsoi, Y.K.; Leung, K.S.Y. Evaluating the Environmental Impact of Artificial Sweeteners: A Study of Their Distributions, Photodegradation and Toxicities. Water Res. 2014, 52, 260–274. [Google Scholar] [CrossRef]
- Bowen, A.; Denny, V.; Zahedi, I.; Bidaisee, S. The Whey and Casein Protein Powder Consumption:—ProQuest. Available online: https://www.proquest.com/docview/2136005450?sourcetype=Scholarly%20Journals (accessed on 1 June 2025).
- Higgins, J.P.; Babu, K.; Deuster, P.A.; Shearer, J. Energy Drinks: A Contemporary Issues Paper. Curr. Sports Med. Rep. 2018, 17, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Sievenpiper, J.L.; Chan, C.B.; Dworatzek, P.D.; Freeze, C.; Williams, S.L. Nutrition Therapy. Can. J. Diabetes 2018, 42, S64–S79. [Google Scholar] [CrossRef] [PubMed]
- Naidu, R.; Arias Espana, V.A.; Liu, Y.; Jit, J. Emerging Contaminants in the Environment: Risk-Based Analysis for Better Management. Chemosphere 2016, 154, 350–357. [Google Scholar] [CrossRef]
- Fernandez, R.; Colás-Ruiz, N.R.; Bolívar-Anillo, H.J.; Anfuso, G.; Hampel, M. Occurrence and Effects of Antimicrobials Drugs in Aquatic Ecosystems. Sustainability 2021, 13, 13428. [Google Scholar] [CrossRef]
- Roberts, A. The Safety and Regulatory Process for Low Calorie Sweeteners in the United States. Physiol. Behav. 2016, 164, 439–444. [Google Scholar] [CrossRef]
- Praveena, S.M.; Cheema, M.S.; Guo, H.R. Non-Nutritive Artificial Sweeteners as an Emerging Contaminant in Environment: A Global Review and Risks Perspectives. Ecotoxicol. Environ. Saf. 2019, 170, 699–707. [Google Scholar] [CrossRef]
- Li, S.; Ren, Y.; Fu, Y.; Gao, X.; Jiang, C.; Wu, G.; Ren, H.; Geng, J. Fate of Artificial Sweeteners through Wastewater Treatment Plants and Water Treatment Processes. PLoS ONE 2018, 13, e0189867. [Google Scholar] [CrossRef]
- Trawiński, J.; Skibiński, R. Stability of Aspartame in the Soft Drinks: Identification of the Novel Phototransformation Products and Their Toxicity Evaluation. Food Res. Int. 2023, 173, 113365. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, Z.; Yang, Y.; Zhu, L.; Deng, J.; Lu, S.; Li, X.; Dietrich, A.M. Aqueous Degradation of Artificial Sweeteners Saccharin and Neotame by Metal Organic Framework Material. Sci. Total Environ. 2021, 761, 143181. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-Wide Monitoring Survey on Emerging Polar Organic Contaminants in Wastewater Treatment Plant Effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef] [PubMed]
- Tollefsen, K.E.; Nizzetto, L.; Huggett, D.B. Presence, Fate and Effects of the Intense Sweetener Sucralose in the Aquatic Environment. Sci. Total Environ. 2012, 438, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Colín-García, K.; Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; García-Medina, S. Influence of Sucralose, Acesulfame-k, and Their Mixture on Brain’s Fish: A Study of Behavior, Oxidative Damage, and Acetylcholinesterase Activity in Danio rerio. Chemosphere 2023, 340, 139928. [Google Scholar] [CrossRef]
- Chen, Z.W.; Shen, Z.W.; Hua, Z.L.; Li, X.Q. Global Development and Future Trends of Artificial Sweetener Research Based on Bibliometrics. Ecotoxicol. Environ. Saf. 2023, 263, 115221. [Google Scholar] [CrossRef]
- Sylvetsky, A.C.; Rother, K.I. Trends in the Consumption of Low-Calorie Sweeteners. Physiol. Behav. 2016, 164, 446–450. [Google Scholar] [CrossRef]
- Mead, R.N.; Morgan, J.B.; Avery, G.B.; Kieber, R.J.; Kirk, A.M.; Skrabal, S.A.; Willey, J.D. Occurrence of the Artificial Sweetener Sucralose in Coastal and Marine Waters of the United States. Mar. Chem. 2009, 116, 13–17. [Google Scholar] [CrossRef]
- Sharma, V.K.; Oturan, M.; Kim, H. Oxidation of Artificial Sweetener Sucralose by Advanced Oxidation Processes: A Review. Environ. Sci. Pollut. Res. 2014, 21, 8525–8533. [Google Scholar] [CrossRef]
- Cp, K. Determination of the Saccharin Content in Some Ice Creams Available in Market. Int. J. Food Sci. Nutr. 2018, 3, 158–160. [Google Scholar]
- Bahndorf, D.; Kienle, U. World Market of Sugar and Sweeteners; International Association for Stevia Research e.V.: Leinfelden-Echterdingen, Germany, 2004. [Google Scholar]
- Yang, Q. Gain Weight by “Going Diet?” Artificial Sweeteners and the Neurobiology of Sugar Cravings: Neuroscience 2010. Yale J. Biol. Med. 2010, 83, 101–108. [Google Scholar]
- Buerge, I.J.; Buser, H.R.; Kahle, M.; Müller, M.D.; Poiger, T. Ubiquitous Occurrence of the Artificial Sweetener Acesulfame in the Aquatic Environment: An Ideal Chemical Marker of Domestic Wastewater in Groundwater. Environ. Sci. Technol. 2009, 43, 4381–4385. [Google Scholar] [CrossRef]
- Foodchem Consumo de Edulcorantes de Alta Intensidad a Nivel Mundial—FOODCHEM. Available online: https://www.foodchem.cn/News/126.html (accessed on 2 June 2025).
- Subedi, B.; Kannan, K. Fate of Artificial Sweeteners in Wastewater Treatment Plants in New York State, U.S.A. Environ. Sci. Technol. 2014, 48, 13668–13674. [Google Scholar] [CrossRef]
- John, B.A.; Wood, S.G.; Hawkins, D.R. The Pharmacokinetics and Metabolism of Sucralose in the Mouse. Food Chem. Toxicol. 2000, 38, 107–110. [Google Scholar] [CrossRef]
- Roberts, A.; Renwick, A.G.; Sims, J.; Snodin, D.J. Sucralose Metabolism and Pharmacokinetics in Man. Food Chem. Toxicol. 2000, 38, 31–41. [Google Scholar] [CrossRef]
- Li, S.; Geng, J.; Wu, G.; Gao, X.; Fu, Y.; Ren, H. Removal of Artificial Sweeteners and Their Effects on Microbial Communities in Sequencing Batch Reactors. Sci. Rep. 2018, 8, 10298. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, X.; Li, Y.; Liu, H.; Wang, Q. Artificial Sweeteners in Wastewater Treatment Plants: A Systematic Review of Global Occurrence, Distribution, Removal, and Degradation Pathways. J. Hazard. Mater. 2025, 494, 138644. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Huang, W.; Kuzma, D.; Kormendi, A. Acesulfame and Other Artificial Sweeteners in a Wastewater Treatment Plant in Alberta, Canada: Occurrence, Degradation, and Emission. Chemosphere 2024, 356, 141893. [Google Scholar] [CrossRef]
- Castronovo, S.; Wick, A.; Scheurer, M.; Nödler, K.; Schulz, M.; Ternes, T.A. Biodegradation of the Artificial Sweetener Acesulfame in Biological Wastewater Treatment and Sandfilters. Water Res. 2017, 110, 342–353. [Google Scholar] [CrossRef]
- Coronado-Apodaca, K.G.; Rodríguez-De Luna, S.E.; Araújo, R.G.; Oyervides-Muñoz, M.A.; González-Meza, G.M.; Parra-Arroyo, L.; Sosa-Hernandez, J.E.; Iqbal, H.M.N.; Parra-Saldivar, R. Occurrence, Transport, and Detection Techniques of Emerging Pollutants in Groundwater. MethodsX 2023, 10, 102160. [Google Scholar] [CrossRef] [PubMed]
- Brumovský, M.; Bečanová, J.; Kohoutek, J.; Borghini, M.; Nizzetto, L. Contaminants of Emerging Concern in the Open Sea Waters of the Western Mediterranean. Environ. Pollut. 2017, 229, 976–983. [Google Scholar] [CrossRef]
- Scheurer, M.; Brauch, H.J.; Lange, F.T. Analysis and Occurrence of Seven Artificial Sweeteners in German Waste Water and Surface Water and in Soil Aquifer Treatment (SAT). Anal. Bioanal. Chem. 2009, 394, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
- Zirlewagen, J.; Licha, T.; Schiperski, F.; Nödler, K.; Scheytt, T. Use of Two Artificial Sweeteners, Cyclamate and Acesulfame, to Identify and Quantify Wastewater Contributions in a Karst Spring. Sci. Total Environ. 2016, 547, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Kim, K.Y.; Hamm, S.Y.; Kim, M.S.; Kim, H.K.; Oh, J.E. Occurrence and Distribution of Pharmaceutical and Personal Care Products, Artificial Sweeteners, and Pesticides in Groundwater from an Agricultural Area in Korea. Sci. Total Environ. 2019, 659, 168–176. [Google Scholar] [CrossRef]
- Van Stempvoort, D.R.; Roy, J.W.; Grabuski, J.; Brown, S.J.; Bickerton, G.; Sverko, E. An Artificial Sweetener and Pharmaceutical Compounds as Co-Tracers of Urban Wastewater in Groundwater. Sci. Total Environ. 2013, 461–462, 348–359. [Google Scholar] [CrossRef]
- Baena-Nogueras, R.M.; Traverso-Soto, J.M.; Biel-Maeso, M.; Villar-Navarro, E.; Lara-Martín, P.A. Sources and Trends of Artificial Sweeteners in Coastal Waters in the Bay of Cadiz (NE Atlantic). Mar. Pollut. Bull. 2018, 135, 607–616. [Google Scholar] [CrossRef]
- Arbeláez, P.; Borrull, F.; Pocurull, E.; Marcé, R.M. Determination of High-Intensity Sweeteners in River Water and Wastewater by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2015, 1393, 106–114. [Google Scholar] [CrossRef]
- Guo, W.; Li, J.; Liu, Q.; Shi, J.; Gao, Y. Tracking the Fate of Artificial Sweeteners within the Coastal Waters of Shenzhen City, China: From Wastewater Treatment Plants to Sea. J. Hazard. Mater. 2021, 414, 125498. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A.M.; Pang, Z.; Zheng, H.; Ma, X. Mini Review: Will Artificial Sweeteners Discharged to the Aqueous Environment Unintentionally “Sweeten” the Taste of Tap Water? Chem. Eng. J. Adv. 2021, 6, 100100. [Google Scholar] [CrossRef]
- Watanabe, Y.; Bach, L.T.; Van Dinh, P.; Prudente, M.; Aguja, S.; Phay, N.; Nakata, H. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-Ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, the Philippines, and Myanmar. Arch. Environ. Contam. Toxicol. 2016, 70, 671–681. [Google Scholar] [CrossRef]
- Li, D.; O’Brien, J.W.; Tscharke, B.J.; Choi, P.M.; Zheng, Q.; Ahmed, F.; Thompson, J.; Li, J.; Mueller, J.F.; Sun, H.; et al. National Wastewater Reconnaissance of Artificial Sweetener Consumption and Emission in Australia. Environ. Int. 2020, 143, 105963. [Google Scholar] [CrossRef]
- Naik, A.Q.; Zafar, T.; Shrivastava, V.K. Environmental Impact of the Presence, Distribution, and Use of Artificial Sweeteners as Emerging Sources of Pollution. J. Environ. Public Health 2021, 2021, 6624569. [Google Scholar] [CrossRef]
- Ordóñez, E.Y.; Quintana, J.B.; Rodil, R.; Cela, R. Determination of Artificial Sweeteners in Water Samples by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2012, 1256, 197–205. [Google Scholar] [CrossRef]
- Mora, A.; Torres-Martínez, J.A.; Capparelli, M.V.; Zabala, A.; Mahlknecht, J. Effects of Wastewater Irrigation on Groundwater Quality: An Overview. Curr. Opin. Environ. Sci. Health 2022, 25, 100322. [Google Scholar] [CrossRef]
- Lange, F.T.; Scheurer, M.; Brauch, H.J. Artificial Sweeteners-A Recently Recognized Class of Emerging Environmental Contaminants: A Review. Anal. Bioanal. Chem. 2012, 403, 2503–2518. [Google Scholar] [CrossRef]
- Belton, K.; Schaefer, E.; Guiney, P.D. A Review of the Environmental Fate and Effects of Acesulfame-Potassium. Integr. Environ. Assess. Manag. 2020, 16, 421–437. [Google Scholar] [CrossRef]
- Alves, P.d.C.C.; Rodrigues-Silva, C.; Ribeiro, A.R.; Rath, S. Removal of Low-Calorie Sweeteners at Five Brazilian Wastewater Treatment Plants and Their Occurrence in Surface Water. J. Environ. Manag. 2021, 289, 112561. [Google Scholar] [CrossRef] [PubMed]
- Sérodes, J.B.; Behmel, S.; Simard, S.; Laflamme, O.; Grondin, A.; Beaulieu, C.; Proulx, F.; Rodriguez, M.J. Tracking Domestic Wastewater and Road De-Icing Salt in a Municipal Drinking Water Reservoir: Acesulfame and Chloride as Co-Tracers. Water Res. 2021, 203, 117493. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Wang, L.; Wei, C.; Li, J.; Zhang, J.; Zhou, Z.; Liang, Y. Sucralose and Acesulfame as an Indicator of Domestic Wastewater Contamination in Wuhan Surface Water. Ecotoxicol. Environ. Saf. 2020, 189, 109980. [Google Scholar] [CrossRef] [PubMed]
- Kokotou, M.G.; Asimakopoulos, A.G.; Thomaidis, N.S. Artificial Sweeteners as Emerging Pollutants in the Environment: Analytical Methodologies and Environmental Impact. Anal. Methods 2012, 4, 3057–3070. [Google Scholar] [CrossRef]
- Hu, L.X.; Olaitan, O.J.; Li, Z.; Yang, Y.Y.; Chimezie, A.; Adepoju-Bello, A.A.; Ying, G.G.; Chen, C.E. What Is in Nigerian Waters? Target and Non-Target Screening Analysis for Organic Chemicals. Chemosphere 2021, 284, 131546. [Google Scholar] [CrossRef]
- Kerberová, V.; Zlámalová Gargošová, H.; Čáslavský, J. Occurrence and Ecotoxicity of Selected Artificial Sweeteners in the Brno City Waste Water. Int. J. Environ. Sci. Technol. 2022, 19, 9055–9066. [Google Scholar] [CrossRef]
- Ens, W.; Senner, F.; Gygax, B.; Schlotterbeck, G. Development, Validation, and Application of a Novel LC-MS/MS Trace Analysismethod for the Simultaneous Quantification of Seven Iodinated X-Ray Contrast Media and Three Artificial Sweeteners in Surface, Ground, and Drinking Water. Anal. Bioanal. Chem. 2014, 406, 2789–2798. [Google Scholar] [CrossRef]
- Tran, N.H.; Hu, J.; Li, J.; Ong, S.L. Suitability of Artificial Sweeteners as Indicators of Raw Wastewater Contamination in Surface Water and Groundwater. Water Res. 2014, 48, 443–456. [Google Scholar] [CrossRef]
- Tran, N.H.; Gan, J.; Nguyen, V.T.; Chen, H.; You, L.; Duarah, A.; Zhang, L.; Gin, K.Y.H. Sorption and Biodegradation of Artificial Sweeteners in Activated Sludge Processes. Bioresour. Technol. 2015, 197, 329–338. [Google Scholar] [CrossRef]
- Oppenheimer, J.; Eaton, A.; Badruzzaman, M.; Haghani, A.W.; Jacangelo, J.G. Occurrence and Suitability of Sucralose as an Indicator Compound of Wastewater Loading to Surface Waters in Urbanized Regions. Water Res. 2011, 45, 4019–4027. [Google Scholar] [CrossRef]
- Loos, R.; Gawlik, B.M.; Boettcher, K.; Locoro, G.; Contini, S.; Bidoglio, G. Sucralose Screening in European Surface Waters Using a Solid-Phase Extraction-Liquid Chromatography–Triple Quadrupole Mass Spectrometry Method. J. Chromatogr. A 2009, 1216, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I.; Thurman, E.M. Analysis of Sucralose and Other Sweeteners in Water and Beverage Samples by Liquid Chromatography/Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2010, 1217, 4127–4134. [Google Scholar] [CrossRef]
- Mawhinney, D.B.; Young, R.B.; Vanderford, B.J.; Borch, T.; Snyder, S.A. Artificial Sweetener Sucralose in U.S. Drinking Water Systems. Environ. Sci. Technol. 2011, 45, 8716–8722. [Google Scholar] [CrossRef]
- Cantwell, M.G.; Katz, D.R.; Sullivan, J.C.; Shapley, D.; Lipscomb, J.; Epstein, J.; Juhl, A.R.; Knudson, C.; O’Mullan, G.D. Spatial Patterns of Pharmaceuticals and Wastewater Tracers in the Hudson River Estuary. Water Res. 2018, 137, 335–343. [Google Scholar] [CrossRef]
- Soh, L.; Connors, K.A.; Brooks, B.W.; Zimmerman, J. Fate of Sucralose through Environmental and Water Treatment Processes and Impact on Plant Indicator Species. Environ. Sci. Technol. 2011, 45, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, A.K.E.; Guo, X.; Gorokhova, E. Cardiotoxic and Neurobehavioral Effects of Sucralose and Acesulfame in Daphnia: Toward Understanding Ecological Impacts of Artificial Sweeteners. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 273, 109733. [Google Scholar] [CrossRef]
- Saputra, F.; Lai, Y.H.; Fernandez, R.A.T.; Macabeo, A.P.G.; Lai, H.T.; Huang, J.C.; Hsiao, C. Der Acute and Sub-Chronic Exposure to Artificial Sweeteners at the Highest Environmentally Relevant Concentration Induce Less Cardiovascular Physiology Alterations in Zebrafish Larvae. Biology 2021, 10, 548. [Google Scholar] [CrossRef]
- Wiklund, A.K.E.; Breitholtz, M.; Bengtsson, B.E.; Adolfsson-Erici, M. Sucralose—An Ecotoxicological Challenger? Chemosphere 2012, 86, 50–55. [Google Scholar] [CrossRef]
- Heredia-García, G.; Gómez-Oliván, L.M.; Orozco-Hernández, J.M.; Luja-Mondragón, M.; Islas-Flores, H.; SanJuan-Reyes, N.; Galar-Martínez, M.; García-Medina, S.; Dublán-García, O. Alterations to DNA, Apoptosis and Oxidative Damage Induced by Sucralose in Blood Cells of Cyprinus carpio. Sci. Total Environ. 2019, 692, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Pandaram, A.; Paul, J.; Wankhar, W.; Thakur, A.; Verma, S.; Vasudevan, K.; Wankhar, D.; Kammala, A.K.; Sharma, P.; Jaganathan, R.; et al. Aspartame Causes Developmental Defects and Teratogenicity in Zebra Fish Embryo: Role of Impaired SIRT1/FOXO3a Axis in Neuron Cells. Biomedicines 2024, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Li, X.; Han, G.; Du, L.; Li, M. Zebrafish Neuro-Behavioral Profiles Altered by Acesulfame (ACE) within the Range of “No Observed Effect Concentrations (NOECs)”. Chemosphere 2019, 243, 125431. [Google Scholar] [CrossRef]
- Perkola, N. Fate of Artificial Sweeteners and Perfluoroalkyl Acids in Aquatic Environment. Academic Dissertation, University of Helsinki, Helsinki, Finland, 2014. [Google Scholar]
- Colín-García, K.; Elizalde-Velázquez, G.A.; Gómez-Oliván, L.M.; Islas-Flores, H.; García-Medina, S.; Galar-Martínez, M. Acute Exposure to Environmentally Relevant Concentrations of Sucralose Disrupts Embryonic Development and Leads to an Oxidative Stress Response in Danio rerio. Sci. Total Environ. 2022, 829, 154689. [Google Scholar] [CrossRef]
- Ren, Y.; Geng, J.; Li, F.; Ren, H.; Ding, L.; Xu, K. The Oxidative Stress in the Liver of Carassius auratus Exposed to Acesulfame and Its UV Irradiance Products. Sci. Total Environ. 2016, 571, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, R.; Colás-Ruiz, N.R.; Martínez-Rodríguez, G.; Lara-Martín, P.A.; Mancera, J.M.; Trombini, C.; Blasco, J.; Hampel, M. The Antibacterials Ciprofloxacin, Trimethoprim and Sulfadiazine Modulate Gene Expression, Biomarkers and Metabolites Associated with Stress and Growth in Gilthead Sea Bream (Sparus aurata). Aquat. Toxicol. 2022, 250, 106243. [Google Scholar] [CrossRef]
- Cruz-Rojas, C.; SanJuan-Reyes, N.; Fuentes-Benites, M.P.A.G.; Dublan-García, O.; Galar-Martínez, M.; Islas-Flores, H.; Gómez-Oliván, L.M. Acesulfame Potassium: Its Ecotoxicity Measured through Oxidative Stress Biomarkers in Common Carp (Cyprinus carpio). Sci. Total Environ. 2019, 647, 772–784. [Google Scholar] [CrossRef]
- Ferry, S.a.p.u.t.r.a.; Lai, Y.-H.; Fernandez, R.A.; Macabeo, A.P.G.; Lai, H.-T.; Huang, J.-C.; Hsiao, C.-D. In Vivo Modelling of Toxicity of Eight Commercial Artificial Sweeteners in Daphnia Neonates and Zebrafish Embryos through Cardiac Performance Assessments. Preprints 2020, 2020090419. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Z.; Chen, F.; Zhang, X.; Liu, Y.; Sun, H. Evaluation of Aspartame Effects at Environmental Concentration on Early Development of Zebrafish: Morphology and Transcriptome1. Environ. Pollut. 2024, 361, 124792. [Google Scholar] [CrossRef]
- Li, X.; Dong, G.; Han, G.; Du, L.; Li, M. Zebrafish Behavioral Phenomics Links Artificial Sweetener Aspartame to Behavioral Toxicity and Neurotransmitter Homeostasis. J. Agric. Food Chem. 2021, 69, 15393–15402. [Google Scholar] [CrossRef]
- Kobetičová, K.; Mocová, K.A.; Mrhálková, L.; Fryčová, Z.; Kočí, V. Artificial Sweeteners and the Environment. Czech J. Food Sci. 2016, 34, 149–153. [Google Scholar] [CrossRef]
- Du, L.; Han, G.; Li, X.; Dong, G.; Zhang, L.; Gao, J.; Li, M. Phenotyping Aquatic Neurotoxicity Induced by the Artificial Sweetener Saccharin at Sublethal Concentration Levels. J. Agric. Food Chem. 2021, 69, 2041–2050. [Google Scholar] [CrossRef] [PubMed]
- Saucedo-Vence, K.; Elizalde-Velázquez, A.; Dublán-García, O.; Galar-Martínez, M.; Islas-Flores, H.; SanJuan-Reyes, N.; García-Medina, S.; Hernández-Navarro, M.D.; Gómez-Oliván, L.M. Toxicological Hazard Induced by Sucralose to Environmentally Relevant Concentrations in Common Carp (Cyprinus carpio). Sci. Total Environ. 2017, 575, 347–357. [Google Scholar] [CrossRef]
- Eriksson Wiklund, A.K.; Adolfsson-Erici, M.; Liewenborg, B.; Gorokhova, E. Sucralose Induces Biochemical Responses in Daphnia magna. PLoS ONE 2014, 9, e92771. [Google Scholar] [CrossRef]
- Hjorth, M.; Hansen, J.H.; Camus, L. Short-Term Effects of Sucralose on Calanus finmarchicus and Calanus glacialis in Disko Bay, Greenland. Chem. Ecol. 2010, 26, 385–393. [Google Scholar] [CrossRef]
- Kobeticová, K.; Mocová, K.A.; Mrhálková, L.; Petrová, Š. Effects of Artificial Sweeteners on Lemna Minor. Czech J. Food Sci. 2018, 36, 386–391. [Google Scholar] [CrossRef]
- Lillicrap, A.; Langford, K.; Tollefsen, K.E. Bioconcentration of the Intense Sweetener Sucralose in a Multitrophic Battery of Aquatic Organisms. Environ. Toxicol. Chem. 2011, 30, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Stolte, S.; Steudte, S.; Schebb, N.H.; Willenberg, I.; Stepnowski, P. Ecotoxicity of Artificial Sweeteners and Stevioside. Environ. Int. 2013, 60, 123–127. [Google Scholar] [CrossRef] [PubMed]

| Sweetener | Molecular Formula | Name IUPAC | Molecular Weight (g/mol) | Molecular Structure |
|---|---|---|---|---|
| Acesulfame (ACE-K) | C4H4KNO4S | 1,2,3-oxathiazin-4-ol, 6-methyl-, 2,2-dioxide, potassium salt (1:1) | 201.237 | ![]() |
| Aspartame (ASP) | C14H18N2O5 | N-L-a-Aspartyl-L-phenylalanine-1-Methyl Ester | 294.307 | ![]() |
| Cyclamate (CYC) | C6H13NO3S | N-Cyclohexylsulfamic Acid | 179.234 | ![]() |
| Neotame (NEO) | C20H30N2O5 | (3S,4E)-3-[(3,3-Dimethylbutyl)amino]-4-hydroxy-4-{[(2S)-1-methoxy-1-oxo-3-phenyl-2-propanyl]imino}butanoic acid | 378.469 | ![]() |
| Saccharin (SAC) | C7H5NNaO3S | 1,2-Benzisothiazol-3(2H)-one, 1,1-dioxide, sodium salt (1:1) | 206.171 | ![]() |
| Sucralose (SUC) | C12H19Cl3O8 | 1,6-Dichlor-1,6-dideoxy-β-D-fructofuranosyl-4-chlor-4-deoxy-α-D-galactopyranoside | 397.626 | ![]() |
| Sweeteners | Country | Aquatic Environmental | Maximum Concentrations (μg L−1) | References |
|---|---|---|---|---|
| Cyclamate | Germany | WWTP influent | 190 | [34] |
| WWTP influent | 250 | [35] | ||
| Korea | Groundwater | 0.155 | [36] | |
| Canada | Groundwater | 0.003 | [37] | |
| Spain | WWTP influent | 26.7–78.3 | [38] | |
| Coastal waters | 0.01–0.08 | |||
| WWTP effluent | 0.03–0.06 | |||
| Surface water | 0.08 | [39] | ||
| WWTP effluent | 19.2 | |||
| Neotame | China | WWTP influent | 0.03 | [40] |
| WWTP effluent | 0.03 | [40] | ||
| WWTP effluent | 10 | [12] | ||
| Surface water | 9.3 | [12] | ||
| Drinking water | 6.94 | [41] | ||
| Aspartame | Vietnam | WWTP effluent | 3.1 | [42] |
| China | WWTP influent | 0.7 | [40] | |
| Spain | WWTP influent | 0.07 | [38] | |
| WWTP effluent | 0.09 | [38] | ||
| Switzerland | WWTP effluent | 0.01 | [39] | |
| USA | WWTP effluent | 0.1 | [9] | |
| WWTP influent | 0.1 | |||
| WWTP influent | 1.6 | [25] | ||
| WWTP effluent | 1.8 | |||
| Saccharin | Germany | WWTP influent | 40 | [34] |
| Australia | WWTP effluent | 7.1 | [43] | |
| China | Coastal waters | 0.21 | [44] | |
| Spain | WWTP effluent | 9.1 | [45] | |
| WWTP influent | 18.4 | |||
| Seawater | 0.00523 | [33] | ||
| USA | WWTP effluent | 100 | [25] | |
| WWTP effluent | 15.1 | [25] | ||
| WWTP influent | 1.4 | [25] | ||
| Vietnam | Surface water | 1.3 | [42] | |
| Switzerland | WWTP effluent | 16.2 | [39] | |
| Acesulfame | Australia | Groundwater | 0.34 | [46] |
| Germany | Groundwater | 34 | [47] | |
| WWTP influent | 22.9 | [48] | ||
| WWTP influent | 40 | [34] | ||
| Brazil | WWTP effluent | 13 | [49] | |
| Canada | Surface water | 0.227 | [50] | |
| Groundwater | 0.653 | [48] | ||
| Korea | Groundwater | 0.0329 | [36] | |
| China | Surface water | 2.78 | [51] | |
| Surface water | 2.9 | [48] | ||
| Spain | WWTP effluent | 155 | [39] | |
| Italy | WWTP effluent | 2500 | [13] | |
| Norway | Surface water | 25 | [52] | |
| Nigeria | WWTP effluent | 16 | [53] | |
| Czech Republic | WWTP influent | 22.67 | [54] | |
| Switzerland | Groundwater | 0.524 | [55] | |
| Groundwater | 4.7 | [23] | ||
| Singapore | WWTP effluent | 29.9 | [48] | |
| 135.76 | [56] | |||
| 10.51 | [57] | |||
| USA | WWTP effluent | 50 | [58] | |
| Sucralose | Norway | Surface water | 8 | [59] |
| Sweden | Surface water | 3.5 | [59] | |
| Korea | WWTP influent | 1.5 | [60] | |
| Brazil | WWTP influent | 31 | [49] | |
| China | WWTP effluent | 1.9 | [43] | |
| China | WWTP effluent | 1.5 | [40] | |
| WWTP influent | 1.0 | [40] | ||
| Spain | WWTP influent | 5.3 | [45] | |
| WWTP effluent | 18.1 | |||
| Italy | River | 0.344 | [59] | |
| Switzerland | WWTP effluent | 4.5 | [43] | |
| WWTP influent | 4.5 | [23] | ||
| USA | Surface water | 1.8 | [60] | |
| Drinking water | 2.4 | [61] | ||
| WWTP effluent | 650 | [25] | ||
| 30 | [43] | |||
| 1.8 | [44] | |||
| 0.9 | [62] | |||
| WWTP influent | 1 | [58] | ||
| 1.9 | [61] | |||
| 27.7 | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, R.; Ojito, S.; Pájaro, V.; Gutiérrez, C.; Bolívar-Anillo, H.J.; Hampel, M.; Anfuso, G. Artificial Sweeteners in Aquatic Ecosystems: Occurrence, Sources and Effects. Sustainability 2025, 17, 9946. https://doi.org/10.3390/su17229946
Fernandez R, Ojito S, Pájaro V, Gutiérrez C, Bolívar-Anillo HJ, Hampel M, Anfuso G. Artificial Sweeteners in Aquatic Ecosystems: Occurrence, Sources and Effects. Sustainability. 2025; 17(22):9946. https://doi.org/10.3390/su17229946
Chicago/Turabian StyleFernandez, Ronield, Sheila Ojito, Valerie Pájaro, Camilo Gutiérrez, Hernando José Bolívar-Anillo, Miriam Hampel, and Giorgio Anfuso. 2025. "Artificial Sweeteners in Aquatic Ecosystems: Occurrence, Sources and Effects" Sustainability 17, no. 22: 9946. https://doi.org/10.3390/su17229946
APA StyleFernandez, R., Ojito, S., Pájaro, V., Gutiérrez, C., Bolívar-Anillo, H. J., Hampel, M., & Anfuso, G. (2025). Artificial Sweeteners in Aquatic Ecosystems: Occurrence, Sources and Effects. Sustainability, 17(22), 9946. https://doi.org/10.3390/su17229946







