Spatial Agglomeration and Innovation Capacity: Evidence of Spatial Allocation of Construction Land Resources by Provincial Governments in China
Abstract
1. Introduction
2. Research Hypotheses
2.1. Direct Effects of SCCL on IC
2.2. The Impact of SCCL on IC: The Moderating Role of R&D Investment and Marketization
2.3. The Environmental Regulation Threshold Effect of SCCL on IC
3. Research Design
3.1. Establishment of Empirical Model
3.1.1. Dual Fixed Effects Panel Model
3.1.2. Four-Stage Mediation Effect Model
3.1.3. Moderation Effect Model
3.1.4. Threshold Effect Model
3.2. Variable Description
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Mechanism Variables
3.2.4. Control Variables
3.3. Data Description
4. Empirical Results and Analysis
4.1. Basic Facts
4.2. Benchmark Regression
4.3. Robustness Tests
4.3.1. Replacing the Core Explanatory Variable
4.3.2. Replacing the Dependent Variable
4.3.3. Replacing Both the Dependent and Core Explanatory Variables
4.4. Endogeneity Discussion
4.5. Transmission Mechanism Analysis
4.6. Testing the Moderating Effects of R&D Investment and Human Capital
4.7. Threshold Effect Test
5. Extension Analysis
5.1. Non-Linear Relationship Test
5.2. Heterogeneity Analysis
5.3. The Impact of the Spatial Concentration of Different Types of Construction Land on IC
6. Discussion
7. Conclusions
7.1. Research Conclusions
7.2. Policy Recommendations
7.3. Research Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, C.; Hu, H. China’s Land Resource Allocation and Urban Innovation: Mechanism Discussion and Empirical Evidence. China Ind. Econ. 2020, 37, 83–101. [Google Scholar]
- Yan, C.; Zhong, S.; Ren, J. Research on the Effect and Mechanism of Provincial Construction Land Spatial Agglomeration Empowering Economic Resilience in China. Land 2025, 14, 1762. [Google Scholar] [CrossRef]
- Rosero, G.C.G.; Álvarez, J.R.; Saez, D. Determinants of Innovation: The Role of the Agglomeration Economies. Econ. Politics Mag. 2020, 31, 67–92. [Google Scholar]
- Zhang, M.; Li, W.; Zhang, R.; Yang, X. How Do Manufacturing and Producer Service Agglomerations Affect Urban Innovation Differently? Empirical Evidence from China. PLoS ONE 2022, 17, e0275616. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Cui, R.; Zhao, X. Impact of Productive Service Agglomeration on Urban Technological Innovation: Based on China’s 19 Urban Agglomerations. J. Urban Plan. Dev. 2024, 150, 04024045. [Google Scholar] [CrossRef]
- Lu, D.; Hui, E.C.M.; Shen, J.; Shi, J. Digital Industry Agglomeration and Urban Innovation: Evidence from China. Econ. Anal. Policy 2024, 84, 1998–2025. [Google Scholar] [CrossRef]
- Feldman, M.P.; Audretsch, D.B. Innovation in Cities: Science-Based Diversity, Specialization and Localized Competition. Eur. Econ. Rev. 1999, 43, 409–429. [Google Scholar] [CrossRef]
- Ge, L.; Li, C.; Sun, L.; Hu, W.; Ban, Q. The Relationship between High-Tech Industrial Agglomeration and Regional Innovation: A Meta-Analysis Investigation in China. Sustainability 2023, 15, 16545. [Google Scholar] [CrossRef]
- Yang, B.; Liu, X.; Liu, W. Research on the Relationship between Industrial Agglomeration and Regional Innovation from the Dynamic Perspective: Evidence from China. Asia Pac. J. Innov. Entrep. 2022, 16, 108–127. [Google Scholar] [CrossRef]
- Hamidi, S.; Zandiatashbar, A.; Bonakdar, A. The Relationship between Regional Compactness and Regional Innovation Capacity (RIC): Empirical Evidence from a National Study. Technol. Forecast. Soc. Change 2019, 142, 394–402. [Google Scholar] [CrossRef]
- Carlino, G.A.; Chatterjee, S.; Hunt, R.M. Urban Density and the Rate of Invention. J. Urban Econ. 2007, 61, 389–419. [Google Scholar] [CrossRef]
- Boschma, R.A. Proximity and Innovation: A Critical Assessment. Reg. Stud. 2005, 39, 61–74. [Google Scholar] [CrossRef]
- Alberti, F.G.; Belfanti, F.; Giusti, J.D. Knowledge Exchange and Innovation in Clusters: A Dynamic Social Network Analysis. Ind. Innov. 2021, 28, 880–901. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, F. Spatial Proximity, Enterprise Agglomeration, and Innovation Output: Mechanisms and Insights from China. Sustain. Futures 2025, 9, 100793. [Google Scholar] [CrossRef]
- Chen, L.; Hasan, R.; Jiang, Y. Urban Agglomeration and Firm Innovation: Evidence from Asia. World Bank Econ. Rev. 2022, 36, 533–558. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, R. How Does the Spatial Agglomeration of Human Capital Affect Strategic Innovation in China? J. Asian Econ. 2025, 96, 101868. [Google Scholar] [CrossRef]
- Bao, J.; Li, Y. Has High-Tech Cluster Improved Regional Innovation Capacity? Evidence from Wuhan Metropolitan Area in China. Front. Environ. Sci. 2023, 11, 1180781. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, J.; Zhu, D.; Jiang, X.; Zhang, H.; Zhang, Y. Land Marketization and Urban Innovation Capacity: Evidence from China. Habitat Int. 2022, 122, 102540. [Google Scholar] [CrossRef]
- Li, H.; Qin, Y. Land Financialization and Regional Innovation Dynamics: Evidence from China. Financ. Res. Lett. 2024, 64, 105474. [Google Scholar] [CrossRef]
- Xie, D. Land Resource Misallocation and City Innovation Capacity: Based on Chinese City-level Panel Data Analysis. China J. Econ. 2020, 7, 86–112. [Google Scholar]
- Zhang, J.; Mei, L.; Ding, J.; He, S. Does Land Resource Misallocation Inhibit Urban Innovation? An Analysis from the Perspective of Administration-Market Dual Interventions. China Land Sci. 2025, 39, 70–81. [Google Scholar]
- Xu, H.; Sun, F.; Liu, S. Land Misallocation and Urban Green Innovation: From the Perspective of Asymmetrical Innovation Theory. Manag. Decis. Econ. 2025, 46, 1835–1855. [Google Scholar] [CrossRef]
- Bellandi, M.; Ruiz-Fuensanta, M.J. An Empirical Analysis of District External Economies Based on a Structure-Conduct-Performance Framework. Pap. Reg. Sci. 2010, 89, 801–818. [Google Scholar] [CrossRef]
- Khan, H.H.; Ahmad, R.B.; Chan, S. Market Structure, Bank Conduct and Bank Performance: Evidence from ASEAN. J. Policy Model. 2018, 40, 934–958. [Google Scholar] [CrossRef]
- Cheng, K.; Gao, D.; Hong, Z. How Does Land Allocation Affect Spatial Distribution of Urban Population. China Ind. Econ. 2024, 41, 24–42. [Google Scholar]
- Paci, R.; Usai, S. Technological Enclaves and Industrial Districts: An Analysis of the Regional Distribution of Innovative Activity in Europe. Reg. Stud. 2000, 34, 97–114. [Google Scholar] [CrossRef]
- Feldman, M.P. The New Economics of Innovation, Spillovers and Agglomeration: A Review of Empirical Studies. Econ. Innov. New Technol. 1999, 8, 5–25. [Google Scholar] [CrossRef]
- Beise-Zee, R.; Rammer, C. Local User-Producer Interaction in Innovation and Export Performance of Firms. Small Bus. Econ. 2006, 27, 207–222. [Google Scholar] [CrossRef]
- Fabrizio, K.R.; Thomas, L.G. The Impact of Local Demand on Innovation in a Global Industry. Strateg. Manag. J. 2012, 33, 42–64. [Google Scholar] [CrossRef]
- Hashmi, A.R. Competition and Innovation: The Inverted-U Relationship Revisited. Rev. Econ. Stat. 2013, 95, 1653–1668. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous Technological Change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C.V.D. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Gao, X.; Wang, S.; Ahmad, F.; Chandio, A.A.; Ahmad, M.; Xue, D. The Nexus between Misallocation of Land Resources and Green Technological Innovation: A Novel Investigation of Chinese Cities. Clean Technol. Environ. Policy 2021, 23, 2101–2115. [Google Scholar] [CrossRef]
- Pmandata. Fan Gang Marketization Index 1997–2022. Available online: https://www.ppmandata.cn/trade/detail?id=1717 (accessed on 20 October 2025).
- Feng, Z.; Tang, Y.; Yang, Y.; Zhang, D. Relief degree of land surface and its influence on population distribution in China. J. Geogr. Sci. 2008, 18, 237–246. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Chen, Z. Polycentric Development and Its Effect on Regional Income Disparity. China Ind. Econ. 2017, 34, 25–43. [Google Scholar]
- Davis, D.R.; Weinstein, D.E. Bones, Bombs, and Break Points: The Geography of Economic Activity. AER 2002, 92, 1269–1289. [Google Scholar] [CrossRef]
- Ding, C.; Huang, X.; Zhou, M. Dialect Diversity, Factor Aggregation and City Size: An Empirical Test Based on Satellite Nighttime Light Data. Finance Trade Econ. 2020, 41, 80–94. [Google Scholar]
- Liu, L.; Si, S.; Li, J. Research on the Effect of Regional Talent Allocation on High-Quality Economic Development—Based on the Perspective of Innovation-Driven Growth. Sustainability 2023, 15, 6315. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, H.; Pan, Y.; Zou, J. The innovation effects of local talent competition: The case of China’s municipal “Vying for Talent” policies. Habitat Int. 2025, 164, 103523. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Government Intervention and Land Misallocation: Evidence from China. Cities 2017, 60, 323–332. [Google Scholar] [CrossRef]
- Cai, Q.; Chen, Y.; Yan, J. The Innovation Externalities of the “Strong Provincial Capital”: From the Perspectives of Intra-provincial Knowledge Exchange and Industrial Division. J. Financ. Res. 2025, 536, 132–149. [Google Scholar]
- Yang, B.; Liu, X.; Chang, X. Research on the Innovation Effect of “Strengthening Provincial Capital” Strategy. J. Quant. Technol. Econ. 2023, 40, 168–188. [Google Scholar]
- Zhuang, Y.; Yang, S. Influence of “Building a Strong Provincial Capital” Strategy on Regional Innovation Development: Radiation or Siphon Effect? China Soft Sci. 2021, 8, 86–94. [Google Scholar]
- Yu, Y.; Zhang, N. Environmental Regulation and Innovation: Evidence from China. Glob. Environ. Chang. 2022, 76, 102587. [Google Scholar] [CrossRef]






| Variable | Definition | Sample Size | Mean | Standard Deviation | Minimum | Maximum |
|---|---|---|---|---|---|---|
| lnI | Innovation Capacity | 529 | 2.750 | 1.242 | 0.118 | 5.391 |
| pr | The primacy city share based on construction land | 529 | 0.322 | 0.127 | 0.134 | 0.721 |
| rd | R&D Intensity | 529 | 1.531 | 1.200 | 0.103 | 7.042 |
| edu | Human Capital Level | 529 | 8.490 | 0.879 | 5.438 | 10.174 |
| market | Marketization level | 529 | 6.959 | 2.042 | 2.813 | 12.390 |
| fdi | Foreign Direct Investment | 529 | 1.123 | 0.634 | 0.037 | 2.333 |
| urb | Urbanization Level | 529 | 0.496 | 0.130 | 0.167 | 0.786 |
| agg | Industrial Agglomeration Level | 529 | 0.982 | 0.143 | 0.588 | 1.501 |
| lner | Environmental Regulation Intensity | 529 | 1.914 | 0.633 | 0.940 | 3.585 |
| Variable | (1) lnI | (2) lnI | (3) lnI | (4) lnI | (5) lnI | (6) lnI | (7) lnI | (8) lnI |
|---|---|---|---|---|---|---|---|---|
| pr | 1.026 *** | 1.064 *** | 1.370 *** | 1.235 *** | 1.279 *** | 1.301 *** | 1.223 *** | 1.086 *** |
| (3.00) | (3.13) | (3.94) | (3.61) | (3.66) | (3.74) | (3.55) | (3.00) | |
| rd | 0.132 *** | 0.120 *** | 0.127 *** | 0.121 *** | 0.115 ** | 0.154 *** | 0.156 *** | |
| (2.92) | (2.67) | (2.88) | (2.68) | (2.57) | (3.37) | (3.41) | ||
| edu | 0.253 *** | 0.246 *** | 0.241 *** | 0.241 *** | 0.306 *** | 0.309 *** | ||
| (3.46) | (3.44) | (3.33) | (3.36) | (4.16) | (4.21) | |||
| fdi | 0.099 *** | 0.098 *** | 0.081 *** | 0.086 *** | 0.078 *** | |||
| (4.50) | (4.46) | (3.61) | (3.83) | (3.35) | ||||
| urb | 0.155 | 0.141 | 0.270 | 0.256 | ||||
| (0.61) | (0.56) | (1.07) | (1.02) | |||||
| agg | 0.364 *** | 0.817 *** | 0.801 *** | |||||
| (2.85) | (4.44) | (4.34) | ||||||
| lner | 0.351 *** | 0.351 *** | ||||||
| (3.39) | (3.39) | |||||||
| lnmarket | 0.201 | |||||||
| (1.21) | ||||||||
| Constant | 1.055 *** | 0.929 *** | −0.922 * | −0.826 | −0.851 | −1.198 ** | −2.820 *** | −3.067 *** |
| (8.80) | (7.34) | (−1.68) | (−1.53) | (−1.57) | (−2.18) | (−3.89) | (−4.07) | |
| Time and individual effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| R2 | 0.938 | 0.939 | 0.940 | 0.943 | 0.943 | 0.944 | 0.945 | 0.945 |
| Variable | (1) lnI | (2) lnI | (3) lnI | (4) lnI | (5) lnI_g | (6) lnI_g | (7) lnI_g | (8) lnI_g | (9) lnI_g | (10) lnI_g |
|---|---|---|---|---|---|---|---|---|---|---|
| HHI | 1.648 *** | 1.756 *** | 1.744 *** | 1.709 *** | ||||||
| (3.47) | (3.65) | (3.81) | (3.70) | |||||||
| q | 0.529 *** | 0.779 *** | 0.691 *** | 0.915 *** | ||||||
| (3.18) | (4.87) | (4.39) | (6.10) | |||||||
| pr | 0.854 ** | 0.855 ** | ||||||||
| (2.57) | (2.46) | |||||||||
| Control Variable | NO | Yes | NO | Yes | NO | Yes | NO | Yes | NO | Yes |
| Time effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Individual effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Constant | 1.069 *** | −3.158 *** | 0.894 *** | −1.703 *** | 0.974 *** | −3.221 *** | 0.917 *** | −3.381 *** | 0.614 *** | −2.264 *** |
| (10.26) | (−4.21) | (5.56) | (−2.85) | (8.38) | (−4.45) | (9.13) | (−4.71) | (4.02) | (−4.05) | |
| R2 | 0.938 | 0.946 | 0.914 | 0.928 | 0.937 | 0.945 | 0.938 | 0.946 | 0.908 | 0.924 |
| Variable | (1) pr | (2) lnI | (3) lnI_g | (4) HHI | (5) lnI | (6) lnI_g | (7) q | (8) lnI | (9) lnI_g |
|---|---|---|---|---|---|---|---|---|---|
| IV | 0.117 *** | 0.111 *** | 0.333 *** | ||||||
| (7.38) | (9.76) | (8.49) | |||||||
| pr | 4.809 *** | 5.206 *** | |||||||
| (3.85) | (4.14) | ||||||||
| HHI | 5.038 *** | 5.454 *** | |||||||
| (4.08) | (4.52) | ||||||||
| q | 1.828 *** | 1.925 *** | |||||||
| (4.16) | (4.60) | ||||||||
| Control Variable | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Constant | 0.292 ** | −3.099 *** | −3.831 *** | 0.187 ** | −2.636 ** | −3.330 *** | 0.956 *** | −2.936 ** | −3.740 **** |
| (2.48) | (−2.61) | (−3.22) | (2.20) | (−2.45) | (−3.17) | (3.21) | (−2.41) | (−3.22) | |
| Time and Individual effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| R2 | 0.367 | 0.933 | 0.927 | 0.309 | 0.940 | 0.939 | 0.232 | 0.929 | 0.924 |
| Anderson LM | 51.892 | 84.330 | 65.777 | ||||||
| Cragg-Donald Wald F | 54.394 | 95.195 | 72.081 |
| Variable | (1) lnI | (2) ee | (3) lnI | (4) lnI |
|---|---|---|---|---|
| pr | 1.086 *** | 0.285 ** | 0.943 *** | |
| (3.00) | (2.48) | (2.62) | ||
| ee | 0.544 *** | 0.502 *** | ||
| (3.81) | (3.51) | |||
| Control Variable | Yes | Yes | Yes | Yes |
| Time and individual effect | Yes | Yes | Yes | Yes |
| Constant | −2.820 *** | 0.253 | −2.873 *** | −3.195 *** |
| (−3.89) | (1.06) | (−3.89) | (−4.29) | |
| R2 | 0.945 | 0.922 | 0.946 | 0.946 |
| Sobel_Z | 2.027 ** | |||
| Bootstrap | [0.0014] | [0.6640] |
| Variable | (1) lnI | (2) lnI | (3) lnI | (4) lnI |
|---|---|---|---|---|
| pr | 1.086 *** (3.00) | 1.184 *** (3.33) | 1.074 *** (3.04) | 0.896 ** (2.53) |
| rd | 0.156 *** (3.41) | 0.151 *** (3.37) | 0.058 (1.19) | 0.067 (1.40) |
| pr × rd | −0.624 *** (−4.71) | |||
| edu | 0.309 *** (4.21) | 0.398 *** (5.36) | 0.414 *** (5.53) | 0.417 *** (5.61) |
| pr × edu | −0.624 *** (−4.92) | |||
| lnmarket | 0.201 (1.21) | 0.401 ** (2.39) | 0.298 * (1.82) | 0.428 ** (2.56) |
| pr × lnmarket | −2.215 *** (−5.28) | |||
| Control Variable | Yes | Yes | Yes | Yes |
| Time and individual effects | Yes | Yes | Yes | Yes |
| Constant | −3.067*** (−4.07) | −3.978 *** (−5.22) | −3.312 *** (−4.49) | −3.438 *** (−4.67) |
| R2 | 0.945 | 0.948 | 0.948 | 0.948 |
| Number of Threshold | Fstat | Prob |
|---|---|---|
| Single | 66.69 | 0.000 |
| Double | 49.10 | 0.007 |
| Triple | 32.16 | 0.617 |
| Model | Threshold | 95% Confidence Interval |
|---|---|---|
| Th-1 | 2.6741 | (2.6471, 2.6807) |
| Th-2 | 1.3137 | (1.2807, 1.3218) |
| Variable | lnI |
|---|---|
| pr·I (lner ≤ 1.3137) | 0.987 (1.04) |
| pr·I (1.3137 < lner ≤ 2.6741) | 2.911 *** (3.12) |
| pr·I (lner > 2.6741) | 4.463 *** (4.59) |
| Control Variable | Yes |
| Constant | −7.448 *** (−9.70) |
| Time effects | Yes |
| Individual effects | Yes |
| R2 | 0.907 |
| Variable | (1) 0.1 | (2) 0.25 | (3) 0.5 | (4) 0.75 | (5) 0.9 |
|---|---|---|---|---|---|
| pr | 1.115 *** | 0.383 | 0.505 | 1.072 ** | 0.732 ** |
| (4.28) | (0.89) | (0.93) | (2.27) | (2.35) | |
| Control Variable | Yes | Yes | Yes | Yes | Yes |
| Time effects | Yes | Yes | Yes | Yes | Yes |
| Individual effects | Yes | Yes | Yes | Yes | Yes |
| Constant | −0.523 | −1.080 | −2.027 * | −2.782 *** | −3.250 *** |
| (−1.01) | (−1.26) | (−1.87) | (−2.95) | (−5.24) | |
| N | 529 | 529 | 529 | 529 | 529 |
| R2 | 0.837 | 0.825 | 0.823 | 0.826 | 0.835 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variable | East | Central | West | South | North | Provincial Capital | Non-Provincial Capital | High | Medium | Low | High | Medium-Low |
| pr | −2.873 *** | −0.287 | 3.576 *** | 1.430 *** | 0.806 * | 1.261 *** | −7.398 *** | 1.675 *** | 2.858 *** | −2.019 | 0.018 | 1.143 *** |
| (−3.09) | (−0.40) | (7.08) | (2.71) | (1.69) | (3.28) | (−3.35) | (3.12) | (3.60) | (−1.45) | (0.02) | (2.97) | |
| Control variable | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Time effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Individual effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Constant | −1.875 | −3.948 *** | −3.377 *** | −2.141 * | −5.221 *** | −2.444 *** | 2.153 | −4.390 *** | −3.379 * | −2.621 | −3.797 | −2.804 *** |
| (−1.17) | (−2.68) | (−3.14) | (−1.68) | (−5.01) | (−2.87) | (0.95) | (−3.66) | (−1.76) | (−1.59) | (−1.19) | (−3.38) | |
| N | 161 | 184 | 184 | 276 | 253 | 472 | 57 | 184 | 184 | 161 | 92 | 437 |
| R2 | 0.966 | 0.964 | 0.967 | 0.950 | 0.959 | 0.939 | 0.990 | 0.960 | 0.945 | 0.962 | 0.980 | 0.947 |
| Variable | (1) lnI | (2) lnI | (3) lnI | (4) lnI | (5) lnI |
|---|---|---|---|---|---|
| pr_industry | 0.021 (0.08) | ||||
| pr_reside | −0.548 ** (−2.07) | ||||
| pr_service | 0.945 *** (3.32) | ||||
| pr_public | 0.524 *** (2.72) | ||||
| pr_otherservice | 0.676 *** (2.80) | ||||
| Control variable | Yes | Yes | Yes | Yes | Yes |
| Time effects | Yes | Yes | Yes | Yes | Yes |
| Individual effects | Yes | Yes | Yes | Yes | Yes |
| Constant | −2.686 *** (−3.57) | −2.603 *** (−3.49) | −2.920 *** (−3.93) | −2.894 *** (−3.87) | −2.784 *** (−3.74) |
| R2 | 0.944 | 0.945 | 0.945 | 0.945 | 0.945 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Zhong, S.; Lu, D. Spatial Agglomeration and Innovation Capacity: Evidence of Spatial Allocation of Construction Land Resources by Provincial Governments in China. Sustainability 2025, 17, 10244. https://doi.org/10.3390/su172210244
Yan C, Zhong S, Lu D. Spatial Agglomeration and Innovation Capacity: Evidence of Spatial Allocation of Construction Land Resources by Provincial Governments in China. Sustainability. 2025; 17(22):10244. https://doi.org/10.3390/su172210244
Chicago/Turabian StyleYan, Chengli, Shunchang Zhong, and Di Lu. 2025. "Spatial Agglomeration and Innovation Capacity: Evidence of Spatial Allocation of Construction Land Resources by Provincial Governments in China" Sustainability 17, no. 22: 10244. https://doi.org/10.3390/su172210244
APA StyleYan, C., Zhong, S., & Lu, D. (2025). Spatial Agglomeration and Innovation Capacity: Evidence of Spatial Allocation of Construction Land Resources by Provincial Governments in China. Sustainability, 17(22), 10244. https://doi.org/10.3390/su172210244
