Method of Management and Determination of Quality of Waste from Green Areas for the Production of Pellets Used for Fertilization Purposes
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Mechanical Testing of Pellets
2.3. Chemical Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Measurement of Mechanical Properties
3.2. Assessment of Selected Chemical Properties of Pellets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Țopa, D.-C.; Căpșună, S.; Calistru, A.-E.; Ailincăi, C. Sustainable practices for enhancing soil health and crop quality in modern agriculture: A Review. Agriculture 2025, 15, 998. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; Ho, Y.-C.; Show, P.L. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef]
- Jiao, F.; Zhu, X.; Li, C.; Xie, H.; Li, H. Advancing biomass fermentation and composting for global sustainability: A bibliometric perspective (2019–2024). Discov. Sustain. 2025, 6, 667. [Google Scholar] [CrossRef]
- Manea, E.E.; Bumbac, C.; Dinu, L.R.; Bumbac, M.; Nicolescu, C.M. Composting as a sustainable solution for organic solid waste management: Current practices and potential improvements. Sustainability 2024, 16, 6329. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, L.; Li, Y.; Li, X.; Zhang, X.; Wang, X. Effects of compost application of green waste on soil properties: A meta-analysis. Sustainability 2024, 16, 8877. [Google Scholar] [CrossRef]
- Bohórquez-Sandoval, L.J.; García-Molano, J.F.; Pascual-Valero, J.A.; Ros-Muñoz, M. A comprehensive review on organic waste compost as an effective phosphorus source for sustainable agriculture. Int. J. Recycl. Org. Waste Agric. 2024, 13, 132441. [Google Scholar] [CrossRef]
- Svensson, A.; Almarstrand, M.; Axelsson, J.; Nilsson, M.; Timmermann, E.; Govindarajan, V. Valorising agricultural residues into pellets in a sustainable circular bioeconomy. Probl. Ekorozwoju/Probl. Sustain. Dev. 2024, 19, 272–278. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, Y.; Wang, A.; Li, Q. A potential heavy metals detoxification system in composting: Biotic and abiotic synergy mediated by shell powder. Bioresour. Technol. 2023, 386, 129576. [Google Scholar] [CrossRef]
- Koziak, K.; Krasowska, M.; Piekut, J.; Obidziński, S.; Cwalina, P.; Kowczyk-Sadowy, M.; Kowalewska, O.E. Evaluation of the fertilising properties of composts containing herbal waste. Econ. Environ. 2025, 92, 907. [Google Scholar] [CrossRef]
- Gorzelany, J.; Zardzewiały, M.; Murawski, P.; Matłok, N. Analysis of selected quality features of wood pellets. Agric. Eng. 2020, 24, 5–12. [Google Scholar] [CrossRef]
- Williams, O.; Taylor, S.; Lester, E.; Kingman, S.; Giddings, D.; Eastwick, C. Applicability of mechanical tests for biomass pellet characterisation for bioenergy applications. Materials 2018, 11, 1329. [Google Scholar] [CrossRef] [PubMed]
- ISO 17225-2:2021; Solid Biofuels: Fuel Specifications and Classes—Part 2: Graded Wood Pellets. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Elniski, A.; Dongre, P.; Bujanovic, B.M. Lignin use in enhancing the properties of willow pellets. Forests 2023, 14, 2041. [Google Scholar] [CrossRef]
- Clavijo, L.; Zlatanovic, S.; Braun, G.; Bongards, M.; Dieste, A.; Barbe, S. Eucalyptus kraft lignin as an additive strongly enhances the mechanical resistance of tree-leaf pellets. Processes 2020, 8, 376. [Google Scholar] [CrossRef]
- Hettiarachchi, L.; Jayathillake, N.; Fernando, S.; Gunawardena, S. Effects of compost particle size, moisture content and binding agents on co-compost pellet properties. Int. J. Agric. Biol. Eng. 2019, 12, 184–191. [Google Scholar] [CrossRef]
- Butler, J.W.; Skrivan, W.; Lotfi, S. Identification of optimal binders for torrefied biomass pellets. Energies 2023, 16, 3390. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vladut, V.; Voicu, G.; Dinca, M.-N.; Zabava, B.-S. Influence of biomass moisture content on pellet properties—Review. In Proceedings of the 17th International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, 23–25 May 2018; pp. 1917–1924. [Google Scholar]
- Papandrea, S.F.; Giuffrè, A.M.; Sicari, V.; Piscopo, A. Pelletization of compost from different mixtures with the addition of exhausted extinguishing powders. Agronomy 2021, 11, 1357. [Google Scholar] [CrossRef]
- Ahn, B.J.; Chang, H.-S.; Lee, S.M.; Choi, D.H.; Cho, S.T.; Han, G.-S.; Yang, I. Effect of binders on the durability of wood pellets fabricated from larix kaemferi c. and liriodendron tulipifera l. sawdust. Renew. Energy 2014, 62, 18–23. [Google Scholar] [CrossRef]
- Peng, J.; Bi, X.T.; Lim, C.J.; Peng, H.; Kim, C.S.; Jia, D.; Zuo, H. Sawdust as an effective binder for making torrefied pellets. Appl. Energy 2015, 157, 491–498. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 17831-1:2015—Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes—Part 1: Pellets; ISO: Geneva, Switzerland, 2015; Available online: https://www.iso.org/standard/61616.html (accessed on 1 November 2025).
- Rancane, S.; Karklins, A.; Lazdina, D.; Berzins, P.; Bardule, A.; Butlers, A.; Lazdins, A. The evaluation of biomass yield and quality of phalaris arundinacea and festulolium fertilised with bio-energy waste products. Agron. Res. 2016, 14, 1342–1354. [Google Scholar]
- Filipek-Mazur, B.; Gondek, K. Fertilizer value of compost produced from green waste in kraków. Zesz. Probl. Post. Nauk Roln. 2003, 494, 113–121. (In Polish) [Google Scholar]
- Nilsson, D.; Bernesson, S.; Hansson, P.-A. Pellet production from agricultural raw materials—A systems study. Biomass Bioenergy 2011, 35, 679–689. [Google Scholar] [CrossRef]
- Larsen, S.U.; Lærke, P.E.; Jørgensen, U. Harvest of green willow biomass for feed—Effects of harvest time and frequency on yield, nutrient concentration, silage quality and regrowth. Acta Agric. Scand. Sect. B Soil Plant Sci. 2020, 70, 532–540. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Olba-Zięty, E. Properties of pellets from forest and agricultural biomass and their mixtures. Energies 2025, 18, 3137. [Google Scholar] [CrossRef]
- Bello, D.; Trasar-Cepeda, C.; Leirós, M.C.; Gil-Sotres, F. Effect of sawdust amendment on mineralization of organic nitrogen in a 2,4,5-trichlorophenol contaminated soil. J. Soil Sci. Plant Nutr. 2013, 13, 215–221. [Google Scholar] [CrossRef]
- Łabętowicz, J.; Rutkowska, B.; Ożarowski, G.; Szulc, W. Potential use of “dano” municipal waste compost in agriculture. Acta Agrophys. 2002, 70, 247–255. (In Polish) [Google Scholar]
- Pitman, R.M. Wood ash use in forestry—A review of the environmental impacts. Forestry 2006, 79, 563–588. [Google Scholar] [CrossRef]
- Buneviciene, K.; Drapanauskaite, D.; Mazeika, R.; Baltrusaitis, J. A mixture of green waste compost and biomass combustion ash for recycled nutrient delivery to soil. Agronomy 2021, 11, 641. [Google Scholar] [CrossRef]
- Rao, J.R.; Watabe, M.; Stewart, T.A.; Millar, B.C.; Moore, J.E. Pelleted organo-mineral fertilisers from composted pig slurry solids, animal wastes and spent mushroom compost for amenity grasslands. Waste Manag. 2007, 27, 1117–1128. [Google Scholar] [CrossRef]
- Heinsoo, K.; Hein, K.; Melts, I.; Holm, B.; Ivask, M. Reed canary grass yield and fuel quality in estonian farmers’ fields. Biomass Bioenergy 2011, 35, 617–625. [Google Scholar] [CrossRef]
- Al-Khatib, I.A.; Anayah, F.M.; Al-Sari, M.I.; Al-Madbouh, S.; Salahat, J.I.; Jararaa, B.Y.A. Assessing physiochemical characteristics of agricultural waste and ready compost at wadi al-far’a watershed of palestine. J. Environ. Public Health 2023, 2023, 6147506. [Google Scholar] [CrossRef] [PubMed]
- University of Minnesota. Green Waste Compost Analysis Report. Available online: https://conservancy.umn.edu/server/api/core/bitstreams/7b6f4ca4-85c7-4461-8b35-44a3db660814/content (accessed on 10 October 2025).
- Ujj, A.; Percsi, K.; Beres, A.; Aleksza, L.; Diaz, F.R.; Gyuricza, C.; Fogarassy, C. Analysis of quality of backyard compost and its potential utilization as a circular bio-waste source. Appl. Sci. 2021, 11, 4392. [Google Scholar] [CrossRef]
- Morales, J.; Martínez-Alcántara, B.; Bermejo, A.; Millos, J.; Legaz, F.; Quiñones, A. Effect of calcium fertilization on calcium uptake and its partitioning in citrus trees. Agronomy 2023, 13, 2971. [Google Scholar] [CrossRef]
- Katroschan, K.U.; Hirthe, G. Nitrogen supply by cut-and-carry biomass for vegetable crops and subsequent cereals. Nutr. Cycl. Agroecosyst. 2024, 129, 53–71. [Google Scholar] [CrossRef]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A New Nutrient Source—Review. In Biogas; Kumar, S., Ed.; InTech: Rijeka, Croatia, 2012; Chapter 14. [Google Scholar]
- Olejarski, I. Utilization of logging residues for organic fertilization of post-agricultural soils. Postępy Tech. Leśnictwie 2005, 92, 20–24. (In Polish) [Google Scholar]
- Jourgholami, M.; Abari, M.E. Effectiveness of sawdust and straw mulching on postharvest runoff and soil erosion of a skid trail in a mixed forest. Ecol. Eng. 2017, 109, 15–24. [Google Scholar] [CrossRef]
- Rosa, E.; Sufardi, S.; Syafruddin, S.; Rusdi, M. Bioremediation of ex-mining soil with the biocompost in the incubation experiments. Appl. Environ. Soil Sci. 2023, 2023, 4129909. [Google Scholar] [CrossRef]
- Strenner, M.; Chmelíková, L.; Hülsbergen, K.-J. Compost fertilization in organic agriculture—A comparison of the impact on corn plants using field spectroscopy. Appl. Sci. 2023, 13, 3676. [Google Scholar] [CrossRef]
- Langsdorf, A.; Volkmar, M.; Holtmann, D.; Ulber, R. Material utilization of green waste: A review on potential valorization methods. Bioresour. Bioprocess. 2021, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, J. Chemical and biological properties of composts produced from municipal sewage sludge with sawdust supplement. Ecol. Chem. Eng. A 2012, 19, 897–904. [Google Scholar] [CrossRef]
- Szulc, W.; Rutkowska, B.; Stępień, W. Assessing the suitability of wood industry waste for fertilizer application. Zesz. Probl. Post. Nauk Rol. 2007, 518, 185–192. [Google Scholar]
- Vassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C.; Morgan, T. An overview of the organic and inorganic phase composition of biomass. Fuel 2012, 94, 1–33. [Google Scholar] [CrossRef]
- Chávez-Rosales, J.S.; Pintor-Ibarra, L.F.; González-Ortega, N.; Orihuela-Equihua, R.; Ruiz-Aquino, F.; Luján-Álvarez, C.; Rutiaga-Quinones, J.G. Basic chemical composition of Pinus spp. sawdust from five regions of Mexico for bioenergetic purposes. BioResources 2021, 16, 816–824. [Google Scholar] [CrossRef]
- Bożym, M.; Dróżdż, N.; Siemiątkowski, G. Zawartość makroelementów i ich form przyswajalnych w kompostach produkowanych z odpadów zielonych. Prace ICiMB 2014, 18, 150–161. (In Polish) [Google Scholar]
- Cwalina, P.; Obidziński, S.; Sienkiewicz, A.; Kowczyk-Sadowy, M.; Piekut, J.; Bagińska, E.; Mazur, J. Production and quality assessment of fertilizer pellets from compost with sewage sludge ash (ssa) addition. Materials 2025, 18, 1145. [Google Scholar] [CrossRef] [PubMed]
- Maucieri, C.; Barco, A.; Borin, M. Compost as a substitute for mineral n fertilization? effects on crops, soil and n leaching. Agronomy 2019, 9, 193. [Google Scholar] [CrossRef]
- Sánchez, A. Special issue on “composting in the framework of a circular economy”. Processes 2023, 11, 1573. [Google Scholar] [CrossRef]
- Nworie, O.E.; Lin, C. Seasonal variation in tissue-borne heavy metal(loids) in herbaceous plants growing in contaminated soils developed from industrial wastes of industrial revolution age. Environ. Adv. 2021, 5, 100113. [Google Scholar] [CrossRef]
- Government of Poland. Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the Implementation of Certain Provisions of the Act on Fertilizers and Fertilization. J. Laws Repub. Pol. 2008, Item 765. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20081190765 (accessed on 11 October 2025).
- European Parliament and Council. Regulation (EU) 2019/1009 of 5 June 2019 on the Making Available on the Market of EU Fertilising Products, Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009, and Repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, L170, 1–112. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32019R1009 (accessed on 17 October 2025).
- Alloway, B.J. (Ed.) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Wang, X.; Sale, P.; Hunt, J.; Clark, G.; Wood, J.L.; Franks, A.E.; Reddy, P.; Jin, J.; Joseph, S.; Tang, C. Enhancing growth and transpiration efficiency of corn plants with compost addition and potential beneficial microbes under well-watered and water-stressed conditions. Plant Soil 2025, 515, 2475–2493. [Google Scholar] [CrossRef]
- Kamal, M.Z.U.; Sarker, U.; Roy, S.K.; Alam, M.S.; Azam, M.G.; Miah, M.Y.; Hossain, N.; Ercisli, S.; Alamri, S. Manure–biochar compost mitigates soil salinity stress in tomato plants by modulating the osmoregulatory mechanism, photosynthetic pigments, and ionic homeostasis. Sci. Rep. 2024, 14, 21929. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Ansar, A.; Du, J.; Javed, Q.; Adnan, M.; Javaid, I. Biodegradable waste in compost production: A review of its economic potential. Nitrogen 2025, 6, 24. [Google Scholar] [CrossRef]




| Biomass Collection Period | Composition of Pellet | Pellet Code |
|---|---|---|
| Winter–spring (first half of 2024) | 100% compost | P11 |
| 80% compost + 20% conifer sawdust | P21 | |
| 75% compost + 25% conifer sawdust | P31 | |
| 66% compost + 34% conifer sawdust | P41 | |
| 50% compost + 50% conifer sawdust | P51 | |
| Summer–autumn (second half of 2024) | 100% compost | P12 |
| 80% compost + 20% conifer sawdust | P22 | |
| 75% compost + 25% conifer sawdust | P32 | |
| 66% compost + 34% conifer sawdust | P42 | |
| 50% compost + 50% conifer sawdust | P52 |
| Type of Pellet | Nitrogen mg·kg−1 | Total Phosphorus mg·kg−1 | Potassium mg·kg−1 | Sodium mg·kg−1 | Calcium mg·kg−1 | Magnesium mg·kg−1 |
|---|---|---|---|---|---|---|
| P11 | 20,022.45 eA | 1848.35 eA | 8715.00 dA | 720.11 cA | 28,490.00 cA | 8290.14 dB |
| P21 | 19,664.10 dA | 1748.00 dA | 7655.00 cA | 630.45 bA | 26,905.40 bA | 6970.47 cB |
| P31 | 19,164.60 cA | 1662.00 cA | 7440.00 cA | 615.14 bA | 25,911.12 bA | 5915.31 bB |
| P41 | 18,081.80 bA | 1556.20 bA | 7210.00 bA | 560.23 aA | 24,050.19 aA | 5105.21 aB |
| P51 | 12,979.00 aB | 1394.20 aA | 6770.00 aA | 540.15 aA | 23,290.15 aA | 4917.17 aB |
| 17,982.39 | 1641.75 | 7558.00 | 613.52 | 25,729.37 | 6239.66 | |
| P12 | 20,620.44 eA | 2416.00 dB | 20,314.15 dB | 896.47 cB | 62,131.05 eB | 3364.14 dA |
| P22 | 19,230.14 dA | 2246.50 cB | 17,745.12 cB | 782.51 bB | 55,033.25 dB | 3196.17 cA |
| P32 | 18,641.47 cA | 2201.00 cB | 17,387.95 cB | 756.23 bB | 45,265.14 cB | 2821.19 bA |
| P42 | 17,771.14 bA | 2146.00 bB | 15,462.15 bB | 748.79 bB | 42,097.05 bB | 2719.16 bA |
| P52 | 11,891.14 aA | 2000.50 aB | 13,675.05 ab | 719.51 aB | 37,225.10 aB | 2514.19 aA |
| 17,630.87 | 2202.00 | 16,916.88 | 780.70 | 48,350.32 | 2922.97 |
| Type of Pellet | Mineral Matter % | Organic Matter % |
|---|---|---|
| P11 | 43.45 ± 4.50 dA | 56.55 ± 6.70 aA |
| P21 | 38.12 ± 4.40 cA | 61.88 ± 5.70 bB |
| P31 | 37.20 ± 3.90 cA | 62.80 ± 6.10 bB |
| P41 | 33.29 ± 4.40 bA | 66.71 ± 6.10 cB |
| P51 | 28.96 ± 4.10 aA | 71.04 ± 5.90 dB |
| 36.20 ± 4.26 | 63.80 ± 6.10 | |
| P12 | 43.20 ± 4.30 cA | 56.80 ± 5.70 aA |
| P22 | 41.20 ± 4.40 cB | 58.80 ± 6.10 aA |
| P32 | 40.40 ± 3.80 cB | 59.60 ± 5.80 aA |
| P42 | 37.60 ± 4.10 bB | 62.40 ± 5.50 bA |
| P52 | 32.60 ± 3.90 aB | 67.40 ± 5.50 cA |
| 39.00 ± 4.10 | 61.00 ± 5.72 |
| Type of Pellet | Copper mg·kg−1 | Cadmium mg·kg−1 | Lead mg·kg−1 | Zinc mg·kg−1 | Nickel mg·kg−1 |
|---|---|---|---|---|---|
| P11 | 28.44 ± 0.10 cA | 0.47 ± 0.01 cA | 9.41 ± 0.03 dA | 279.20 ± 0.78 eA | 15.77 ± 0.18 aA |
| P21 | 22.89 ± 0.08 bA | 0.38 ± 0.01 bA | 8.32 ± 0.02 cA | 258.45 ± 0.98 dA | 16.33 ± 0.15 aB |
| P31 | 21.88 ± 0.11 bA | 0.35 ± 0.01 bA | 7.42 ± 0.04 bA | 228.35 ± 0.82 cA | 17.44 ± 0.13 aB |
| P41 | 18.44 ± 0.08 aA | 0.31 ± 0.01 aA | 6.25 ± 0.03 aA | 214.05 ± 0.75 bA | 28.01 ± 0.21 bB |
| P51 | 17.92 ± 0.09 aA | 0.28 ± 0.01 aA | 5.94 ± 0.03 aA | 179.53 ± 0.71 aA | 40.19 ± 0.20 cB |
| 21.91 ± 0.09 | 0.36 ± 0.01 | 7.47 ± 0.03 | 231.92 ± 0.80 | 23.55 ± 0.17 | |
| P12 | 44.34 ± 0.12 dB | 1.36 ± 0.01 eB | 9.27 ± 0.03 eA | 139.15 ± 0.95 dA | 11.06 ± 0.12 aA |
| P22 | 34.22 ± 0.09 cB | 1.08 ± 0.01 dB | 7.72 ± 0.02 dA | 117.55 ± 0.85 cA | 11.21 ± 0.15 aA |
| P32 | 31.44 ± 0.12 bB | 0.99 ± 0.01 cB | 6.98 ± 0.04 cA | 109.40 ± 0.74 cA | 12.01 ± 0.19 aA |
| P42 | 29.75 ± 0.11 bB | 0.88 ± 0.01 bB | 6.11 ± 0.02 bA | 95.15 ± 0.91 bA | 19.10 ± 0.17 bA |
| P52 | 24.61 ± 0.10 aB | 0.69 ± 0.01 aB | 5.21 ± 0.04 aA | 79.25 ± 0.99 aA | 29.14 ± 0.15 cA |
| 32.87 ± 0.10 | 1.00 ± 0.01 | 7.06 ± 0.03 | 108.10 ± 0.88 | 16.50 ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zardzewiały, M.; Szopka, K.; Gruszka, D.; Sekutowski, T.R.; Bajcar, M.; Saletnik, B.; Gorzelany, J. Method of Management and Determination of Quality of Waste from Green Areas for the Production of Pellets Used for Fertilization Purposes. Sustainability 2025, 17, 10250. https://doi.org/10.3390/su172210250
Zardzewiały M, Szopka K, Gruszka D, Sekutowski TR, Bajcar M, Saletnik B, Gorzelany J. Method of Management and Determination of Quality of Waste from Green Areas for the Production of Pellets Used for Fertilization Purposes. Sustainability. 2025; 17(22):10250. https://doi.org/10.3390/su172210250
Chicago/Turabian StyleZardzewiały, Miłosz, Katarzyna Szopka, Dariusz Gruszka, Tomasz R. Sekutowski, Marcin Bajcar, Bogdan Saletnik, and Józef Gorzelany. 2025. "Method of Management and Determination of Quality of Waste from Green Areas for the Production of Pellets Used for Fertilization Purposes" Sustainability 17, no. 22: 10250. https://doi.org/10.3390/su172210250
APA StyleZardzewiały, M., Szopka, K., Gruszka, D., Sekutowski, T. R., Bajcar, M., Saletnik, B., & Gorzelany, J. (2025). Method of Management and Determination of Quality of Waste from Green Areas for the Production of Pellets Used for Fertilization Purposes. Sustainability, 17(22), 10250. https://doi.org/10.3390/su172210250

