The Moderating Role of Governmental Artificial Intelligence in Shaping Green Growth Dynamics in the European Union
Abstract
1. Introduction
2. Literature Review
2.1. The Relationship Between Readiness of Governments for the Adoption of Artificial Intelligence and Green Growth
2.2. The Role of Economic, Social, and Governance Factors in Mediating the Effects of Governmental Artificial Intelligence on Green Growth
3. Data and Methodology
3.1. Data and Sample Considerations
3.2. Model and Econometric Specification
4. Empirical Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldman, S. The Potentially Large Effects of Artificial Intelligence on Economic Growth. 2023. Available online: https://www.gspublishing.com/content/research/en/reports/2023/03/27/d64e052b-0f6e-45d7-967b-d7be35fabd16.html (accessed on 25 September 2025).
- Zeira, J. Workers, machines, and economic growth. Q. J. Econ. 1998, 113, 1091–1117. [Google Scholar] [CrossRef]
- Acemoğlu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares and employment. In NBER Working Paper; National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2016; Volume 22252, Available online: https://ideas.repec.org/p/nbr/nberwo/22252.html (accessed on 25 September 2025).
- Aghion, P.; Jones, B.; Jones, C. Artificial intelligence and economic growth. In NBER Working Paper; National Bureau of Economic Research (NBER): Cambridge, MA, USA, 2017; p. 23928. [Google Scholar] [CrossRef]
- Acemoğlu, D.; Johnson, S. Rebalancing AI. In F&D Finance and Development Magazine, Artificial Intelligence; International Monetary Fund: Washington, DC, USA, 2023; Available online: https://www.imf.org/en/Publications/fandd/issues/2023/12/Rebalancing-AI-Acemoglu-Johnson (accessed on 25 September 2025).
- Aghion, P.; Making AI an Opportunity for Growth and Employment. LesEchos, 18 May 2023. Available online: https://www.lesechos.fr/idees-debats/editos-analyses/faire-de-lia-une-occasion-de-croissanceet-demploi-1944538 (accessed on 25 September 2025).
- van Wynsberghe, A. Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 2021, 1, 213–218. [Google Scholar] [CrossRef]
- Tabbakh, A.; Al Amin, L.; Islam, M.; Mahmud, G.M.I.; Chowdhury, I.K.; Mukta, S.H. Towards sustainable AI: A comprehensive framework for Green AI. Discov. Sustain. 2024, 5, 408. [Google Scholar] [CrossRef]
- Wu, C.-J.; Raghavendra, R.; Gupta, U.; Acun, B.; Ardalani, N.; Maeng, K.; Chang, G.; Behram, F.A.; Huang, J.; Bai, C.; et al. Sustainable AI: Environmental Implications, Challenges and Opportunities. arXiv 2021, arXiv:2111.00364. [Google Scholar] [CrossRef]
- Dodge, J.; Taylor, P.; Des Combes, R.T.; Odmark, E.; Schwartz, R.; Strubell, E.; Lucioni, A.S.; Smith, N.A.; DeCario, N.; Buchanan, W. Measuring the Carbon Intensity of AI in Cloud Instances. In Proceedings of the ACM Conference on Fairness, Accountability, and Transparency (FAccT ‘22), Seoul, Republic of Korea, 21–24 June 2022; ACM: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Ligozat, A.-L.; Lefevre, J.; Bugeau, A.; Combaz, J. Unraveling the Hidden Environmental Impacts of AI Solutions for Environment Life Cycle Assessment of AI Solutions. Sustainability 2022, 14, 5172. [Google Scholar] [CrossRef]
- Coeckelbergh, M. AI for climate: Freedom, justice, and other ethical and political challenges. AI Ethics 2021, 1, 67–72. [Google Scholar] [CrossRef]
- Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.; Pineau, J. Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning. arXiv 2020, arXiv:2002.05651v1. [Google Scholar] [CrossRef]
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Deep Learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 3645–3650. Available online: https://aclanthology.org/P19-1355/ (accessed on 25 September 2025).
- Cheng, Y.; Zhang, Z.; Hu, L.; Duan, X. Research on the impact of artificial intelligence development on urban low-carbon transformation. Sci. Rep. 2025, 15, 20438. [Google Scholar] [CrossRef]
- Greif, L.; Röckel, F.; Kimmig, A.; Ovtcharova, J. A systematic review of current AI techniques used in the context of the SDGs. Int. J. Environ. Res. 2025, 19, 1. [Google Scholar] [CrossRef]
- Floridi, L. (Ed.) Ethics, Governance, and Policies in Artificial Intelligence; Springer Publishing House: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Doorn, N. Artificial intelligence in the water domain: Opportunities for responsible use. Sci. Total Environ. 2021, 755, 142561. [Google Scholar] [CrossRef]
- Theodorou, A.; Nieves, J.C.; Dignum, V. Good AI for Good: How AI Strategies of the Nordic Countries Address the Sustainable Development Goals. arXiv 2022, arXiv:2210.09010. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Aad, S.; Kirikkaleli, N.O. Sustainable development and investment in artificial intelligence in the USA. Humanit. Soc. Sci. Commun. 2025, 12, 246. [Google Scholar] [CrossRef]
- Zhao, P.; Gao, Y.; Sun, X. How does artificial intelligence affect green economic growth?—Evidence from China. Sci. Total Environ. 2022, 834, 155306. [Google Scholar] [CrossRef]
- Fang, Y.; Cao, H.; Sun, J. Impact of Artificial Intelligence on Regional Green Development under China’s Environmental Decentralization System—Based on Spatial Durbin Model and Threshold Effect. Int. J. Environ. Res. Public Health 2022, 19, 14776. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, M.A. The impact of artificial intelligence on economic development. J. Electron. Bus. Digit. Econ. 2024, 3, 142–155. [Google Scholar] [CrossRef]
- Manta, A.G.; Bădircea, R.M.; Doran, N.M.; Badareu, G.; Ghertescu, C.; Popescu, J. Industry 4.0 Transformation: Analysing the Impact of Artificial Intelligence on the Banking Sector Through Bibliometric Trends. Electronics 2024, 13, 1693. [Google Scholar] [CrossRef]
- Theodorou, A.; Dignum, V. Towards ethical and socio-legal governance in AI. Nat. Mach. Intell. 2020, 2, 10–12. [Google Scholar] [CrossRef]
- Wilson, C.; Van Der Velden, M. Sustainable AI: An integrated model to guide public sector decision-making. Technol. Soc. 2022, 68, 101926. [Google Scholar] [CrossRef]
- OECD. Governing with Artificial Intelligence: The State of Play and Way Forward in Core Government Functions; OECD: Paris, France, 2025. [Google Scholar] [CrossRef]
- Reis, J.; Santo, P.E.; Melão, N. Artificial Intelligence in Government Services: A Systematic Literature Review. In New Knowledge in Information Systems and Technologies, Proceedings of the WorldCIST’19 2019, La Toja, Spain, 16–19 April 2019; Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2019; Volume 930. [Google Scholar] [CrossRef]
- Oxford Insights. Government Artificial Intelligence Readiness Index; Oxford Insights: Malvern, UK, 2025; Available online: https://oxfordinsights.com/ai-readiness/ai-readiness-index/ (accessed on 25 September 2025).
- Global Green Growth Institute. Green Growth Index; Global Green Growth Institute: Seoul, Republic of Korea, 2025; Available online: https://ggindex-simtool.gggi.org/ (accessed on 25 September 2025).
- Mikalef, P.; Lemmer, K.; Schaefer, C.; Ylinen, M.; Fjørtoft, S.O.; Torvatn, H.Y.; Gupta, M.; Niehaves, B. Enabling AI capabilities in government agencies: A study of determinants for European municipalities. Gov. Inf. Q. 2022, 39, 101596. [Google Scholar] [CrossRef]
- van Noordt, C.; Misuraca, G. Artificial Intelligence for the Public Sector: Results of Landscaping the Use of AI in Government across the European Union. Gov. Inf. Q. 2022, 39, 101714. [Google Scholar] [CrossRef]
- Mikalef, P.; Gupta, M. Artificial Intelligence Capability: Conceptualization, measurement calibration, and empirical study on Its Impact on Organizational Creativity and Firm Performance. Inf. Manag. 2021, 58, 103434. [Google Scholar] [CrossRef]
- Marinaș, L.E.; Păun, C.V.; Diaconescu, M.; Smirna, T.G. Artificial Intelligence Readiness and Employment: A Global Panel Analysis. Econ. Comput. Econ. Cybern. Stud. Res. 2024, 58, 58–74. [Google Scholar] [CrossRef]
- Hankins, E.; Fuentes Nettel, P.; Martinescu, I.; Grau, G.; Rahim, S. Government AI Readiness Index 2023; Oxford Insights: Malvern, UK, 2023; Available online: https://oxfordinsights.com/wp-content/uploads/2023/12/2023-Government-AI-Readiness-Index-2.pdf (accessed on 25 September 2025).
- Baker, J. The Technology–Organization–Environment Framework. In Information Systems Theory; Dwivedi, Y., Wade, M., Schneberger, S., Eds.; Integrated Series in Information Systems; Springer: New York, NY, USA, 2012; Volume 28. [Google Scholar] [CrossRef]
- Hameed, M.A.; Counsell, S.; Swift, S. A Conceptual Model for the Process of IT Innovation Adoption in Organizations. J. Eng. Technol. Manag. 2012, 29, 358–390. [Google Scholar] [CrossRef]
- Wang, H.-J.; Lo, J. Adoption of Open Government Data among Government Agencies. Gov. Inf. Q. 2016, 33, 80–88. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, X.; Zhang, Z.; Meng, Q.; Tan, H. What Factors Drive Open Innovation in China’s Public Sector? A Case Study of Official Document Exchange via Microblogging (ODEM) in Haining. Gov. Inf. Q. 2017, 34, 126–133. [Google Scholar] [CrossRef]
- Butler, T.; Murphy, C. An Exploratory Study on IS Capabilities and Assets in a Small-To-Medium Software Enterprise. J. Inf. Technol. 2008, 23, 330–344. [Google Scholar] [CrossRef]
- Grant, R.M. The Resource-Based Theory of Competitive Advantage: Implications for Strategy Formulation. Calif. Manag. Rev. 1991, 33, 114–135. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H. Governance quality and green growth: New empirical evidence from BRICS. Financ. Res. Lett. 2024, 65, 105566. [Google Scholar] [CrossRef]
- Sethi, L.; Pata, U.K.; Behera, B.; Sahoo, M.; Sethi, N. Sustainable future orientation for BRICS+ nations: Green growth, political stability, renewable energy and technology for ecological footprint mitigation. Renew. Energy 2025, 244, 122701. [Google Scholar] [CrossRef]
- De Pascale, G.; Romagno, A. Globalization and ICT capital endowment: How do they impact on an inclusive Green Growth Index? Struct. Change Econ. Dyn. 2024, 69, 463–474. [Google Scholar] [CrossRef]
- Šneiderienė, A.; Viederytė, R.; Abele, L. Green growth assessment discourse on evaluation indices in the European Union. Entrep. Sustain. Issues 2020, 8, 360–369. [Google Scholar] [CrossRef]
- Helfat, C.E.; Finkelstein, S.; Mitchell, W.; Peteraf, M.; Singh, H.; Teece, D.J.; Winter, S.G. Dynamic Capabilities: Understanding Strategic Change in Organizations 2007; John Wiley & Sons: Hoboken, NJ, USA, 2007; Available online: https://www.wiley.com/en-us/Dynamic+Capabilities%3A+Understanding+Strategic+Change+in+Organizations-p-9781405135757 (accessed on 25 September 2025).
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Winter, S.G. Understanding dynamic capabilities. Strateg. Manag. J. 2003, 24, 991–995. [Google Scholar] [CrossRef]
- Awais, M.; Afzal, A.; Firdousi, S.; Hasnaoui, A. Is fintech the new path to sustainable resource utilisation and economic development? Resour. Policy 2023, 81, 103309. [Google Scholar] [CrossRef]
- Wu, Q.; He, Q.; Duan, Y. Explicating dynamic capabilities for corporate sustainability. EuroMed J. Bus. 2013, 8, 255–272. [Google Scholar] [CrossRef]
- Iacovou, C.L.; Benbasat, I.; Dexter, A.S. Electronic data interchange and small organizations: Adoption and impact of technology. MIS Q. 1995, 19, 465–485. [Google Scholar] [CrossRef]
- Li, X.; Tong, X. Fostering green growth in Asian developing economies: The role of good governance in mitigating the resource curse. Resour. Policy 2024, 90, 104724. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Yan, T.; Cao, M.; Han, Y.; Pan, Y.; Feng, Y. The road to inclusive green growth in China: Exploring the impact of digital-real economy integration on carbon emission efficiency. J. Environ. Manag. 2024, 370, 122989. [Google Scholar] [CrossRef]
- Ojha, V.P.; Pohit, S.; Ghosh, J. Recycling carbon tax for inclusive green growth: A CGE analysis of India. Energy Policy 2020, 144, 111708. [Google Scholar] [CrossRef]
- Vogel, J.; Hickel, J. Is green growth happening? An empirical analysis of achieved versus Paris-compliant CO2–GDP decoupling in high-income countries. Lancet Planet. Health 2023, 7, E759–E769. [Google Scholar] [CrossRef]
- Nuta, A.C. The Significance of Economic Complexity and Renewable Energy for Decarbonization in Eastern European Countries. Energies 2024, 17, 5271. [Google Scholar] [CrossRef]
- Freire-González, J.; Padilla Rosa, E.; Raymond, J.L. World economies’ progress in decoupling from CO2 emissions. Sci. Rep. 2024, 14, 20480. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Shaheen, W.A.; Shabir, S.; Ullah, U.; Ienciu, I.-A.; Mihut, M.-I.; Raposo, A.; Han, H. Towards a green economy: Investigating the impact of sustainable finance, green technologies, and environmental policies on environmental degradation. J. Environ. Manag. 2025, 374, 124047. [Google Scholar] [CrossRef] [PubMed]
- M S, N.; Siddiqui, I.; Sahu, S.K. Green Growth Index for India: Drivers, Disparities, and Ramifications. Green Low-Carbon Econ. 2024, 1–14. [Google Scholar] [CrossRef]
- Yu, Q.; Zuo, X.; Ding, H.; Yin, X. Resource rent, economic stability and the legal landscape of China’s green growth. Resour. Policy 2024, 89, 104704. [Google Scholar] [CrossRef]
- Zhang, D.; Mohsin, M.; Rasheed, A.K.; Chang, Y.; Taghizadeh-Hesary, F. Public spending and green economic growth in BRI region: Mediating role of green finance. Energy Policy 2021, 153, 112256. [Google Scholar] [CrossRef]
- Lepitzki, J.; Axsen, J. The role of a low carbon fuel standard in achieving longterm GHG reduction targets. Energy Policy 2018, 119, 423–440. [Google Scholar] [CrossRef]
- Hou, X.; Jin, J.; Feng, Y. Does economic freedom affect green economic growth? Analyses of mediation, moderation, and heterogeneity in EU and non-EU countries. Front. Environ. Sci. 2025, 13, 1568601. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Fiscal spending and green economic growth: Evidence from China. Energy Econ. 2019, 83, 264–271. [Google Scholar] [CrossRef]
- Phung, T.Q.; Rasoulinezhad, E.; Thu, H.L.T. How are FDI and green recovery related in Southeast Asian economies? Econ. Change Restruct. 2023, 56, 3735–3755. [Google Scholar] [CrossRef]
- Zhu, S.; Ye, A. Does Foreign Direct Investment Improve Inclusive Green Growth? Empirical Evidence from China. Economies 2018, 6, 44. [Google Scholar] [CrossRef]
- Xiao, D.; Gao, L.; Xu, L.; Wang, Z.; Wei, W. Revisiting the Green Growth Effect of Foreign Direct Investment from the Perspective of Environmental Regulation: Evidence from China. Int. J. Environ. Res. Public Health 2023, 20, 2655. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, X. Does diversified environmental regulation make FDI cleaner and more beneficial to China’s green growth? Environ. Sci. Pollut. Res. Int. 2022, 29, 3487–3497. [Google Scholar] [CrossRef]
- Zhao, P.-J.; Zeng, L.-E.; Lu, H.-Y.; Zhou, Y.; Hu, H.-Y.; Wei, X.-Y. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the super-SBM model with undesirable outputs and spatial Dubin model. Sci. Total Environ. 2020, 741, 140026. [Google Scholar] [CrossRef]
- Yue, S.; Yang, Y.; Hu, Y. Does Foreign Direct Investment Affect Green Growth? Evidence from China’s Experience. Sustainability 2016, 8, 158. [Google Scholar] [CrossRef]
- Dilanchiev, A.; Sharif, A.; Ayad, H.; Nuta, A.C. The interaction between remittance, FDI, renewable energy, and environmental quality: A panel data analysis for the top remittance-receiving countries. Environ. Sci. Pollut. Res. 2024, 31, 14912–14926. [Google Scholar] [CrossRef] [PubMed]
- Ngo, Q.D.; Ngo, T.T.M.; Pham, L.N.; Au, M.V.; Le, T.H.; Cao, D.K. Green growth determinants in ASEAN-6: The crucial role of institutional quality. Int. J. Soc. Econ. 2025, 1–16. [Google Scholar] [CrossRef]
- Ketchoua, G.S.; Arogundade, S.; Mduduzi, B. Revaluating the Sustainable Development Thesis: Exploring the moderating influence of Technological Innovation on the impact of Foreign Direct Investment (FDI) on Green Growth in the OECD Countries. Discov. Sustain. 2024, 5, 252. [Google Scholar] [CrossRef]
- Chirilus, A.; Costea, A. The Effect of FDI on Environmental Degradation in Romania: Testing the Pollution Haven Hypothesis. Sustainability 2023, 15, 10733. [Google Scholar] [CrossRef]
- Ghouse, G.; Bhatti, M.I.; Nasrullah, M.J. The impact of financial inclusion, Fintech, HDI, and green finance on environmental sustainability in E-7 countries. Financ. Res. Lett. 2025, 72, 106617. [Google Scholar] [CrossRef]
- Ferreira, J.J.; Lopes, J.M.; Gomes, S.; Dias, C. Diverging or converging to a green world? Impact of green growth measures on countries’ economic performance. Environ. Dev. Sustain. 2023, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Acosta, L.; Maharjan, P.; Peyriere, H.; Mamii, R. Natural capital protection indicators: Measuring performance in achieving the Sustainable Development Goals for green growth transition. Environ. Sustain. Indic. 2020, 8, 100069. [Google Scholar] [CrossRef]
- Giyasova, Z.; Guliyeva, S.; Azizova, R.; Smiech, L.; Nabiyeva, I. Relationships between human development, economic growth, and environmental condition: The case of South Korea. Environ. Econ. 2025, 16, 73. [Google Scholar] [CrossRef]
- Rad, D.; Redeș, A.; Roman, A.; Egerău, A.; Lile, R.; Demeter, E.; Dughi, T.; Ignat, S.; Balaș, E.; Maier, R.; et al. The use of theory of planned behavior to systemically study the integrative-qualitative intentional behavior in Romanian preschool education with network analysis. Front. Psychol. 2023, 13, 1017011. [Google Scholar] [CrossRef]
- Li, D.; Shen, T.; Wei, X.; Li, J. Decomposition and Decoupling Analysis between HDI and Carbon Emissions. Atmosphere 2022, 13, 584. [Google Scholar] [CrossRef]
- Chang, G.; Yasin, I.; Naqvi, S.M.M.A. Environmental Sustainability in OECD Nations: The moderating impact of green innovation on urbanization and green growth. Sustainability 2024, 16, 7047. [Google Scholar] [CrossRef]
- Al-Thani, M.J.; Koç, M. In Search of Sustainable Economy Indicators: A Comparative Analysis between the Sustainable Development Goals Index and the Green Growth Index. Sustainability 2024, 16, 1372. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. The Effects of Urbanisation on Green Growth within Sustainable Development Goals. Land 2023, 12, 511. [Google Scholar] [CrossRef]
- Wang, N.; Ullah, A.; Lin, X.; Zhang, T.; Mao, J. Dynamic Influence of Urbanization on Inclusive Green Growth in Belt and Road Countries: The Moderating Role of Governance. Sustainability 2024, 14, 11623. [Google Scholar] [CrossRef]
- Manate, D.; Lile, R.; Rad, D.; Szentesi, S.G.; Cuc, L.D. An analysis of the concept of green buildings in Romania in the context of the energy paradigm change in the EU. Transform. Bus. Econ. 2023, 22, 115. Available online: https://www.transformations.knf.vu.lt/58/article/anan (accessed on 25 September 2025).
- Lu, K.; Qiu, Y.; Zhang, J.; Li, C.; Xie, J. Digital industry agglomeration and inclusive green growth: Synergies and path exploration. Front. Environ. Sci. 2025, 13, 1552159. [Google Scholar] [CrossRef]
- Jiang, Y.; Sharif, A.; Anwar, A.; Cong, P.T.; Lelchumanan, B.; Yen, V.T.; Vinh, N.T.T. Does green growth in E-7 countries depend on economic policy uncertainty, institutional quality, and renewable energy? Evidence from quantile-based regression. Geosci. Front. 2023, 14, 101652. [Google Scholar] [CrossRef]
- Shah, S.S.; Murodova, G.; Khan, A. Contribution of green bonds and green growth in clean energy capacity under the moderating role of political stability. Renew. Energy 2025, 246, 122888. [Google Scholar] [CrossRef]
- Qamri, G.M.; Sheng, B.; Adeel-Farooq, R.M.; Alam, G.M. The criticality of FDI in Environmental Degradation through financial development and economic growth: Implications for promoting the green sector. Resour. Policy 2022, 78, 102765. [Google Scholar] [CrossRef]
- United Nations Development Programme. Human Development Index; United Nations Development Programme: New York, NY, USA, 2025; Available online: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI (accessed on 25 September 2025).
- World Bank. World Development Indicators; World Bank: Washington, DC, USA, 2025; Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 25 September 2025).
- Papagiannidis, E.; Mikalef, P.; Conboy, K. Responsible artificial intteligence governance: A review and research framework. J. Strateg. Inf. Syst. 2025, 34, 101885. [Google Scholar] [CrossRef]
- Khan, M.S.; Umer, H.; Faruqe, F. Artificial intelligence for low income countries. Humanit. Soc. Sci. Commun. 2024, 11, 1422. [Google Scholar] [CrossRef]
- Aristovnik, A.; Umek, L.; Ravšelj, D. Artificial Intelligence in Public Administration: A Bibliometric Review in Comparative Perspective. In Disruptive Information Technologies for a Smart Society, Proceedings of the ICIST 2023, Cairo, Egypt, 8–14 December 2023; Trajanovic, M., Filipovic, N., Zdravkovic, M., Eds.; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2024; Volume 872. [Google Scholar] [CrossRef]
- Aoki, N. An experimental study of public trust in AI chatbots in the public sector. Gov. Inf. Q. 2020, 37, 101490. [Google Scholar] [CrossRef]
- Wirtz, B.W.; Weyerer, J.C.; Sturm, B.J. The dark sides of artificial intelligence: An integrated AI governance framework for public administration. Int. J. Public Adm. 2020, 43, 818–829. [Google Scholar] [CrossRef]
- Wang, W.; Siau, K. Artificial intelligence: A study on governance, policies, and regulations. In Proceedings of the 13th Annual Conference of the Midwest Association for Information Systems, MWAIS Proceedings, Saint Louis, MO, USA, 17–18 May 2018; Volume 40. Available online: https://aisel.aisnet.org/mwais2018/40/ (accessed on 25 September 2025).
- Rathnayake, A.S.; Nguyen, T.D.H.N.; Ahn, Y. Factors Influencing AI Chatbot Adoption in Government Administration: A Case Study of Sri Lanka’s Digital Government. Adm. Sci. 2025, 15, 157. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; David, A.; Li, W.; Fookes, C.; Bibri, S.E.; Ye, X. Unlocking Artificial Intelligence Adoption in Local Governments: Best Practice Lessons from Real-World Implementations. Smart Cities 2024, 7, 1576–1625. [Google Scholar] [CrossRef]
- Popa, D.M. Frontrunner model for responsible AI governance in the public sector: The Dutch perspective. AI Ethics 2025, 5, 2789–2799. [Google Scholar] [CrossRef]
- Arora, A.; Gupta, M.; Mehmi, S.; Khanna, T.; Chopra, G.; Kaur, R.; Vats, P. Towards Intelligent Governance: The Role of AI in Policymaking and Decision Support for E-Governance. In Information Systems for Intelligent Systems, Proceedings of the ISBM 2023, Bangkok, Thailand, 7–8 September 2023; So In, C., Londhe, N.D., Bhatt, N., Kitsing, M., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2024; p. 379. [Google Scholar] [CrossRef]
- Floridi, L. Artificial Intelligence as a Public Service: Learning from Amsterdam and Helsinki. Philos. Technol. 2020, 33, 541–546. [Google Scholar] [CrossRef]
- Gur, T.; Hameiri, B.; Maaravi, Y. Political ideology shapes support for the use of AI in policy-making. Front. Artif. Intell. 2024, 7, 1447171. [Google Scholar] [CrossRef]
- Kaplan, A.D.; Kessler, T.T.; Brill, J.C.; Hancock, P.A. Trust in artificial intelligence: Meta-analytic findings. Hum. Factors 2023, 65, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Demaidi, M.N. Artificial intelligence national strategy in a developing country. AI Soc. 2025, 40, 423–435. [Google Scholar] [CrossRef]
- Adams, R.; Adeleke, F.; Florido, A.; de Magalhaes Santos, L.G.; Grossman, N.; Junck, L.; Stone, K. Global Index on Responsible AI 2024, 1st ed.; Global Center on AI Governance: Cape Town, South Africa, 2024; Available online: https://www.global-index.ai/ (accessed on 25 September 2025).
- Miškufová, M.; Košíková, M.; Vašanicová, P.; Kisel’áková, D. Digitalization and Artificial Intelligence: A Comparative Study of Indices on Digital Competitiveness. Information 2025, 16, 286. [Google Scholar] [CrossRef]
- Nasution, M.K.M.; Elveny, M.; Pamučar, D.; Popović, M.; Gušavac, B.A. Uncovering the Hidden Insights of the Government AI Readiness Index: Application of Fuzzy LMAW and Schweizer-Sklar Weighted Framework. Decis. Mak. Appl. Manag. Eng. 2024, 7, 443–468. [Google Scholar] [CrossRef]
- Nzobonimpa, S.; Savard, J.-F. Ready but irresponsible? Analysis of the Government Artificial Intelligence Readiness Index. Policy Internet 2023, 15, 397–414. [Google Scholar] [CrossRef]
- Zeng, Y.; Lu, E.; Guan, X.; Huangfu, C.; Ruan, Z.; Younas, A.; Sun, K.; Tang, X.; Wang, Y.; Suo, H.; et al. AI Governance InternationaL Evaluation Index (AGILE Index) 2024. In Center for Long-term Artificial Intelligence (CLAI); International Research Center for AI Ethics and Governance, Institute of Automation, Chinese Academy of Sciences: Beijing, China, 2024; Available online: https://arxiv.org/pdf/2502.15859 (accessed on 25 September 2025).
- Cazzaniga, M.; Jaumotte, F.; Li, L.; Melina, G.; Panton, A.J.; Pizzinelli, C.; Rockall, E.; Tavares, M.M. Gen-AI: Artificial Intelligence and the Future of Work; IMF Staff Discussion Note SDN2024/001; International Monetary Fund: Washington, DC, USA, 2024; Available online: https://www.imf.org/en/Publications/Staff-Discussion-Notes/Issues/2024/01/14/Gen-AI-Artificial-Intelligence-and-the-Future-of-Work-542379 (accessed on 25 September 2025).
- Pangestu, D.S.; Sukono; Anggriani, N.; Yaacob, N.M. Quantifying the Health–Economy Trade-Offs: Mathematical Model of COVID-19 Pandemic Dynamics. Computation 2024, 12, 139. [Google Scholar] [CrossRef]
- Trębska, J. Consequences of the COVID-19 pandemic in the European Union from the perspectives of general government finances—An analysis based on the social accounting matrix. Zesz. Nauk. SGGW Polityki Eur. Finans. I Mark. 2023, 29, 125–142. [Google Scholar] [CrossRef]
- Dougherty, S.; de Biase, P. Who absorb the shock? An analysis of the fiscal impact of the COVID-19 crisis on diferent levels of government. Int. Econ. Econ. Policy 2021, 18, 517–540. [Google Scholar] [CrossRef]
- Frimpong, V. When Institutions Cannot Keep up with Artificial Intelligence: Expiration Theory and the Risk of Institutional Invalidation. Adm. Sci. 2025, 15, 263. [Google Scholar] [CrossRef]
- Tretter, M. Opportunities and challenges of AI-systems in political decision-making contexts. Front. Political Sci. 2025, 7, 1504520. [Google Scholar] [CrossRef]
- Holl, A.; Rama, R.; Hammond, H. COVID-19 and Business Digitalization: Unveiling the Effects of Concurrent Strategies. J. Knowl. Econ. 2025, 16, 15456–15490. [Google Scholar] [CrossRef]
- European Commission. The Digital Europe Programme; European Commission: Brussels, Belgium, 2025; Available online: https://digital-strategy.ec.europa.eu/en/activities/digital-programme (accessed on 25 September 2025).
- European Commission. Comunication from the Commission—Artificial Intelligence for Europe; European Commission: Brussels, Belgium, 2018; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52018DC0237 (accessed on 25 September 2025).
- European Parliament. Artificial Intelligence Act. Regulation (EU) 2024/1689 of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence; European Parliament: Strasbourg, France, 2024; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401689 (accessed on 25 September 2025).
- European Commission. Commission Launches Public Consultation on High-Risk AI Systems; European Commission: Brussels, Belgium, 2025; Available online: https://digital-strategy.ec.europa.eu/en/news/commission-launches-public-consultation-high-risk-ai-systems (accessed on 25 September 2025).
- European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0640&from=EN (accessed on 25 September 2025).
- Hickey, G.L.; Kontopantelis, E.; Takkenberg, J.J.M.; Beyersdorf, F. Statistical primer: Checking model assumptions with regression diagnostics. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 1–8. [Google Scholar] [CrossRef]
- Qian, Y.; Xie, H. Correcting Regressor-Endogeneity Bias via Instrument-Free Joint Estimation Using Semiparametric Odds Ratio Models. J. Mark. Res. 2024, 61, 914–936. [Google Scholar] [CrossRef]
- Baum, C.F.; Schaffer, M.E.; Stillman, S. Enhanced routines for instrumental variables/generalized method of moments estimation and testing. Stata J. 2007, 7, 465–506. [Google Scholar] [CrossRef]
- Haschka, R.E. Endogeneity in stochastic frontier models with ‘wrong’ skewness: Copula approach without external instruments. Stat. Methods Appl. 2024, 33, 807–826. [Google Scholar] [CrossRef]
- Li, J.; Ding, H.; Hu, Y.; Guoguang, W. Dealing with dynamic endogeneity in international business research. J. Int. Bus. Stud. 2021, 52, 339–362. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X. Can new quality productive forces promote inclusive green growth: Evidence from China. Front. Environ. Sci. 2024, 12, 1499756. [Google Scholar] [CrossRef]
- Roodman, D. How to do Xtabond2: An Introduction to Difference and System GMM in Stata. Stata J. Promot. Commun. Stat. Stata 2009, 9, 86–136. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M.H. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiology 2016, 6, 227. [Google Scholar] [CrossRef]
- Koengkan, M.; Fuinhas, J.A.; Marques, A.C. The relationship between financial openness, renewable and nonrenewable energy consumption, CO2 emissions, and economic growth in the Latin American countries: An approach with a panel vector auto regression model. In The Extended Energy-Growth Nexus: Theory and Empirical Applications; Academic Press: Cambridge, MA, USA, 2019; pp. 199–229. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Konat, G.; Zeren, F. Is Real Gross Domestic Product (GDP) Series Stationary in EU Countries? Evidence from the RALS-CIPS Test. Econ. Bull. 2021, 41, 1813–1825. Available online: https://www.accessecon.com/Pubs/EB/2021/Volume41/EB-21-V41-I3-P154.pdf (accessed on 25 September 2025).
- Ditzen, J. Estimating long run effects and the exponent of cross-sectional dependence: An update to xtdcce2. Stata J. 2021, 21, 687–707. Available online: https://ideas.repec.org/p/bzn/wpaper/bemps81.html (accessed on 25 September 2025). [CrossRef]
- Pesaran, M.H. Testing weak cross-sectional dependence in large panels. Econom. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef]
- Cameron, A.C.; Trivedi, P.K. The Information Matrix Test and Its Applied Alternative Hypotheses; Working Paper 372; University of California–Davis, Institute of Governmental Affairs: Davis, CA, USA, 1990. [Google Scholar]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2002; Available online: https://www.jstor.org/stable/j.ctt5hhcfr (accessed on 25 September 2025).
- Drukker, D.M. Testing for serial correlation in linear panel-data models. Stata J. 2003, 3, 168–177. [Google Scholar] [CrossRef]
- Nuta, A.C.; Abban, O.J.; Ayad, H.; Nuta, F.M. Role of financial development and inclusivity in moderating the environmental effects of human development. Res. Int. Bus. Financ. 2025, 73, 102623. [Google Scholar] [CrossRef]
- Manta, A.G.; Badareu, G.; Badircea, R.M.; Doran, N.M. Does Banking Accessibility Matter in Assuring the Economic Growth in the Digitization Context? Evidence from Central and Eastern European Countries. Electronics 2023, 12, 279. [Google Scholar] [CrossRef]
- Jeon, G. Rethinking Competitiveness in the Age of AI: A Comparative Index-Based Approach. J. Int. Dev. 2025, 37, 1525–1542. [Google Scholar] [CrossRef]
- Rigley, E.; Bentley, C.; Krook, J.; Ramchurn, S.D. Evaluating international AI skills policy: A systematic review of AI skills policy in seven countries. Glob. Policy 2024, 15, 204–217. [Google Scholar] [CrossRef]


| Code | Variable | Source |
|---|---|---|
| GG | Green Growth Index | [31] |
| AIGOV | Government Artificial Intelligence Readiness Index | [30] |
| HDI | Human Development Index | [91] |
| GDP | Gross Domestic Product (constant 2015 USD) | [92] |
| GOVEXP | General government final consumption expenditure (% of GDP) | [92] |
| FDI | Foreign direct investment net inflows (% of GDP) | [92] |
| URBAN | Urban population (% of total population) | [92] |
| POLSTAB | Political Stability and Absence of Violence/Terrorism (index) | [92] |
| Variable | Level | Mean | Std. Dev. | Min. | Max. |
|---|---|---|---|---|---|
| GG | overall | 66.545 | 5.242 | 53.46 | 75.01 |
| between | 5.305 | 53.882 | 74.686 | ||
| within | 0.425 | 64.795 | 67.489 | ||
| AIGOV | overall | 66.204 | 8.657 | 47.93 | 88.103 |
| between | 8.257 | 50.313 | 80.229 | ||
| within | 2.966 | 58.482 | 75.861 | ||
| GDP | overall | 5.55 × 1011 | 8.56 × 1011 | 1.40 × 1010 | 3.70 × 1012 |
| between | 8.69 × 1011 | 1.60 × 1010 | 3.66 × 1012 | ||
| within | 3.46 × 1010 | 3.75 × 1010 | 6.75 × 1011 | ||
| GOVEXP | overall | 20.245 | 3.021 | 11.060 | 26.531 |
| between | 2.953 | 11.867 | 25.898 | ||
| within | 0.818 | 18.233 | 22.717 | ||
| FDI | overall | 10.816 | 78.745 | −440.131 | 433.861 |
| between | 42.637 | −47.283 | 212.620 | ||
| within | 66.612 | −382.030 | 403.975 | ||
| HDI | overall | 0.907 | 0.035 | 0.817 | 0.962 |
| between | 0.035 | 0.831 | 0.957 | ||
| within | 0.005 | 0.893 | 0.921 | ||
| URBAN | overall | 73.976 | 12.931 | 53.729 | 98.189 |
| between | 13.124 | 53.849 | 98.115 | ||
| within | 0.343 | 72.898 | 75.040 | ||
| POLSTAB | overall | 0.673 | 0.248 | 0.101 | 1.333 |
| between | 0.240 | 0.145 | 1.171 | ||
| within | 0.076 | 0.484 | 0.838 |
| Variable | GG | AIGOV | GDP | GOVEXP | FDI | HDI | URBAN | POLSTAB | VIF |
|---|---|---|---|---|---|---|---|---|---|
| GG | 1.000 | 1.88 mean | |||||||
| AIGOV | 0.452 | 1.000 | 3.10 | ||||||
| GDP | 0.409 | 0.535 | 1.000 | 1.91 | |||||
| GOVEXP | 0.524 | 0.358 | 0.296 | 1.000 | 1.37 | ||||
| FDI | −0.275 | −0.074 | −0.207 | −0.115 | 1.000 | 1.09 | |||
| HDI | 0.246 | 0.734 | 0.422 | 0.335 | −0.035 | 1.000 | 2.45 | ||
| URBAN | −0.062 | 0.506 | 0.200 | 0.432 | 0.099 | 0.524 | 1.000 | 1.67 | |
| POLSTAB | 0.252 | 0.356 | −0.182 | −0.051 | 0.117 | 0.347 | 0.187 | 1.000 | 1.59 |
| Variable | Stationarity | CSD |
|---|---|---|
| Phillips–Perron Test | Pesaran CD Test | |
| GG | 860.263 *** | 11.886 *** |
| AIGOV | 542.054 *** | 0.447 |
| GDP | 403.999 *** | 18.066 *** |
| GOVEXP | 186.953 *** | 14.017 *** |
| FDI | 109.550 *** | 13.309 *** |
| HDI | 176.805 *** | 21.995 *** |
| URBAN | 372.403 *** | 32.421 *** |
| POLSTAB | 151.957 *** | 6.232 *** |
| Heteroskedasticity | Stat. | p-Value |
|---|---|---|
| White test | 57.86 | 0.008 |
| Cameron and Trivedi test | 67.85 | 0.009 |
| Serial Correlation | Stat. | p-Value |
|---|---|---|
| Wooldridge test | 24.902 | 0.000 |
| Variable | Normality | ||
|---|---|---|---|
| Skewness | Kurtosis | p-Value | |
| GG | 0.060 | 0.918 | 0.164 |
| AIGOV | 0.360 | 0.803 | 0.634 |
| GDP | 0.528 | 0.001 | 0.009 |
| GOVEXP | 0.138 | 0.132 | 0.102 |
| FDI | 0.000 | 0.000 | 0.000 |
| HDI | 0.053 | 0.276 | 0.084 |
| URBAN | 0.443 | 0.000 | 0.000 |
| POLSTAB | 0.635 | 0.223 | 0.419 |
| GG | Ordinary Least Squares (OLS) | Feasible Generalized Least Squares (FGLS) | Panels Corrected Standard Errors (PCSE) | System GMM |
|---|---|---|---|---|
| Model 1 | Model 2 | Model 3 | Model 4 | |
| L.GG | - | - | - | 0.873 *** (0.035) |
| AIGOV | 0.205 *** (0.048) | 0.207 *** (0.031) | 0.205 *** (0.047) | 0.027 ** (0.012) |
| GDP | 1.002 *** (0.201) | 1.088 *** (0.148) | 1.002 *** (0.193) | 0.093 * (0.055) |
| GOVEXP | 1.066 *** (0.124) | 0.790 *** (0.083) | 1.066 *** (0.121) | 0.166 *** (0.040) |
| FDI | −0.008 *** (0.002) | −0.006 *** (0.002) | −0.008 *** (0.002) | −0.001 *** (0.001) |
| HDI | −29.633 *** (10.494) | −33.607 *** (6.565) | −29.633 *** (10.019) | −6.514 ** (2.638) |
| URBAN | −0.208 *** (0.020) | −0.188 *** (0.016) | −0.208 *** (0.020) | −0.029 *** (0.007) |
| POLSTAB | 8.289 *** (1.211) | 7.760 *** (0.723) | 8.289 *** (1.127) | 0.897 ** (0.452) |
| Constant | 42.034 *** (8.517) | 47.851 *** (5.577) | 42.034 *** (8.125) | 8.508 *** (2.927) |
| R-squared | 0.706 | - | 0.706 | - |
| Instruments | - | - | - | 13 |
| Groups | - | - | - | 27 |
| AR(1) test (p-value) | - | - | - | 0.000 |
| AR(2) test (p-value) | - | - | - | 0.412 |
| Sargan test (p-value) | - | - | - | 0.411 |
| Hansen test (p-value) | - | - | - | 0.370 |
| GG | Limited-Information Maximum Likelihood—Instrumental Variables (LIML-IV) | ||||||
|---|---|---|---|---|---|---|---|
| Testing Endogeneity for: | |||||||
| AIGOV | GDP | GOVEXP | FDI | HDI | URBAN | POLSTAB | |
| Model 5.1 | Model 5.2 | Model 5.3 | Model 5.4 | Model 5.5 | Model 5.6 | Model 5.7 | |
| AIGOV | 0.399 *** (0.133) | 0.275 *** (0.083) | 0.194 *** (0.051) | 0.249 *** (0.067) | 0.202 *** (0.056) | 0.243 *** (0.057) | 0.155 ** (0.062) |
| GDP | 0.613 * (0.359) | 0.899 * (0.490) | 0.974 *** (0.237) | 0.938 *** (0.271) | 0.998 *** (0.236) | 0.922 *** (0.251) | 1.287 *** (0.317) |
| GOVEXP | 1.043 *** (0.101) | 1.123 *** (0.105) | 1.278 *** (0.194) | 1.100 *** (0.107) | 1.065 *** (0.094) | 1.169 *** (0.120) | 1.106 *** (0.101) |
| FDI | −0.007 ** (0.003) | −0.010 *** (0.003) | −0.007 *** (0.003) | −0.019 ** (0.008) | −0.008 ** (0.003) | −0.006 * (0.003) | −0.008 ** (0.003) |
| HDI | −48.692 *** (16.355) | −37.023 *** (12.605) | −30.949 *** (11.175) | −37.428 *** (12.770) | −28.417 * (17.167) | −22.269 * (12.992) | −35.584 *** (12.076) |
| URBAN | −0.227 *** (0.028) | −0.221 *** (0.028) | −0.225 *** (0.028) | −0.210 *** (0.029) | −0.208 *** (0.025) | −0.284 *** (0.063) | −0.204 *** (0.025) |
| POLSTAB | 6.326 *** (1.748) | 7.411 *** (1.906) | 8.730 *** (1.311) | 8.202 *** (1.541) | 8.260 *** (1.278) | 7.929 *** (1.296) | 11.590 *** (2.748) |
| Constant | 59.886 *** 14.552 | 47.292 *** (11.351) | 41.372 *** (8.700) | 47.532 *** (9.973) | 41.274 *** (11.883) | 38.738 *** (9.177) | 40.026 *** (8.872) |
| Instruments | IIU, IIB, ISN | GEE, GNIPC, ISN | GEE, GDPPPG, UNEM, INEQINC | RQE, GDPPPG, GNIPC, UNEM | GDPPPG, CCE, UNEM, DEBT | INEQINC, ISN | INEQINC, UNEM |
| -Under identification test Anderson canon. corr. LM -p-value | 23.139 0.000 | 30.703 0.000 | 34.728 0.000 | 22.854 0.000 | 57.567 0.000 | 21.629 0.000 | 29.045 0.000 |
| -Weak identification test Cragg–Donald -Critical Stock–Yogo | 8.627 6.46 | 13.012 6.46 | 10.737 5.44 | 6.509 5.44 | 23.047 5.44 | 12.030 8.68 | 17.270 8.68 |
| -Overidentification test Sargan -p-value | 2.808 0.245 | 0.721 0.697 | 2.139 0.544 | 2.266 0.519 | 4.870 0.181 | 0.165 0.685 | 0.130 0.718 |
| -Over identification test Anderson–Rubin -p-value | 2.838 0.241 | 0.723 0.696 | 2.156 0.540 | 2.290 0.514 | 4.960 0.174 | 0.165 0.684 | 0.130 0.718 |
| -Endogeneity test -p-value | 2.331 0.126 | 0.052 0.819 | 1.535 0.215 | 1.173 0.278 | 0.008 0.930 | 1.856 0.173 | 1.924 0.165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Socol, A.; Ivan, O.-R.; Danuletiu, A.E.; Cioca, I.C.; Botar, C.F.; Virdea, D.E. The Moderating Role of Governmental Artificial Intelligence in Shaping Green Growth Dynamics in the European Union. Sustainability 2025, 17, 10329. https://doi.org/10.3390/su172210329
Socol A, Ivan O-R, Danuletiu AE, Cioca IC, Botar CF, Virdea DE. The Moderating Role of Governmental Artificial Intelligence in Shaping Green Growth Dynamics in the European Union. Sustainability. 2025; 17(22):10329. https://doi.org/10.3390/su172210329
Chicago/Turabian StyleSocol, Adela, Oana-Raluca Ivan, Adina Elena Danuletiu, Ionela Cornelia Cioca, Claudia Florina Botar, and Dorina Elena Virdea. 2025. "The Moderating Role of Governmental Artificial Intelligence in Shaping Green Growth Dynamics in the European Union" Sustainability 17, no. 22: 10329. https://doi.org/10.3390/su172210329
APA StyleSocol, A., Ivan, O.-R., Danuletiu, A. E., Cioca, I. C., Botar, C. F., & Virdea, D. E. (2025). The Moderating Role of Governmental Artificial Intelligence in Shaping Green Growth Dynamics in the European Union. Sustainability, 17(22), 10329. https://doi.org/10.3390/su172210329

