The “Scale Expansion Trap” in Cross-River Urbanization: Building Stock Vacancy and Carbon Lock-In for Nanchang, China
Abstract
1. Introduction
2. Research Methods and Data Processing
2.1. Research Methods
2.2. Scope and Data Collection
2.3. Building Material Stock Estimation
2.4. Embodied Carbon Emission Calculation
3. Results
3.1. Building Spatial Pattern
3.2. Building Stock Vacancy
3.3. Carbon Footprint
4. Discussion
4.1. Spatial Patterns and Driving Mechanisms of the “Scale Expansion Trap”
4.2. Quantifying “Developmental Vacancy” and Its Resource Consequences
4.3. Policy Implications
4.4. Comparative Analysis and Limitations
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eugenia, K.; Ming, C. Impact of Urbanization and Land-Use Change on Climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Montgomery, M.R. The Urban Transformation of the Developing World. Science 2008, 319, 761–764. [Google Scholar] [CrossRef]
- Liu, T.; Qi, Y.; Cao, G.; Liu, H. Spatial Patterns, Driving Forces, and Urbanization Effects of China’s Internal Migration: County-Level Analysis Based on the 2000 and 2010 Censuses. J. Geogr. Sci. 2015, 25, 236–256. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Qi, Y. Construction Land Expansion and Cultivated Land Protection in Urbanizing China: Insights from National Land Surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [Google Scholar] [CrossRef]
- Zhong, X.; Hu, M.; Deetman, S.; Steubing, B.; Lin, H.X.; Hernandez, G.A.; Harpprecht, C.; Zhang, C.; Tukker, A.; Behrens, P. Global Greenhouse Gas Emissions from Residential and Commercial Building Materials and Mitigation Strategies to 2060. Nat. Commun. 2021, 12, 6126. [Google Scholar] [CrossRef]
- Huang, Z.; Bao, Y.; Mao, R.; Wang, H.; Yin, G.; Wan, L.; Qi, H.; Li, Q.; Tang, H.; Liu, Q.; et al. Big Geodata Reveals Spatial Patterns of Built Environment Stocks Across and Within Cities in China. Engineering 2024, 34, 143–153. [Google Scholar] [CrossRef]
- Jiang, M.; Behrens, P.; Wang, T.; Tang, Z.; Yu, Y.; Chen, D.; Liu, L.; Ren, Z.; Zhou, W.; Zhu, S.; et al. Provincial and Sector-Level Material Footprints in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26484–26490. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Deetman, S.; Tukker, A.; Behrens, P. Increasing Material Efficiencies of Buildings to Address the Global Sand Crisis. Nat. Sustain. 2022, 5, 389–392. [Google Scholar] [CrossRef]
- Shaoqing, C.; Bin, C.; Kuishuang, F.; Zhu, L.; Neil, F.; Xianchun, T.; Ahmed, A.; Tasawar, H.; Helga, W.; Joachim, S.H.; et al. Physical and Virtual Carbon Metabolism of Global Cities. Nat. Commun. 2020, 11, 182. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-65481-5.
- Maud, L.; Gang, L. Developing an Urban Resource Cadaster for Circular Economy: A Case of Odense, Denmark. Environ. Sci. Technol. 2020, 54, 4675–4685. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.A.; Stewart, I.; Facchini, A.; Cersosimo, I.; Mele, R.; Chen, B.; Uda, M.; Kansal, A.; Chiu, A.; Kim, K.G.; et al. Energy and Material Flows of Megacities. Proc. Natl. Acad. Sci. USA 2015, 112, 5985–5990. [Google Scholar] [CrossRef]
- World Green Building Council New Report: The Building and Construction Sector Can Reach Net Zero Carbon Emissions by 2050. Available online: https://worldgbc.org/article/new-report-the-building-and-construction-sector-can-reach-net-zero-carbon-emissions-by-2050/ (accessed on 5 June 2024).
- Watts, M. Cities Spearhead Climate Action. Nat. Clim. Chang. 2017, 7, 537–538. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, L.; Hao, Y.; Chang, Y.; Liu, G.; Liu, Q.; Li, X. System Dynamics Modeling for Construction Material Flows of Urban Residential Building: A Case Study of Beijing, China. Resour. Conserv. Recycl. 2021, 168, 105298. [Google Scholar] [CrossRef]
- Shi, L.; Leichtle, T.; Huang, X.; Wurm, M.; Taubenböck, H. The Decreasing Housing Utilization Efficiency in China’s Cities. Nat. Cities 2025, 2, 1–11. [Google Scholar] [CrossRef]
- Tu, H.; Tang, S.; Liu, G.; Li, Y.; Shi, L. Resource and the Environmental Burdens of Excessive Construction in China’s Urban Housing Sector. Resour. Conserv. Recycl. 2026, 225, 108579. [Google Scholar] [CrossRef]
- Leng, W.; Liu, G.; Cheng, X.; Li, Y.; Tang, S.; Ning, J.; Li, Y.; Fu, H.; Shi, L. Scaling of Urban Residential Building Stock System and Carbon Emissions Accounting for Vacant Houses in China. Resour. Conserv. Recycl. 2025, 223, 108502. [Google Scholar] [CrossRef]
- Ji, H.; Weiqiang, C.; Lixiao, Z.; Gang, L. Uncovering the Spatiotemporal Dynamics of Urban Infrastructure Development: A High Spatial Resolution Material Stock and Flow Analysis. Environ. Sci. Technol. 2018, 52, 12122–12132. [Google Scholar] [CrossRef]
- Mao, R.; Bao, Y.; Huang, Z.; Liu, Q.; Liu, G. High-Resolution Mapping of the Urban Built Environment Stocks in Beijing. Environ. Sci. Technol. 2020, 54, 5345–5355. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, R.; Yin, X.; Wu, J. Unused Housing in Urban China and Its Carbon Emission Impact. Nat. Commun. 2025, 16, 1985. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, D.; Duan, H.; Yin, F.; Niu, Y. Characterizing Urban Building Metabolism with a 4D-GIS Model: A Case Study in China. J. Clean. Prod. 2019, 228, 1446–1454. [Google Scholar] [CrossRef]
- Mistretta, M.; Brunetti, A.; Cellura, M.; Guarino, F.; Longo, S. High-Resolution Electricity Generation Mixes in Building Operation: A Methodological Framework for Energy and Environmental Impacts and the Case Study of an Italian Net Zero Energy Building. Sci. Total Environ. 2024, 933, 172751. [Google Scholar] [CrossRef]
- Yi, B.; Zhou, H.; Qinghua, G.; Yu, L. Spatial calculation of urban built environment stock: Progress and prospects. Natl. Remote Sens. Bull. 2022, 26, 1909–1919. [Google Scholar] [CrossRef]
- Liu, S.; Tong, Z.; Liu, Y.; Chen, H.; Liu, Y. What Is the Quality of Urban Expansion under Different Expansion Patterns? A Study of Chinese Cities. Cities 2026, 168, 106409. [Google Scholar] [CrossRef]
- Wang, B.; He, Q.; Yu, P.; Chen, B.; Wei, Y.; Wang, J.; Chen, Y. The Association between Suitable Compactness of Urban Expansion and Urban Green Growth. Landsc. Urban Plan. 2025, 260, 105378. [Google Scholar] [CrossRef]
- Yang, D.; Liu, J.; Li, Y.; Jia, Y.; Shi, F. A Review of Urban Building Stock Analysis for the Urban Management. Chin. J. Environ. Manag. 2019, 11, 88–93. [Google Scholar]
- Muller, E.; Hilty, L.M.; Widmer, R.; Schluep, M.; Faulstich, M. Modeling Metal Stocks and Flows: A Review of Dynamic Material Flow Analysis Methods. Environ. Sci. Technol. 2014, 48, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Schiller, G.; Müller, F.; Ortlepp, R. Mapping the Anthropogenic Stock in Germany: Metabolic Evidence for a Circular Economy. Resour. Conserv. Recycl. 2016, 123, 93–107. [Google Scholar] [CrossRef]
- Stephan, A.; Athanassiadis, A. Quantifying and Mapping Embodied Environmental Requirements of Urban Building Stocks. Build. Environ. 2017, 114, 187–202. [Google Scholar] [CrossRef]
- Dong, L. Renewal Strategy of Urban Residential Building Stock in a Resource Conservation Perspective–Case Study in Two Urban Fragments in Tianjin. Master’s Thesis, Tianjin University, Tianjin, China, 2015. [Google Scholar]
- Ma, L. Study on Dynamic Evaluation Model for Renovation Strategies of Existing Buildings in an Urban Fragment: Case Study of the Hongshunli Neighborhood in Tianjin. Master’s Thesis, Tianjin University, Tianjin, China, 2017. [Google Scholar]
- Qu, Y. The Research on the Gradually Renewal Planning Strategy of Old Residential Area Based on the Perspective of Stock Space Takes Zhengzhou Guomian Factory Area in Zhongyuan District as an Example. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2018. [Google Scholar]
- Wang, H.; Lu, X.; Deng, Y.; Sun, Y.; Nielsen, C.P.; Liu, Y.; Zhu, G.; Bu, M.; Bi, J.; McElroy, M.B. China’s CO2 Peak before 2030 Implied from Characteristics and Growth of Cities. Nat. Sustain. 2019, 2, 748–754. [Google Scholar] [CrossRef]
- Haiping, L.I.; Shuai, R.; Min, J. Estimation of potential mineral resource deposits in residence buildings of Huilongguan community in Beijing. Environ. Eng. 2022, 40, 183–191. [Google Scholar] [CrossRef]
- Tanikawa, H.; Hashimoto, S. Urban Stock over Time: Spatial Material Stock Analysis Using 4d-GIS. Build. Res. Inf. 2009, 37, 483–502. [Google Scholar] [CrossRef]
- Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-Based Analysis of Vienna’s Material Stock in Buildings. J. Ind. Ecol. 2017, 21, 368–380. [Google Scholar] [CrossRef]
- Marcellus-Zamora, K.A.; Gallagher, P.M.; Spatari, S.; Tanikawa, H. Estimating Materials Stocked by Land-Use Type in Historic Urban Buildings Using Spatio-Temporal Analytical Tools. J. Ind. Ecol. 2016, 20, 1025–1037. [Google Scholar] [CrossRef]
- Mao, T.; Liu, Y.; Liu, Y.; Hao, M.; Chen, W. Towards Sustainable Building Landscapes: A Spatially Explicit Life-Cycle Analysis of Carbon Emissions and Mitigation Strategies. Landsc. Ecol. 2024, 39, 167. [Google Scholar] [CrossRef]
- Williams, S.; Xu, W.; Tan, S.B.; Foster, M.J.; Chen, C. Ghost Cities of China: Identifying Urban Vacancy through Social Media Data. Cities 2019, 94, 275–285. [Google Scholar] [CrossRef]
- Buitelaar, E.; Moroni, S.; De Franco, A. Building Obsolescence in the Evolving City. Reframing Property Vacancy and Abandonment in the Light of Urban Dynamics and Complexity. Cities 2021, 108, 102964. [Google Scholar] [CrossRef]
- Zhao, H.; Kan, C.; Long, Y. Housing Vacancy Rate Estimation in High-Rise Residential Communities: An Experiment Utilizing Multi-Sourced Data in Beijing. Cities 2025, 166, 106187. [Google Scholar] [CrossRef]
- Ma, Y. Nanchang’s Vacancy Rate Leads 28 Large and Medium-Sized Cities: The Number of Super High-Rise Buildings Over 200 Meters Is on Par with Beijing, with New Towns Everywhere and Plans Abound. Sina Financ. 2022. Available online: https://finance.sina.com.cn/china/2022-08-10/doc-imizirav7483050.shtml (accessed on 6 November 2025).
- Long, Y.; Song, Q.; Huang, B.; Zeng, X.; Wu, H. Characterizing Temporal and Spatial Characteristics of Urban Building Material Metabolism and Embodied Carbon Emissions through a 4D GIS-MFA-LCA Model. Resour. Conserv. Recycl. 2024, 206, 107642. [Google Scholar] [CrossRef]
- Huang, T.; Shi, F.; Tanikawa, H.; Fei, J.; Han, J. Materials Demand and Environmental Impact of Buildings Construction and Demolition in China Based on Dynamic Material Flow Analysis. Resour. Conserv. Recycl. 2013, 72, 91–101. [Google Scholar] [CrossRef]
- Shi, F.; Huang, T.; Tanikawa, H. Toward a Low Carbon-Dematerialization Society: Measuring the Materials Demand and CO2 Emissions of Building and Transport Infrastructure Construction in China. J. Ind. Ecol. 2012, 16, 493–505. [Google Scholar] [CrossRef]
- Yang, D.; Guo, J.; Sun, L.; Shi, F.; Liu, J.; Tanikawa, H. Urban Buildings Material Intensity in China from 1949 to 2015. Resour. Conserv. Recycl. 2020, 159, 104824. [Google Scholar] [CrossRef]
- Hu, D.; You, F.; Zhao, Y.; Yuan, Y.; Liu, T.; Cao, A.; Wang, Z.; Zhang, J. Input, Stocks and Output Flows of Urban Residential Building System in Beijing City, China from 1949 to 2008. Resour. Conserv. Recycl. 2010, 54, 1177–1188. [Google Scholar] [CrossRef]
- Yang, D.; Dang, M.; Guo, J.; Sun, L.; Zhang, R.; Han, F.; Shi, F.; Liu, Q.; Tanikawa, H. Spatial–Temporal Dynamics of the Built Environment toward Sustainability: A Material Stock and Flow Analysis in Chinese New and Old Urban Areas. J. Ind. Ecol. 2023, 27, 84–95. [Google Scholar] [CrossRef]
- Yan, H.; Shen, Q.; Fan, L.; Wang, Y.; Zhang, L. Greenhouse Gas Emissions in Building Construction: A Case Study of One Peking in Hong Kong. Build. Environ. 2010, 45, 949–955. [Google Scholar] [CrossRef]
- GB 50352; Code for Design of Civil Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2019.
- Statistics Bureau of Nanchang. Nanchang Economic and Social Statistical Yearbook; Statistics Bureau of Nanchang: Beijing, China, 2004. [Google Scholar]
- Statistics Bureau of Nanchang. Nanchang Economic and Social Statistical Yearbook; Statistics Bureau of Nanchang: Beijing, China, 2005. [Google Scholar]
- Nanchang Daily. Economic Performance Data for Nanchang in 2021 (665.053 Billion Yuan); Nanchang Daily: Nanchang, China, 2021. [Google Scholar]
- Chen, C.; Shi, F.; Okuoka, K.; Tanikawa, H. The Metabolism Analysis of Urban Building by 4d-GIS—A Useful Method for New-Type Urbanization Planning in China. Univers. J. Mater. Sci. 2016, 4, 40–46. [Google Scholar] [CrossRef]
- Mesta, C.; Kahhat, R.; Santa-Cruz, S. Geospatial Characterization of Material Stock in the Residential Sector of a Latin-American City. J. Ind. Ecol. 2019, 23, 280–291. [Google Scholar] [CrossRef]
- Miatto, A.; Schandl, H.; Forlin, L.; Ronzani, F.; Borin, P.; Giordano, A.; Tanikawa, H. A Spatial Analysis of Material Stock Accumulation and Demolition Waste Potential of Buildings: A Case Study of Padua. Resour. Conserv. Recycl. 2019, 142, 245–256. [Google Scholar] [CrossRef]






| Age Cohorts | –1959 | 1960–1979 | 1980–1989 | 1990–1999 | 2000–2021 |
|---|---|---|---|---|---|
| Building numbers | 29 (0.02%) | 207 (0.15%) | 1344 (0.95%) | 21,901 (15.44%) | 118,345 (83.44%) |
| Floor area (106 m2) | 0.06 (0.01%) | 0.50 (0.10%) | 3.24 (0.67%) | 65.06 (13.50%) | 413.18 (85.72%) |
| Material stocks (106 t) | 0.10 (0.01%) | 0.92 (0.09%) | 6.65 (0.64%) | 139.65 (13.50%) | 887.15 (85.76%) |
| Material | Steel | Timber | Cement | Brick | Sand | Gravel | Lime | Glass | Asphalt |
|---|---|---|---|---|---|---|---|---|---|
| Stock value (106 t) | 26.31 | 14.39 | 148.97 | 180.26 | 324.06 | 320.63 | 17.92 | 0.96 | 0.96 |
| Proportion of total stock (%) | 2.54 | 1.39 | 14.40 | 17.43 | 31.33 | 30.99 | 1.73 | 0.09 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Cheng, X.; Xie, X.; Lu, G.; Tu, H.; Li, Y.; Liu, G.; Luo, B.; Lei, B.; Shi, L. The “Scale Expansion Trap” in Cross-River Urbanization: Building Stock Vacancy and Carbon Lock-In for Nanchang, China. Sustainability 2025, 17, 10375. https://doi.org/10.3390/su172210375
Tang S, Cheng X, Xie X, Lu G, Tu H, Li Y, Liu G, Luo B, Lei B, Shi L. The “Scale Expansion Trap” in Cross-River Urbanization: Building Stock Vacancy and Carbon Lock-In for Nanchang, China. Sustainability. 2025; 17(22):10375. https://doi.org/10.3390/su172210375
Chicago/Turabian StyleTang, Shoujuan, Xiaoyu Cheng, Xie Xie, Guanyou Lu, Han Tu, Yang Li, Guangxin Liu, Binhua Luo, Bin Lei, and Lei Shi. 2025. "The “Scale Expansion Trap” in Cross-River Urbanization: Building Stock Vacancy and Carbon Lock-In for Nanchang, China" Sustainability 17, no. 22: 10375. https://doi.org/10.3390/su172210375
APA StyleTang, S., Cheng, X., Xie, X., Lu, G., Tu, H., Li, Y., Liu, G., Luo, B., Lei, B., & Shi, L. (2025). The “Scale Expansion Trap” in Cross-River Urbanization: Building Stock Vacancy and Carbon Lock-In for Nanchang, China. Sustainability, 17(22), 10375. https://doi.org/10.3390/su172210375

